“A Certain Correspondence”: The Unification of Motion from Galileo to Huygens
Access status:
Open Access
Type
ThesisThesis type
Masters by ResearchAuthor/s
Kemeny, Maximilian AlexanderAbstract
In this work, I focus on one of Galileo's concepts which was neither mathematically nor empirically derived, but instead based on a fundamental intuition regarding the nature of motion: that all mechanical phenomena can be treated in the same way, using the same mathematical and ...
See moreIn this work, I focus on one of Galileo's concepts which was neither mathematically nor empirically derived, but instead based on a fundamental intuition regarding the nature of motion: that all mechanical phenomena can be treated in the same way, using the same mathematical and conceptual apparatus. This was Galileo's concept of 'correspondence', and I follow it from its origins at the turn of the 17th century through Thomas Harriot, Marin Mersenne and ultimately to Christiaan Huygens. At the centre of the concept of correspondence was that phenomena which looked similar really were the same; they were separate instances of the same fundamental processes. Hanging chains and projectile trajectories did not form the same curve by coincidence; they formed the same curve because both were produced by the same competition between vertical and horizontal tendencies. Correspondences were one of the major motivating and legitimising factors behind both Galileo and Huygens' desire to treat all of nature mathematically. This conceptual structure justified their treatment of all of mechanics as mathematically the same. Harriot and Mersenne's roles in this story are to show how contemporaries of Galileo could approach the same topic in drastically different ways. Unlike Huygens, neither Harriot nor Mersenne understood the concept of correspondences. While Galileo and Huygens relied crucially on correspondences to understand natural phenomena, both Harriot and Mersenne were able to achieve many important results in mechanics without it. This work is the biography of a concept; one that is contingent, constructed, frequently fruitful but not a historical or scientific necessity.
See less
See moreIn this work, I focus on one of Galileo's concepts which was neither mathematically nor empirically derived, but instead based on a fundamental intuition regarding the nature of motion: that all mechanical phenomena can be treated in the same way, using the same mathematical and conceptual apparatus. This was Galileo's concept of 'correspondence', and I follow it from its origins at the turn of the 17th century through Thomas Harriot, Marin Mersenne and ultimately to Christiaan Huygens. At the centre of the concept of correspondence was that phenomena which looked similar really were the same; they were separate instances of the same fundamental processes. Hanging chains and projectile trajectories did not form the same curve by coincidence; they formed the same curve because both were produced by the same competition between vertical and horizontal tendencies. Correspondences were one of the major motivating and legitimising factors behind both Galileo and Huygens' desire to treat all of nature mathematically. This conceptual structure justified their treatment of all of mechanics as mathematically the same. Harriot and Mersenne's roles in this story are to show how contemporaries of Galileo could approach the same topic in drastically different ways. Unlike Huygens, neither Harriot nor Mersenne understood the concept of correspondences. While Galileo and Huygens relied crucially on correspondences to understand natural phenomena, both Harriot and Mersenne were able to achieve many important results in mechanics without it. This work is the biography of a concept; one that is contingent, constructed, frequently fruitful but not a historical or scientific necessity.
See less
Date
2016-03-31Faculty/School
Faculty of Science, Unit for the History and Philosophy of ScienceAwarding institution
The University of SydneyShare