THE BIOLOGICAL AND FINANCIAL IMPACT OF OVINE JOHNE’S DISEASE IN AUSTRALIA

RUSSELL DAVID BUSH

A THESIS SUBMITTED FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY

OF THE UNIVERSITY OF SYDNEY

AUSTRALIA

November 2005
Faculty of Veterinary Science
University of Sydney
Declaration

Apart from the assistance stated in the acknowledgements and where reference is made in the text, this thesis represents the original work of the author. I certify the work presented in this thesis has not been submitted for any other degree or qualification at any other university.

Russell David Bush
B.Sc.Agr (Hons.I)
November 2005
Dedication

This thesis is dedicated to my wife, Susan, for her inspiration and encouragement to commence a tertiary degree after an extended absence from formal study and her continual support throughout my undergraduate and postgraduate endeavours.
Acknowledgements

This thesis would not have been possible without the assistance of many people and organisations. In particular, I would like to acknowledge my supervisor Dr Jenny-Ann Toribio and co-supervisor Associate Professor Peter Windsor for their encouragement, guidance, support and attention to detail throughout this study. I would also like to acknowledge Mr Stewart Webster (NSW DPI Orange), my other co-supervisor, for his guidance and intellectual contribution during the development of the gross margin model.

I would like to thank Professor Kym Abbott (Charles Sturt University), who along with Associate Professor Peter Windsor, had the confidence in my ability to offer me this project. Meat and Livestock Australia (MLA) are acknowledged for funding this study, as part of the National OJD Control and Evaluation Program (NOJDP), which has enabled a thorough examination to be conducted without constraints and provided opportunities for me to attend conferences and meetings within Australia and overseas to present this work. Dr Peter Rolfe, who was with MLA during the initial stages of this study, is also acknowledged for his encouragement, guidance and support.

I would especially like to thank the owners/managers and staff from the 12 farms involved in this study, whom will remain nameless due to confidentiality requirements. Their full co-operation and willingness to undertake work above and beyond normal duties is greatly appreciated. I would also like to thank Dale Chalker (NSW DPI Goulburn), Bronwyn Burn (Yass RLPB), Geoff Briant and Heather Williams (Young RLPB) for their assistance in collecting sheep to examine during the necropsy inspection periods.

I am grateful for the assistance provided by many people throughout my candidature. From the University of Sydney Helen McGregor is acknowledged for her guidance and friendship, Craig Kristo, David Palmer, Matt Van Dijk, Byron Biffin and Om Dhungyel for their assistance in collecting the required blood and faecal samples and Anna Waldron and Om Dhungyel for processing samples in the laboratory. Chris Stimson is acknowledged for his commitment to analysing the pasture samples.
collected from the four-necropsy inspection periods. I appreciate the assistance of Jiri Tasler for providing instruction for the worm counts while Sandra Saville and Eileen Risby assisted with administrative tasks. Janine Maitland and Karen Black from the Camden campus library are also acknowledged for their willingness to assist. Dr Peter Thomson, who along with Paul Nicholls (NSW DPI EMAI) and Dr Evan Sergeant (AusVet), provided valuable advice regarding the analysis. I wish to express my appreciation to Om Dhungyel for reading and critiquing this manuscript. Professor Richard Whittington is acknowledged for his contribution towards histological categorisation and taking a keen interest in the progress of this study.

I would also like to thank Adam Hook, the agronomist with Elders Ltd. at the Young branch in southern NSW, who assisted with providing advice along with cost information used in the financial model.

The friendships gained during this candidature are numerous. I would especially like to thank Associate Professor Peter Windsor for his friendship, mentoring and positive influence.

Finally, I would like to thank my wife Susan, and our sons James and Lachlan who were both born during this study period. Their support, encouragement and understanding have made this chapter of my life an enjoyable experience. I am pleased to be able to achieve this for them.
Summary

This study was conducted to provide accurate information about the impact of OJD on sheep mortality and financial status on infected farms in Australia. Industry considered this research to be important because little credible information was available regarding the magnitude of the OJD problem and the responses required to control and manage OJD in southern Australia.

