Algorithms for the Analysis of Spatio-Temporal Data from Team Sports
Access status:
Open Access
Type
ThesisThesis type
Doctor of PhilosophyAuthor/s
Horton, MichaelAbstract
Modern object tracking systems are able to simultaneously record trajectories—sequences of time-stamped location points—for large numbers of objects with high frequency and accuracy. The availability of trajectory datasets has resulted in a consequent demand for algorithms and tools ...
See moreModern object tracking systems are able to simultaneously record trajectories—sequences of time-stamped location points—for large numbers of objects with high frequency and accuracy. The availability of trajectory datasets has resulted in a consequent demand for algorithms and tools to extract information from these data. In this thesis, we present several contributions intended to do this, and in particular, to extract information from trajectories tracking football (soccer) players during matches. Football player trajectories have particular properties that both facilitate and present challenges for the algorithmic approaches to information extraction. The key property that we look to exploit is that the movement of the players reveals information about their objectives through cooperative and adversarial coordinated behaviour, and this, in turn, reveals the tactics and strategies employed to achieve the objectives. While the approaches presented here naturally deal with the application-specific properties of football player trajectories, they also apply to other domains where objects are tracked, for example behavioural ecology, traffic and urban planning.
See less
See moreModern object tracking systems are able to simultaneously record trajectories—sequences of time-stamped location points—for large numbers of objects with high frequency and accuracy. The availability of trajectory datasets has resulted in a consequent demand for algorithms and tools to extract information from these data. In this thesis, we present several contributions intended to do this, and in particular, to extract information from trajectories tracking football (soccer) players during matches. Football player trajectories have particular properties that both facilitate and present challenges for the algorithmic approaches to information extraction. The key property that we look to exploit is that the movement of the players reveals information about their objectives through cooperative and adversarial coordinated behaviour, and this, in turn, reveals the tactics and strategies employed to achieve the objectives. While the approaches presented here naturally deal with the application-specific properties of football player trajectories, they also apply to other domains where objects are tracked, for example behavioural ecology, traffic and urban planning.
See less
Date
2018-01-18Licence
The author retains copyright of this thesis. It may only be used for the purposes of research and study. It must not be used for any other purposes and may not be transmitted or shared with others without prior permission.Faculty/School
Faculty of Engineering and Information Technologies, School of Information TechnologiesAwarding institution
The University of SydneyShare