
Russell T. Ross*

No. 53 March, 1987

DEPARTMENT OF ECONOMICS

The University of Sydney Australia 2006

Russell T. Ross*

No. 93 March., 1987

* I am indebted to Richard Blundell, Viv Hall, Warren Hogan, Pak-Wai Lin, Margaret Patterson, John Piggott, and Alan Woodland for their constructive comments on this research. Nguyen van Anh provided very capable research assistance.
Abstract

This paper undertakes a cross-country comparison of nine recent studies which estimate disaggregate labour supply functions for married women in a static framework using the Heckman method of correcting for sample selectivity bias. Comparison of the empirical results for the reduced form equations and the derived estimates of the underlying structural parameters shows that despite significant inter-country variations in aggregate labour force participation rates, and in the definitions of key variables, the derived uncompensated and compensated wage elasticities are remarkably robust.
1. Introduction

When the labour force participation rate in the population under review is less than 100%, bias in sample selection may arise when attempting to estimate disaggregate labour supply functions. It is potentially a serious problem for the analysis of labour supply patterns amongst married women. Their participation rates vary considerably across countries and are rarely close to 100%; some examples to be seen in Table 1 are discussed further below.

The Heckman (1979, 1980) method for correcting such bias has been widely applied though little attention has been given to the results of cross-country comparisons. Such comparison would be useful for several reasons. First, estimates of the underlying structural parameters such as the various measures of labour supply elasticities would be on a comparable basis. Second, valuable insights into the impact of institutional factors on labour supply patterns might be obtained. Third, useful information on cross-country differences in preferences should also be revealed.

The present paper examines nine recent studies which have followed the Heckman approach. The data sets cover the USA (2 studies), Canada, Australia, Holland, France, Spain, West Germany, and Sweden. Hence a substantial range of comparisons may be tested. The Heckman approach is set down briefly in section 2 and the nine studies are described in the third section. Section 4 contains summary empirical results from the studies, with attention focussed on the participation decision, offered wages, and hours of work respectively. In section 5 wage and income elasticity estimates are derived for each study and compared with previous estimates discussed in the Killingsworth (1982, chapter 4).
survey. Some concluding comments are offered in the final section. The major conclusion is that the Heckman procedure has permitted fresh insights into the market work patterns of married women as bias-adjusted estimates indicate that their labour supply is considerably more elastic than previously thought, a result which is remarkably robust across a large number of countries despite the quite disparate data bases used.

2. The Basic Model and the Heckman Procedure

Heckman's is a second generation static framework, i.e. one in which issues such as sample selectivity bias are allowed for. It has become the standard framework used by researchers who do not want to be restricted to a specific direct utility function when using a cross-sectional data base which contains neither longitudinal panel data nor expenditure data. Longitudinal panel data would facilitate fitting a dynamic life cycle model such as has been done by Heckman and Macurdy (1980), while expenditure data would facilitate fitting a life cycle consistent model as in Blundell and Walker (1983).

This framework is the three equation static model developed by Heckman (1979, 1980). It has been well documented in the literature and only a brief summary is provided here.

The theoretical framework is described by three equations:

$$W_{oi} = \alpha(X_{oi}) + u_{oi} \quad (1)$$

$$W_{ri} = \beta(X_{ri}) + u_{ri} \quad (2)$$

$$H_i = \max (0, H(W_{oi} - W_{ri})) \quad (3)$$

where W_o, W_r and H are the natural logarithm of the offered wage (i.e. the market wage), the natural logarithm of the reservation wage (i.e. the shadow wage at zero hours of work), and the depth of
participation (i.e. hours of work) respectively; subscript i referring to the ith married woman. X_0 and X_R are vectors of characteristics.

X_0 consists of human capital characteristics, while X_R contains both human capital and demographic characteristics. α and β are vectors, h is a function, while u_0 and u_R are the random error components of the system.

It is assumed here that X_0 and X_R both contain a constant term, α and β are linear in their parameters, h is a constant, and the error terms u_0 and u_R are joint normal variables which are independent across observations.

