The Environment and Interactions of Electrons in GaAs Quantum Dots
Access status:
Open Access
Type
ThesisThesis type
Doctor of PhilosophyAuthor/s
Croot, Xanthe GraceAbstract
At the dawn of the twentieth century, the underpinnings of centuries-old classical physics were beginning to be unravelled by the advent of quantum mechanics. As well as fundamentally shifting the way we understand the very nature of reality, this quantum revolution has subsequently ...
See moreAt the dawn of the twentieth century, the underpinnings of centuries-old classical physics were beginning to be unravelled by the advent of quantum mechanics. As well as fundamentally shifting the way we understand the very nature of reality, this quantum revolution has subsequently shaped and created entire fields, paving the way for previously unimaginable technology. The quintessential instance of such technology is the quantum computer, whose building blocks - quantum bits, or qubits - are premised on the uniquely quantum principles of superposition and entanglement. It is predicted that quantum computers will be capable of efficiently solving certain classically intractable problems. To build a quantum computer, it is necessary to find a system which exhibits these uniquely quantum phenomena. The success of silicon-based integrated circuits for classical computing made semiconductors an obvious architecture in which to focus experimental quantum computing efforts. The two-dimensional electron gas which forms at the interface of GaAs/AlGaAs heterostructures constitutes an ideal platform for isolating and controlling single electrons, encoding quantum information in their spin and charge states. This thesis broadly addresses three key challenges to quantum computing with GaAs qubits: scalability, particularly in the context of readout, unwanted interactions between fragile quantum states and their environment, and the facilitation of controllable, strong interactions between separated qubits as a means of generating entanglement. These significant, unavoidable challenges must be addressed in order for a future solid-state quantum computer to be viable.
See less
See moreAt the dawn of the twentieth century, the underpinnings of centuries-old classical physics were beginning to be unravelled by the advent of quantum mechanics. As well as fundamentally shifting the way we understand the very nature of reality, this quantum revolution has subsequently shaped and created entire fields, paving the way for previously unimaginable technology. The quintessential instance of such technology is the quantum computer, whose building blocks - quantum bits, or qubits - are premised on the uniquely quantum principles of superposition and entanglement. It is predicted that quantum computers will be capable of efficiently solving certain classically intractable problems. To build a quantum computer, it is necessary to find a system which exhibits these uniquely quantum phenomena. The success of silicon-based integrated circuits for classical computing made semiconductors an obvious architecture in which to focus experimental quantum computing efforts. The two-dimensional electron gas which forms at the interface of GaAs/AlGaAs heterostructures constitutes an ideal platform for isolating and controlling single electrons, encoding quantum information in their spin and charge states. This thesis broadly addresses three key challenges to quantum computing with GaAs qubits: scalability, particularly in the context of readout, unwanted interactions between fragile quantum states and their environment, and the facilitation of controllable, strong interactions between separated qubits as a means of generating entanglement. These significant, unavoidable challenges must be addressed in order for a future solid-state quantum computer to be viable.
See less
Date
2017-07-21Licence
The author retains copyright of this thesis. It may only be used for the purposes of research and study. It must not be used for any other purposes and may not be transmitted or shared with others without prior permission.Faculty/School
Faculty of Science, School of PhysicsAwarding institution
The University of SydneyShare