This 3-year study, conducted on 12 OJD-infected farms in southern NSW, commenced with a 12-month observational study in 2002. During this year OJD mortality estimates were derived from farm records (livestock inventories) and quarterly farm visits (necropsy inspections). Questionnaires, climatic records and pasture samples enabled a detailed description of each farm to be made and a single collection of blood and faecal samples provided OJD prevalence information for specific age cohorts of sheep in each flock. The financial impact of OJD was established using two approaches, a gross margin analysis and the provision of a financial value on the mortalities inspected during the necropsy inspection periods.

For a further 2 years, inventory and management information was collected from each of the twelve farms to provide 2003 and 2004 estimates for OJD mortality and financial loss due to OJD based on gross margin analyses. A more detailed gross margin model was developed that has the capacity to compare three disease status scenarios (uninfected, infected and vaccinated) for a number of different sheep production enterprises. These enterprises include fine, medium and strong wool Merino ewes and wethers as well as 1st and 2nd cross lamb production.

From the four 5-day necropsy inspections conducted in 2002, a most likely cause of death was determined for 362 necropsied sheep on the basis of findings related to the environment, clinical signs, gross pathology and histopathology. Of these, OJD was most likely to have contributed to the death of 250 sheep, OJD was unlikely to have contributed to the death of 1 sheep and OJD did not contribute to death of 111 sheep. During 2002, across the 12 farms, there were a total of 52,718 wethers and 47,374 ewes at-risk of becoming infected with OJD. The distribution of mortalities in each
sex group translates to an OJD mortality rate of 4.3% among wethers and 4.9% among ewes. Distribution across inspection periods showed a trend among OJD-related necropsies and total necropsies with the majority occurring in winter (31%) and spring (35%) and fewer in autumn (18%) and summer (16%).

Across the 12 farms, the annual OJD mortality rate ranged from 1.8% to 17.5% during the 3-year study with mean annual figures of 6.2% in 2002, 7.8% in 2003 and 6.4% in 2004. Of concern is the fact that these mean OJD mortality figures were all above the accepted annual mortality rate from all causes for adult sheep of 4-6% (McGregor et al., 2003) for Australian flocks.

Gross margins were calculated for each of the 12 farms assuming each farm was free of OJD and then these were compared with the actual farm gross margin. The mean percentage decrease in gross margin due to a farm being infected with OJD was 6.4% in 2002, 8.5% in 2003 and 7.4% in 2004. This equates to a mean reduction in annual income of $15,000 per farm in 2002, $12,154 in 2003 and $13,991 in 2004.

Using the necropsy inspection information the mean estimated cost of OJD losses on the 12 farms over 2002 was $60,500 (range $10,978 to $150,836). The estimated cost of OJD losses accounted on average for 69.4% (range 19.4% to 100%) of the estimated total loss related to sheep deaths over the 12-month period.

The OJD prevalence in 2-year old sheep in 2002 based on pooled faecal culture (PFC) ranged from 0.7% to > 23% on the 12 farms and was found to be associated with OJD mortality rate (P = 0.02). In contrast, no significant relationship was found between faecal excretion rate of MAP in two-year old sheep based on PFC and OJD mortality rate, or between age-related OJD seroprevalence and OJD mortality rate.

The association between various environment, management and disease factors and quarterly OJD mortality rate was analysed and several factors (including flock size, stocking rate, area of improved pasture and weaning age) were identified as being important for further investigation. Definite conclusions based on statistical analysis could not be made due to the small number of farms and use of whole flock data. However, the results provide strong support for an additional study, involving a large
number of farms and focusing on a specific sheep cohort, to identify the major risk factors for OJD.

The necropsy study in 2002 established 31% of deaths were due to causes other than OJD and could have been prevented in most cases. More than half (63%) of the non-OJD deaths were attributed to malnutrition, with 57% of these deaths occurring on one farm where pregnancy toxaemia resulted from sheep receiving inadequate nutrition in late pregnancy. Many of these deaths could have been prevented with earlier feeding. The occurrence of grain poisoning on some farms reinforces the need for improved strategies when supplementary feeding. Under more favourable seasonal conditions these nutritional syndromes are unlikely to occur.