Equation (3) indicates how hours of work are related to the offered and reservation wages. Only those women who have offered wages in excess of their reservation wages will work, and the hours they work are assumed to be linearly related to the difference between W_0 and W_R.

For working women, Heckman rewrites equation (3) as

$$ H_i = h(W_{0i} - W_{Ri}) $$

$$ = h(\alpha X_{0i} - \beta X_{Ri}) + h(u_0 - u_R) $$

$$ = \beta X_i + u_h $$

(4)

where X_h is the union of X_0 and X_R, β is the vector of coefficients associated with X_h, and $u_h = h(u_0 - u_R)$.

The major empirical issue which Heckman addresses is that testing of this model is hampered by two facts; a significant proportion of the population is not in employment, and reservation wages are not directly available for any women. This means that W_0 is unobserved for women who are not working while W_R is unobserved for all women. That is, the dependent variable in (1) is observed only for working women, while the dependent variable for (2) is not observed at all.
The Heckman procedure is to base estimation of the parameters of
(1), (2) and (3) on a random sample of working women, but to allow for
sample selectivity bias by taking into account the limited information
available on non working women. The reduced form regression functions of
(1) and (3)\(^2\) for a random sample of working women are

\[
\begin{align*}
W_{oi} &= \alpha_i X_{oi} + \gamma_i \lambda_i + u_o, \quad (5) \\
H_i &= \delta_i X_{hi} + \gamma_i^{1/2} \lambda_i + u_h. \quad (6)
\end{align*}
\]

\(\gamma_{oh}\) is the ratio of the covariance between \(u_o\) and \(u_h\) to the
standard error of \(u_h\), while \(\gamma_{hh}^{1/2}\) is the standard error on the hours
equation. \(\lambda_i\) is the Mill's ratio, i.e. the ratio of the density to the
cumulative frequency of a standard normal variable, and is included to
take explicit account of any sample selection bias introduced into the
estimation procedure as a result of using a non random sample\(^3\). Further
elaboration of \(\lambda\) can be found in Heckman (1979).

The estimation procedure is to firstly estimate the coefficients
of the likelihood function for labour force participation using probit
analysis in order to derive estimates for the \(\lambda_i\)'s, then to run least
squares regressions for the offered wage and hours functions, i.e.
equations (5) and (6).

3. The Studies

Nine studies are included in this survey. They are the original
Heckman work for the USA (as presented in Heckman, 1980), a second USA
study (Dooley, 1982), and studies covering Canada (Yakamura, Yakamura
and Cullen, 1981), France (Riboud, 1985), West Germany (Franz and
Kawasaki, 1981), Sweden (Gustafsson and Jacobson, 1985), Spain
(Hernandez Iglesias and Riboud, 1985), Holland (Hartog and Theeuws,
1985) and Australia (Ross, 1986). Table 1 provides summary details of each study's data base and estimation procedure.

There is substantial variation in the participation rates across studies, as well as significant variation in the coverage and/or timing of the studies. The extent to which the variation in aggregate participation rates is influenced by country-specific institutional factors, as opposed to economic factors, is not known. Information on economic factors such as income taxation arrangements and the states of the national labour markets at the times of the surveys will be addressed in the following sections. There is also some variation in the definitions of key regressors used in the estimated functions; these definitions are itemised in Appendix A. Nevertheless, there is sufficient common ground in the studies to warrant a comparative study.

4. Summary Empirical Results

These relate to the labour force participation index (discussed immediately after equation 6 above), the offered wage function (equation 5), and the hours of work function (equation 6). Each is discussed in turn.

4.1 Participation Function

The participation function is estimated in order to estimate the λ_1's, but the coefficients obtained also yield valuable insights into the participation decision itself. Although labour force participation covers both employment and unemployment, all nine studies measure participation to be actual employment. In all but two studies the unemployed are treated as being non-participants. The two exceptions are
Table 1: Countries in the Studies of Labour Supply of Married Women

