On the Practice and Application of Context-Free Language Reachability
Access status:
Open Access
Type
ThesisThesis type
Doctor of PhilosophyAuthor/s
Hollingum, NicholasAbstract
The Context-Free Language Reachability (CFL-R) formalism relates to some of the most important computational problems facing researchers and industry practitioners. CFL-R is a generalisation of graph reachability and language recognition, such that pairs in a labelled graph are ...
See moreThe Context-Free Language Reachability (CFL-R) formalism relates to some of the most important computational problems facing researchers and industry practitioners. CFL-R is a generalisation of graph reachability and language recognition, such that pairs in a labelled graph are reachable if and only if there is a path between them whose labels, joined together in the order they were encountered, spell a word in a given context-free language. The formalism finds particular use as a vehicle for phrasing and reasoning about program analysis, since complex relationships within the data, logic or structure of computer programs are easily expressed and discovered in CFL-R. Unfortunately, The potential of CFL-R can not be met by state of the art solvers. Current algorithms have scalability and expressibility issues that prevent them from being used on large graph instances or complex grammars. This work outlines our efforts in understanding the practical concerns surrounding CFL-R, and applying this knowledge to improve the performance of CFL-R applications. We examine the major difficulties with solving CFL-R-based analyses at-scale, via a case-study of points-to analysis as a CFL-R problem. Points-to analysis is fundamentally important to many modern research and industry efforts, and is relevant to optimisation, bug-checking and security technologies. Our understanding of the scalability challenge motivates work in developing practical CFL-R techniques. We present improved evaluation algorithms and declarative optimisation techniques for CFL-R, capitalising on the simplicity of CFL-R to creating fully automatic methodologies. The culmination of our work is a general-purpose and high-performance tool called Cauliflower, a solver-generator for CFL-R problems. We describe Cauliflower and evaluate its performance experimentally, showing significant improvement over alternative general techniques.
See less
See moreThe Context-Free Language Reachability (CFL-R) formalism relates to some of the most important computational problems facing researchers and industry practitioners. CFL-R is a generalisation of graph reachability and language recognition, such that pairs in a labelled graph are reachable if and only if there is a path between them whose labels, joined together in the order they were encountered, spell a word in a given context-free language. The formalism finds particular use as a vehicle for phrasing and reasoning about program analysis, since complex relationships within the data, logic or structure of computer programs are easily expressed and discovered in CFL-R. Unfortunately, The potential of CFL-R can not be met by state of the art solvers. Current algorithms have scalability and expressibility issues that prevent them from being used on large graph instances or complex grammars. This work outlines our efforts in understanding the practical concerns surrounding CFL-R, and applying this knowledge to improve the performance of CFL-R applications. We examine the major difficulties with solving CFL-R-based analyses at-scale, via a case-study of points-to analysis as a CFL-R problem. Points-to analysis is fundamentally important to many modern research and industry efforts, and is relevant to optimisation, bug-checking and security technologies. Our understanding of the scalability challenge motivates work in developing practical CFL-R techniques. We present improved evaluation algorithms and declarative optimisation techniques for CFL-R, capitalising on the simplicity of CFL-R to creating fully automatic methodologies. The culmination of our work is a general-purpose and high-performance tool called Cauliflower, a solver-generator for CFL-R problems. We describe Cauliflower and evaluate its performance experimentally, showing significant improvement over alternative general techniques.
See less
Date
2017-08-31Licence
The author retains copyright of this thesis. It may only be used for the purposes of research and study. It must not be used for any other purposes and may not be transmitted or shared with others without prior permission.Faculty/School
Faculty of Engineering and Information Technologies, School of Information TechnologiesAwarding institution
The University of SydneyShare