Sporadic drought conditions throughout the 3-year study period, for each of the four study regions, were likely to have a minimal effect on measuring the impact of OJD on the 12 farms. At the end of 2002, following the realisation the drought would likely persist into 2003, the 12 farms on average selectively reduced flock numbers by 25%. However, this reduction is unlikely to have had an adverse effect on establishing the proportion of OJD mortalities as stock reductions occurred mainly towards the end of 2002 and the sheep most likely to be sampled at each necropsy inspection period were unlikely to be sold, as they displayed low body condition score and showed signs of weakness.

A gross margin model was developed to provide an estimate of the on-farm cost of OJD. Non-infected, infected (status quo) and infected (vaccination) disease scenario examples were run for 1000 head Merino ewe and wether enterprises as well as first and second cross prime lamb enterprises. The total cost of OJD (relative to an uninfected status) and an avoidable cost of OJD (using Gudair™ vaccination) were reported at four investment horizons to illustrate the cost of an OJD infection on a flock as well as the potential cost saving if a control strategy involving vaccination is implemented. Although vaccination reduces OJD mortalities, there is still an unavoidable cost incurred by the producer when compared to an uninfected flock. Results are presented as cumulative gross margin per dry sheep equivalent expressed in net present value terms (GM (NPV)/DSE) at 5, 10, 15 and 20-year intervals to enable a comparison between enterprises.
The model suggests a vaccination breakeven point is achieved in two to three years for breeding enterprises if the level of OJD is high. If the level of OJD is low a vaccination breakeven point is achieved in three years for either a 1st cross or 2nd cross enterprise and seven years for a Merino ewe enterprise. The Merino ewe enterprises take the longest time to reach a vaccination breakeven point as more young sheep are retained annually for breeding in addition to the cost involved with vaccinating lambs, which is borne by all three breeding enterprises. The returns to vaccination are greatest for the 1st and 2nd cross lamb enterprises due to the value and number of lambs sold annually. With Merino wethers a vaccination breakeven point is reached in year one for all disease categories due to vaccinated replacement hoggets being introduced to provide an immediate response in reducing OJD mortalities, however as no breeding occurs the ability to increase income is limited. In the absence of OJD mortalities with the at-risk disease category, a vaccination breakeven point is not reached within the model’s 20-year time frame for any of the enterprises.

This study provided the first objective data on the true impact of OJD on 12 farms, and the findings are generally applicable to sheep flocks in southern Australia. Industry groups claiming that OJD does not present a threat on-farm can now be provided with accurate figures on direct losses attributable to OJD within the endemic area of NSW. There was a wide range of impacts, with some very high mortality rates. The data can be used to justify vaccination programs, other control options and the general concept of disease control and prevention.

The challenge now for industry is the design and implementation of an education and extension package that can incorporate these findings and the gross margin model along with other recent research findings to address issues of misinformation about OJD and inform producer decisions regarding on-farm disease control.
Publications

Table of Contents

Declaration ... ii

Dedication .. iii

Acknowledgements ... iv

Summary ... vi

Publications .. x

Table of Contents .. xii

List of Tables ... xvii

List of Figures ... xxi

Glossary ... xxiii

Chapter 1 Introduction ... 1

Chapter 2 Literature Review

2.1 Introduction .. 6

2.2 Ovine Johne’s Disease (OJD) .. 7
 2.2.1 Aetiology ... 7
 2.2.2 Pathogenesis ... 8
 2.2.3 Clinical Expression .. 11
 2.2.4 Pathology ... 12
 2.2.4.1 Gross Pathology .. 12
 2.2.4.2 Histopathology ... 13
 2.2.5 Epidemiology .. 15
 2.2.5.1 Disease Distribution .. 15
 2.2.5.1.1 Species .. 15
 2.2.5.1.2 Geographic ... 16
 2.2.5.2 Risk Factors ... 17
 2.2.5.2.1 Host .. 17
 2.2.5.2.2 Agent ... 18
 2.2.5.2.3 Environment .. 19
 2.2.6 Importance as a Livestock Disease 22
 2.2.7 Public Health Risk ... 24