<table>
<thead>
<tr>
<th>Country (Author)</th>
<th>Year of Survey</th>
<th>Coverage (age)</th>
<th>Estimation Procedure</th>
<th>Participation Rates at time of Survey (I)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Australia (Ross)</td>
<td>1980</td>
<td>18–64</td>
<td>VII</td>
<td>48.0 6.0</td>
</tr>
<tr>
<td>USA (Heckman)</td>
<td>1967</td>
<td>30–44</td>
<td>VII</td>
<td>36.8 3.7</td>
</tr>
<tr>
<td>USA (Dooley)</td>
<td>1970</td>
<td>30–54</td>
<td>VII</td>
<td>40.8 4.8</td>
</tr>
<tr>
<td>West Germany (Franz/Kawasaki)</td>
<td>1976</td>
<td>20–64</td>
<td>VII</td>
<td>39.3 3.7</td>
</tr>
<tr>
<td>Canada (Yakamura/Yakamura /Cullen)</td>
<td>1971</td>
<td>20–59</td>
<td>VIII</td>
<td>43.8 6.1</td>
</tr>
<tr>
<td>Sweden (Gustafsson/Jacobson)</td>
<td>1981</td>
<td>20–59</td>
<td>VIII^c</td>
<td>75.1 2.7</td>
</tr>
<tr>
<td>France (Riboud)</td>
<td>1978/79</td>
<td>18–67</td>
<td>IX</td>
<td>52.6 5.9</td>
</tr>
<tr>
<td>Spain (Hernandez Iglesias /Riboud)</td>
<td>1979</td>
<td>20–59</td>
<td>IX</td>
<td>19.2 8.5</td>
</tr>
<tr>
<td>Holland (Hartog/Theeuwes)</td>
<td>1979</td>
<td>23–60</td>
<td>X</td>
<td>25.3 5.4</td>
</tr>
</tbody>
</table>

Notes:

a. Estimation procedures are summarized in Appendix B.
b. Participation rates are derived from the studies. The unemployment rates presented are from OECD (1985) as unemployment rates are not available in the studies.
c. No hours equation reported.
Australia and Holland; in these studies the unemployed were excluded from the estimation procedures completely. With the relatively high levels of sustained unemployment experienced in most economies in recent years, the issue of how to treat the unemployed in empirical models of labour supply will become more important; as the work of, for example, Flinn and Heckman (1981) and Ham (1982) has already indicated. Further, for those studies using annual hours worked as their basis for determining participation, the incidence of any unemployment spells during the year has been ignored by the authors.

The marginal impact on the participation decision of a variable is given by

$$d\rho_i / dX_j = (d\rho_i / dZ_i) (dZ_i / dX_j)$$

(7)

where \(\rho_i \), \(X_j \), and \(Z_i \) denote the participation probability for the \(i \)th woman, the \(j \)th regressor, and the value of a standard normal variable for the \(i \)th person respectively. \(Z_i \) is defined as

\[-(\hat{\delta}^T \hat{\phi}_{hh}^{-1/2} X_{hi})\], where \(\hat{\delta}^T \hat{\phi}_{hh}^{-1/2} \) is the vector of estimated coefficients in the likelihood function and \(X_{hi} \) is the vector of characteristics for the \(i \)th person.

The precise form of \((d\rho_i / dZ_i) \) depends on the stochastic specification. For probit analysis \(d\rho_i / dZ_i = \lambda_i \rho_i \), while for logit analysis \(d\rho_i / dZ_i = (1 - \rho_i) \rho_i \). Finally, the \(dZ_i / dX_j \) term is just the coefficient for the \(j \)th variable in the likelihood function.

For each \(X_j \) the value of (7) has the same sign as its coefficient although it will be non-linear and individual-specific.

Table 2 summarises the participation results. In all studies, the impact of schooling is positive, and in all studies but one (Canada) the null hypothesis that the impact is not significantly different from
zero can be rejected at usual levels of confidence. Similarly, in each of the four studies reporting experience variables the marginal impact of a unit of previous market experience is positive, and statistically significant.

Further, all income variables indicate a negative and significant impact on participation of increases in access to sources of other income (i.e. other than own earnings). There are only two exceptions. In the Australian study the husband's income variable had a positive but statistically insignificant impact, while for Canada the non-earned income variable had a positive and significant impact.

Finally, the impact of young children on participation was as expected in all studies. No matter what formulation was used the impacts were negative, and where different age groupings were used the relative sizes of coefficients was in accord with expectations.

4.2 The Market Wage Function

Table 3 summarises the market wage regressions. Given the variations in formulations, there is a remarkable degree of similarity in the results. All studies which used actual years of schooling indicate a (gross of income tax) rate of return to an extra year of schooling of between 6% and 11%. Of the studies that used dummy variables to capture the impact of education, all indicate that the return to extra schooling is positive since the coefficients increase in size with higher levels of educational attainment. The West Germany coefficients are somewhat difficult to interpret since the different educational levels reflect qualitatively dissimilar types of education as well as quantitative differences in years of schooling. Of the four studies using previous market experience as a regressor, three report
rates of return to extra experience of 2%-5% (USA-Heckman, France, Spain), while the fourth (Australia) indicates a much higher return, of around 12%. This discrepancy in the estimated rates of return can be explained by the way in which the experience variable is derived. The Australian study had very detailed data on actual labour force experience over the sixty month period immediately prior to the survey date, permitting the calculation of full-time equivalent months of recent experience. However, each of the three studies with lower rates of return used proxies for labour force experience which implicitly assumed that all experience was in full-time employment. Such proxies overestimate the true extent of actual experience for married women whose work histories include spells of part-time and/or part-year employment.

The other variable of interest in the market wage function is \(\lambda \), the variable included to capture the direct impact of sample selectivity bias. From equation (5), the coefficient on \(\lambda \) is proportional to the covariance of the errors in the wage equation and the hours equation. The results indicate that this covariance is positive for Canada, West Germany, Holland and Dooley's USA study. For the Swedish study the covariance across equations is negative, although not significantly different from zero above the 90% level of confidence, while for the French, Spanish, Australian and Heckman's USA studies the coefficient indicates that this covariance is not different from zero. For these countries, the null hypothesis of no sample selection bias in the market wage equation can not be rejected.

4.3 The Hours of Supply Function

As is indicated in Table 4, not all studies presented hours regressions. It is assumed that data inadequacies are the reason for non
reporting of hours equations. Of the five studies reporting hours
equations, three (Canada and the two USA studies) used annual hours as
the hours measure while two (Australia, West Germany) used weekly hours.
The comparison is therefore less precise for this equation.

All studies indicate that income elasticities - to be discussed
further in section 5 - will be negative since the coefficients on the
various income variables are always negative, although some are not
statistically different from zero. Working women with children are more
likely to be working part-time as the coefficients indicate that they
work less hours than do their counterparts with no children, ceterus
paribus.

The superficially poor performance of the schooling variables is
not surprising. From equation (4) the coefficient on schooling in the
hours equation reflects the relative size of two opposing effects. Given
that the coefficient in the market wage equation is significant, an
insignificant coefficient in the hours equation indicates that the
impact of schooling on the reservation wage is of the same magnitude as
its impact on the market wage. Evidently, for Australia and West
Germany, the impact of schooling on women's internal evaluation of their
time is just as great as it is on the market's value of their time.

The direct effect of sample selectivity bias in the hours equation
is as follows. From equation (6), the coefficient on \(\lambda \) is the standard
error on the hours equation, and should be positive. Curiously, while
this result was found in the other four studies in which hours equations
were reported, it was not found in Heckman's own study.
5. Structural Elasticities

In this section, structural elasticities of labour supply are derived for each study and these elasticities are compared with those reported in Killingsworth's excellent survey; see his Table 4.3 and associated discussion at pages 185-201.

For each study, compensated and uncompensated wage elasticities both of hours of supply and of overall labour force participation are presented in Table 5; these are discussed in sections 5.1 and 5.2. The formulae used to calculate these elasticities are detailed in Appendix C. Section 5.3 updates the Killingsworth survey of the hours elasticities, incorporating the estimates discussed in 5.1.