2.3 OJD in Australia ... 25
 2.3.1 History of Disease ... 25
 2.3.2 History of Control Program 28

3.3.2.2 Necropsies ... 65
3.3.2.3 Nematode counts ... 66
3.3.2.4 Histopathology .. 66
3.3.2.5 Determination of most likely cause of death 67
3.3.3 Serology and bacteriology of specific age cohorts of sheep .. 69
 3.3.3.1 Seroprevalence based on agar gel immunodiffusion 69
 3.3.3.2 Prevalence and excretion rate based on pooled faecal
 Culture (PFC) .. 70
3.4 Data management .. 71
3.5 Data analysis ... 71
 3.5.1 Annual mortality rates based on inventory records 71
 3.5.1.1 Crude mortality rate (inventory) 71
 3.5.1.2 Adjusted mortality rate (inventory) 72
 3.5.2 Annual mortality rate where OJD contributed to death in 2002 73
 3.5.2.1 Adjusted OJD mortality rate (inventory) 73
 3.5.2.2 Extrapolated OJD mortality rate (necropsy study) 74
 3.5.3 Annual mortality rate where OJD contributed to death in 2003
 and 2004 ... 74
 3.5.4 Necropsied sheep where OJD contributed to death 75
 3.5.5 Predicting OJD mortality rate from OJD prevalence based on pooled
 faecal culture, MAP faecal excretion and OJD seroprevalence
 information .. 75
 3.5.6 Association between quarterly OJD mortality rate and various
 environment, management and disease factors 76
 3.5.7 Financial impact of OJD ... 77
 3.5.7.1 Gross margin comparison of flocks with and without OJD
 over a 1-year period .. 77
 3.5.7.2 Financial value of sheep necropsied in 2002 80
3.6 Simulation modelling .. 81
 3.6.1 Modelling the on-farm financial impact of OJD 81
 3.6.1.1 Model .. 81
 3.6.1.1.1 Farm background .. 81
 3.6.1.1.2 Flock structure .. 82
 3.6.1.1.3 Disease scenarios 83
 3.6.1.1.4 Input costs ... 89
 3.6.1.1.5 Gross margins .. 89
 3.6.1.1.6 Results .. 90

Chapter 4 Impact of ovine Johne’s disease on sheep in 12 infected
 flocks

4.1 Introduction .. 92
4.2 Materials and Methods .. 92
4.3 Results ... 93
 4.3.1 Annual mortality rates based on farm records 93
4.3.2 Necropsy examination of sheep in 2002 ..93
 4.3.2.1 Most likely cause of death ..93
 4.3.2.2 Distribution of necropsied sheep where OJD contributed to
death by age and sex ...94
 4.3.2.3 Distribution of necropsied sheep where OJD contributed to
death by season ...95
4.3.3 Annual mortality rate where OJD contributed to death95
4.3.4 Financial impact of OJD ..97
 4.3.4.1 Gross margin comparison of flocks with and without OJD over
three one-year periods ...97
 4.3.4.2 Financial value of sheep necropsied in 200299
4.3.5 Impact of drought ..100
 4.3.5.1 Seasonal conditions (2002 to 2004)100
 4.3.5.2 Sheep numbers (2002 to 2004)101

4.4 Discussion ...101

Chapter 5 The prevalence of ovine Johne’s disease in 12 infected
flocks and a description of possible risk factors
associated with the impact of OJD

5.1 Introduction ...108
5.2 Materials and Methods ...109
5.3 Results ...109
 5.3.1 OJD prevalence based on pool faecal culture (PFC)109
 5.3.2 Faecal excretion of MAP ...110
 5.3.3 OJD seroprevalence ...111
 5.3.4 Association between quarterly OJD mortality rate and various
environment, management and disease factors112
5.4 Discussion ...113

Chapter 6 Sheep mortalities unrelated to ovine Johne’s disease in 12
infected flocks during drought

6.1 Introduction ...119
6.2 Materials and Methods ...120
6.3 Results ...120
 6.3.1 Weather data ..120
 6.3.2 Most likely cause of death for necropsied sheep121
 6.3.3 Mortality rates ...122
 6.3.4 Gross financial value of mortalities unrelated to OJD123
 6.3.5 Questionnaires ..124
6.4 Discussion ...125
Chapter 7 The effect of drought on the impact of ovine Johne’s disease in 12 infected flocks

7.1 Introduction ..129
7.2 Materials and Methods ...130
7.3 Results ..130
 7.3.1 Weather data ...130
 7.3.2 Sheep numbers ..133
 7.3.3 Months in drought (RLPB declared) ..134
 7.3.4 Lamb marking percentages ..135
 7.3.5 Questionnaires ..135
7.4 Discussion ..136

Chapter 8 Modelling the financial impact of ovine Johne’s disease

8.1 Introduction ..141
8.2 Materials and Methods ...142
8.3 Results ..143
 8.3.1 Example outputs ..143
 8.3.1.1. Base level gross margins ..143
 8.3.1.2 High disease level ..145
 8.3.1.3 Medium disease level ..146
 8.3.1.4 Low disease level ..147
 8.3.1.5 At-risk disease level ..148
 8.3.1.6 Between enterprise comparison ..149
8.4 Discussion ..152

Chapter 9 General discussion and conclusions..157

Bibliography ..166

Appendices ..184
List of Tables

<table>
<thead>
<tr>
<th>Table</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Histological classification of OJD intestinal lesions in sheep</td>
<td>15</td>
</tr>
<tr>
<td>2.2</td>
<td>The number of recorded flocks in Australia infected with OJD at March 2005 compared to June 2004, June 2003, June 2002 and June 2001</td>
<td>26</td>
</tr>
<tr>
<td>2.3</td>
<td>National Ovine Johnne’s disease control and evaluation program (NOJDP) Zones effective 1988 to June 30, 2004 and post NOJDP Prevalence Areas effective from July 1, 2004</td>
<td>27</td>
</tr>
<tr>
<td>3.1</td>
<td>Criteria used to select farms for inclusion in the study</td>
<td>61</td>
</tr>
<tr>
<td>3.2</td>
<td>Description of 12 farms included in the study</td>
<td>62</td>
</tr>
<tr>
<td>3.3</td>
<td>Sections and section headings for the 2002 questionnaire used for collection of information on current flock management practices as well as detailed farm and flock history over the preceding five years</td>
<td>63</td>
</tr>
<tr>
<td>3.4</td>
<td>Sections and section headings for the 2003-2005 questionnaires used for collection of information on the effects of seasonal conditions during the previous 12 months on farm and flock management</td>
<td>64</td>
</tr>
<tr>
<td>3.5</td>
<td>Categorisation of nematode counts by species</td>
<td>66</td>
</tr>
<tr>
<td>3.6</td>
<td>Case definitions for the most likely cause of death where OJD did not contribute to death, based on appearance and pathological findings from dead or moribund adult sheep on 12 farms during 2002</td>
<td>68</td>
</tr>
<tr>
<td>3.7</td>
<td>Assumptions used to determine the financial impact of OJD</td>
<td>78</td>
</tr>
<tr>
<td>3.8</td>
<td>Additional income and costs as a result of a flock not being infected with OJD</td>
<td>79</td>
</tr>
<tr>
<td>3.9</td>
<td>Model assumptions for adult and hogget OJD mortality rates and the proportion of OJD mortalities experienced by each cohort within an infected flock over a 20-year period</td>
<td>85</td>
</tr>
<tr>
<td>3.10</td>
<td>Model assumptions for adult and hogget OJD mortality rates and the proportion of OJD mortalities experienced by each cohort within an infected flock over a 20-year period following the introduction of vaccination with Gudair™</td>
<td>86</td>
</tr>
</tbody>
</table>
Mean crude and adjusted mortality results for 12 farms in 2002, 2003 and 2004 ..93