5.1 Hours Elasticities Estimates

The substitution effects, i.e. the compensated wage elasticities, are surprisingly consistent, as with the exception of Canada, all indicate that labour supply is elastic. Not surprisingly, the two US studies have the highest substitution effects. They use annual hours as the dependent variable in contrast to weekly hours and clearly there is more scope for varying annual hours of work. The Canadian results are difficult to explain. Killingsworth (pp 192 and 200) suggests that these results may reflect an omitted variables problem as no labour force experience variables are included although my own interpretation is that the results suggest a backward bending supply curve. Unlike the other studies, Yakamura et al used the log of the predicted hourly wage, rather than its determinants, in the hours equation. As the coefficient on the imputed log wage was negative, the method of calculating the uncompensated wage elasticity gives a negative elasticity, indicating a backward bending supply curve. However, mitigating against this
Table 5: Wage and Income Elasticities

<table>
<thead>
<tr>
<th>Country</th>
<th>Wage Uncompensated</th>
<th>Wage Compensated</th>
<th>Income</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HOURS EQUATION</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Australia</td>
<td>1.30</td>
<td>1.36</td>
<td>-.06</td>
</tr>
<tr>
<td></td>
<td>1.29</td>
<td>1.35</td>
<td>-.06</td>
</tr>
<tr>
<td>USA (Heckman)</td>
<td>1.45</td>
<td>1.48</td>
<td>-.03</td>
</tr>
<tr>
<td></td>
<td>1.47</td>
<td>1.50</td>
<td>-.03</td>
</tr>
<tr>
<td>USA (Dooley)</td>
<td>4.50</td>
<td>5.64</td>
<td>-1.14</td>
</tr>
<tr>
<td>Canada</td>
<td>-.08</td>
<td>-.02</td>
<td>-.06</td>
</tr>
<tr>
<td>West Germany</td>
<td>1.08</td>
<td>1.28</td>
<td>-.20</td>
</tr>
<tr>
<td></td>
<td>1.38</td>
<td>1.66</td>
<td>-.29</td>
</tr>
<tr>
<td>PARTICIPATION EQUATION</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Australia</td>
<td>.68</td>
<td>2.83</td>
<td>-2.15</td>
</tr>
<tr>
<td>USA (Heckman)</td>
<td>1.15</td>
<td>1.35</td>
<td>-.20</td>
</tr>
<tr>
<td>USA (Dooley)</td>
<td>3.40</td>
<td>4.21</td>
<td>-.81</td>
</tr>
<tr>
<td>Canada</td>
<td>0.77</td>
<td>5.26</td>
<td>-4.49</td>
</tr>
<tr>
<td>West Germany</td>
<td>*10.77</td>
<td>*1.14</td>
<td>-.37</td>
</tr>
<tr>
<td>Holland</td>
<td>1.99</td>
<td>2.30</td>
<td>-.31</td>
</tr>
<tr>
<td>France</td>
<td>.89</td>
<td>1.02</td>
<td>-.13</td>
</tr>
<tr>
<td>Spain</td>
<td>1.53</td>
<td>2.96</td>
<td>-1.43</td>
</tr>
<tr>
<td>Sweden</td>
<td>0.29</td>
<td>0.32</td>
<td>-.03</td>
</tr>
</tbody>
</table>

Notes:

a. all are evaluated at sample mean values of variables
b. first row uses equation (C2) to calculate the uncompensated wage elasticity while the second row uses (C2').
c. derived directly from Yakamura et al, Table 8.
d. first row uses the vocational training (SV) coefficients, while the second row uses those for XXX.
explanation is that the income effect is not large enough in absolute size to imply a positive substitution effect. Probably, the true explanation is a combination of a backward bending supply curve and the lack of the experience variable problem. It is unfortunate that the other four studies—France, Spain, Sweden and Holland—were not able to report hours equations. These four studies used somewhat different estimation procedures and would have served as useful checks against the elasticities reported in Table 5.

Before concluding that labour supply is in fact elastic, it should be remembered that the woman's wage variables used are gross of income tax in all studies except the West German one. The coefficients used in these calculations are therefore systematically understated, as are the wage elasticities.

Of these five studies, three cover countries with income taxation systems which either require married couples to file joint income tax returns (West Germany) or provide incentives for couples to do so (USA) while in the other two countries—Australia and Canada—it is mandatory for individuals to file separately. With progressive income tax regimes, labour supply elasticity estimates based on gross wage variables will be lower with joint filing since joint filing is likely to lead to higher effective marginal tax rates for the female spouse than does separate filing.