The number of sheep classified for most likely cause of death and the estimated OJD prevalence for the 12 study flocks in 200294

Adjusted OJD mortality rates (inventory) and farmer estimated OJD mortality rates for the 12 farms in 2002, 2003 and 200496

Actual gross margins from 12 flocks with OJD in 2002, 2003 and 200497

Gross Margin comparison per DSE and per hectare for the 12 study flocks assuming OJD non-infected and infected status in 200298

Gross Margin comparison per DSE and per hectare for the 12 study flocks assuming OJD non-infected and infected status in 200398

Gross Margin comparison per DSE and per hectare for the 12 study flocks assuming OJD non-infected and infected status in 200499

Estimates of adjusted OJD mortality rate, cost of deaths and losses due to OJD for sheep necropsied on the 12 study farms in 2002100

Point and confidence interval estimates of OJD prevalence for 2 year-old sheep based on pooled faecal culture tests for the 12 farms in 2002110

Daily MAP faecal excretion rates for 2 year-old sheep based on pooled faecal culture tests for the 12 farms in 2002111

Age related seroprevalence of OJD for the 12 farms in 2002112

Final mixed linear model for quarterly OJD mortality rate on the 12 farms in 2002 ...113

Most likely cause of death of 111 sheep from 12 flocks that were necropsied during 4 periods in 2002. These deaths were not related to OJD122

Estimates of the adjusted mortality rate, adjusted OJD mortality rate and adjusted mortality rates attributed primarily to either malnutrition or causes other than OJD in adult sheep from 12 flocks in 2002 and the proportion of mortalities on each farm attributable to causes other than OJD123
6.3 Estimates of the annual cost of all deaths among adult sheep necropsied on 12 farms in 2002 and the costs attributable to losses due primarily to either malnutrition or other causes but not attributable to OJD 124

7.1 RLPB drought declarations for the 12 farms over the 3-year study period .. 134

7.2 Questionnaire responses for the 12 farms over the 3-year study period ….. 136

8.1 The base level cumulative gross margins (GM (NPV)/DSE) for eight sheep enterprises assuming no OJD infection ... 143

8.2 The base level cumulative gross margins (GM (NPV)/DSE) for eight sheep enterprises assuming a high level of OJD infection 144

8.3 The base level cumulative gross margins (GM (NPV)/DSE) for eight sheep enterprises assuming a medium level of OJD infection 144

8.4 The base level cumulative gross margins (GM (NPV)/DSE) for eight sheep enterprises assuming a low level of OJD infection 144

8.5 The base level cumulative gross margins (GM (NPV)/DSE) for eight sheep enterprises assuming an at-risk level of OJD infection 145

8.6 Total costs of OJD over time (uninfected minus infected) expressed in cumulative GM (NPV)/DSE for eight sheep enterprise types with a high level of OJD infection ... 145

8.7 Avoidable costs of OJD over time (vaccinated minus infected) expressed in cumulative GM (NPV)/DSE for eight sheep enterprise types with a high level of OJD infection ... 146

8.8 Total costs of OJD over time (uninfected minus infected) expressed in cumulative GM (NPV)/DSE for eight sheep enterprise types with a medium level of OJD infection ... 146

8.9 Avoidable costs of OJD over time (vaccinated minus infected) expressed in cumulative GM (NPV)/DSE for eight sheep enterprise types with a medium level of OJD infection ... 147

8.10 Total costs of OJD over time (uninfected minus infected) expressed in cumulative GM (NPV)/DSE for eight sheep enterprise types with a low level of OJD infection ... 147

xix
8.11 Avoidable costs of OJD over time (vaccinated minus infected) expressed in cumulative GM (NPV)/DSE for eight sheep enterprise types with a low level of OJD infection ...148

8.12 Total costs of OJD over time (uninfected minus infected) expressed in cumulative GM (NPV)/DSE for eight sheep enterprise types with an at-risk level of OJD infection ..148

8.13 Avoidable costs of OJD over time (vaccinated minus infected) expressed in cumulative GM (NPV)/DSE for eight sheep enterprise types with an at-risk level of OJD infection ..149

8.14 Vaccination breakeven points (in years) for eight sheep enterprise types at four disease categories ...149

8.15 The proportion of the simulated total cost of OJD on wool and sheep sale income for eight sheep enterprises at an at-risk, low, medium and high OJD scenario ...150

8.16 The proportion of the simulated net benefit of vaccination with Gudair™ on wool and sheep sale income for four sheep enterprises at an at-risk, low, medium and high OJD scenario ...151
List of Figures

<table>
<thead>
<tr>
<th>Figure</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>OJD Prevalence Areas in Australia, effective 1 November 2004</td>
<td>27</td>
</tr>
<tr>
<td>3.1</td>
<td>Map location of four areas in south-eastern NSW containing the 12 farms</td>
<td>62</td>
</tr>
<tr>
<td>3.2</td>
<td>Classification of the “most likely cause of death” following post mortem examination</td>
<td>67</td>
</tr>
<tr>
<td>3.3</td>
<td>Infected (status quo) disease scenarios depicting flock-average OJD mortality rates for low, medium and high prevalence of disease over a 20-year period</td>
<td>88</td>
</tr>
<tr>
<td>3.4</td>
<td>Infected (vaccinated) disease scenarios depicting flock-average OJD mortality rates for low, medium and high prevalence of disease, as well as early vaccination with Gudair™, over a 20-year period</td>
<td>88</td>
</tr>
<tr>
<td>4.1</td>
<td>Age frequency distribution of deaths for 250 sheep due to OJD (■) and 111 sheep due to other causes (□) for the 12 study flocks during 2002</td>
<td>95</td>
</tr>
<tr>
<td>4.2</td>
<td>Change in mean gross margin for 12 flocks with OJD from 2002 to 2004</td>
<td>99</td>
</tr>
<tr>
<td>5.1</td>
<td>Relationship between OJD prevalence based on PFC and OJD mortality rate…</td>
<td>110</td>
</tr>
<tr>
<td>6.1</td>
<td>Mean monthly rainfall for 12 farms in 2002 compared to the long term mean</td>
<td>120</td>
</tr>
<tr>
<td>6.2</td>
<td>Mean monthly pan evaporation for 12 farms in 2002 compared to the long term mean</td>
<td>120</td>
</tr>
<tr>
<td>6.3</td>
<td>Mean monthly maximum and minimum temperatures for 12 farms in 2002</td>
<td>121</td>
</tr>
<tr>
<td>7.1</td>
<td>Mean monthly rainfall for 12 farms in 2003 compared to the long term mean</td>
<td>131</td>
</tr>
<tr>
<td>7.2</td>
<td>Mean monthly pan evaporation for 12 farms in 2003 compared to the long term mean</td>
<td>131</td>
</tr>
<tr>
<td>7.3</td>
<td>Mean monthly maximum and minimum temperatures for 12 farms in 2003 compared to the long term mean</td>
<td>131</td>
</tr>
</tbody>
</table>
7.4 Mean monthly rainfall for 12 farms in 2004 compared to the long term mean ...132
7.5 Mean monthly pan evaporation for 12 farms in 2004 compared to the long term mean ..132
7.6 Mean monthly maximum and minimum temperatures for 12 farms in 2004 compared to the long term mean ..133
7.7 Change in mean flock size at the end of each year for the 12 farms over the 3-year study period ...133
7.8 Change in mean monthly RLPB drought declarations for the 12 farms over the 3-year study period ..134
7.9 Change in mean lamb marking and weaning percentages for the 12 farms over the 3-year study period ..135
8.1 Comparison of the simulated total cost of OJD (GM (NPV)/DSE) at a high infection level for eight sheep enterprise types over four investment horizons ...150
8.2 Comparison of the simulated avoidable cost of OJD (GM (NPV)/DSE) at a low infection level for eight sheep enterprise types over four investment horizons ...151
Glossary

<table>
<thead>
<tr>
<th>Acronym</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AAGIS</td>
<td>Australian Agricultural and Grazing Industries Survey</td>
</tr>
<tr>
<td>ABC</td>
<td>Assurance Based Credit</td>
</tr>
<tr>
<td>ABARE</td>
<td>Australian Bureau of Agricultural and Resource Economics</td>
</tr>
<tr>
<td>ADF</td>
<td>Acid Detergent Fibre</td>
</tr>
<tr>
<td>AFB</td>
<td>Acid-fast Bacilli</td>
</tr>
<tr>
<td>AGID</td>
<td>Agar-gel Immunodiffusion (gel test)</td>
</tr>
<tr>
<td>AAHC</td>
<td>Australian Animal Health Council</td>
</tr>
<tr>
<td>BJD</td>
<td>Bovine Johne’s Disease</td>
</tr>
<tr>
<td>CD</td>
<td>Crohn’s disease</td>
</tr>
<tr>
<td>CFA</td>
<td>Cast For Age</td>
</tr>
<tr>
<td>CFU</td>
<td>Colony Forming Units</td>
</tr>
<tr>
<td>CMI</td>
<td>Cell Mediated Immunity</td>
</tr>
<tr>
<td>DDM</td>
<td>Digestible Dry Matter</td>
</tr>
<tr>
<td>DM</td>
<td>Dry Matter</td>
</tr>
<tr>
<td>DSE</td>
<td>Dry Sheep Equivalent</td>
</tr>
<tr>
<td>DV</td>
<td>District Veterinarian</td>
</tr>
<tr>
<td>ELISA</td>
<td>Enzyme-linked Immunosorbent Assay</td>
</tr>
<tr>
<td>EA</td>
<td>Exclusion Area</td>
</tr>
<tr>
<td>GM</td>
<td>Gross Margin</td>
</tr>
<tr>
<td>GI</td>
<td>Growth Index</td>
</tr>
<tr>
<td>Ha</td>
<td>Hectare</td>
</tr>
<tr>
<td>H & E</td>
<td>Haematoxylin and Eosin</td>
</tr>
<tr>
<td>JD</td>
<td>Johne’s Disease</td>
</tr>
<tr>
<td>MAP</td>
<td>Mycobacterium avium subspecies paratuberculosis</td>
</tr>
<tr>
<td>ME</td>
<td>Metabolisable Energy</td>
</tr>
<tr>
<td>MLA</td>
<td>Meat and Livestock Australia</td>
</tr>
<tr>
<td>NJDILC</td>
<td>National Johne’s Disease Industry Liaison Committee</td>
</tr>
<tr>
<td>NOJDP</td>
<td>National Ovine Johne’s Disease Control and Evaluation Program</td>
</tr>
<tr>
<td>NPV</td>
<td>Net Present Value</td>
</tr>
<tr>
<td>OD</td>
<td>Optical Density</td>
</tr>
<tr>
<td>OJD</td>
<td>Ovine Johne’s Disease</td>
</tr>
<tr>
<td>PBS</td>
<td>Phosphate-buffered Saline</td>
</tr>
<tr>
<td>PCR</td>
<td>Polymerase Chain Reaction</td>
</tr>
<tr>
<td>PDEP</td>
<td>Property Disease Eradication Plan</td>
</tr>
<tr>
<td>PDMP</td>
<td>Property Disease Management Programs</td>
</tr>
<tr>
<td>REA</td>
<td>Restriction Endonuclease Analysis</td>
</tr>
<tr>
<td>RLPB</td>
<td>Rural Lands Protection Board</td>
</tr>
<tr>
<td>SDR</td>
<td>Standard Definitions and Rules</td>
</tr>
<tr>
<td>Se</td>
<td>Sensitivity</td>
</tr>
<tr>
<td>SheepMAP</td>
<td>Australian Sheep Johne’s Disease Market Assurance Program</td>
</tr>
<tr>
<td>Sp</td>
<td>Specificity</td>
</tr>
<tr>
<td>ZN</td>
<td>Ziehl Neelsen</td>
</tr>
</tbody>
</table>