5.2 Participation 'Elasticities'

As can be seen from equations (13) to (16), the uncompensated own wage elasticities of participation are highly sensitive to the sample participation rate, either directly—equations (14) and (16)—or indirectly—equations (13) and (15). Given the range of participation
rates presented in Table 1, considerable variation is to be expected in the country-specific elasticity estimates presented in the second part of Table 5. Further, it is expected that the method of income tax filing will have a more pronounced effect here than it does in the hours decision. In those countries in which joint filing is mandatory or common, the effective marginal tax rate faced by a married woman contemplating employment is likely to be higher, ceterus paribus, than if filing was separate; consequently the gross wage elasticity of participation is expected to be lower in countries with joint filing. Given the disparities in the participation rates and tax arrangements across countries, it is surprising that there is not much more variation in the figures presented in Table 5.

5.3 Comparison with Previous Estimates of the Hours Elasticities

Second generation static labour supply models is a generic term covering empirical developments designed to overcome the problems inherent in first generation static labour supply models; problems such as systematic missing data, data bunching and generally ad hoc approaches to econometric issues. Although arguably the dominant approach, Heckman’s is not the only second generation model which could be applied in this scenario, i.e. cross-sectional data sets with neither longitudinal data nor expenditure data and with no specific direct utility function assumed. Appendix B, which is based on Killingsworth Table 4.1, details the various estimation procedures which have been applied to this specific scenario. A more comprehensive survey of all estimation techniques can be found in Wales and Woodland (1980).

Within the second generation procedures discussed in Appendix B there are two distinct subsets; those which restrict the supply function to be continuous and those which do not. Procedures VII to X allow for
discontinuities in the supply function, and so elasticities derived from these procedures are expected to be lower than those derived from procedures III to VI.

Table 6 presents procedure-specific average wage and income elasticities for the hours equation. Although the number of studies in each procedure is small, several points emerge. Firstly, the second generation procedures, i.e. procedures III – VIII\(^1\), indicate that labour supply is elastic\(^1\); by contrast the first generation estimates suggest that supply is inelastic; clearly, first generation studies lead to downward biased estimates.

The elasticities for procedures VII and VIII are lower than those from the other second generation procedures. Apparently, it is important to allow for discontinuities in supply, otherwise the responsiveness of female labour to changes in wages will be somewhat overestimated.

6. Conclusion

Sample selectivity bias is clearly an important issue when estimating disaggregate labour supply functions for married women. This cross-country comparison of estimates of female labour supply parameters demonstrates that sample selectivity bias is a common problem in the hours function, although it appears not to be such a problem in the market wage function. Heckman’s procedure has led to fresh insights. Previous research using first generation models of labour supply have produced biased estimates of the structural parameters of interest and have resulted in underestimates of compensated and uncompensated wage elasticities of labour supply. Correcting for sample selectivity bias has typically resulted in supply elasticities which indicate that supply is in fact elastic, although usually close to unity; the only exception
Table 6: Hours Elasticities by Procedure\(^a,b\)

<table>
<thead>
<tr>
<th>Procedure</th>
<th>Wage</th>
<th>Income</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Uncompensated</td>
<td>Compensated</td>
</tr>
<tr>
<td>I</td>
<td>.40 (.16, .60)</td>
<td>.35 (.21, .49)</td>
</tr>
<tr>
<td>II</td>
<td>.37 (.06,1.14)</td>
<td>.38 (.06,1.50)</td>
</tr>
<tr>
<td>III</td>
<td>1.45 (-.44,3.50)</td>
<td>1.45 (.56,3.60)</td>
</tr>
<tr>
<td>IV</td>
<td>6.17 (1.46,14.79)</td>
<td>6.17 (1.48,14.79)</td>
</tr>
<tr>
<td>V</td>
<td>4.47 (2.10,4.50)</td>
<td>4.47 (2.18,4.91)</td>
</tr>
<tr>
<td>VI</td>
<td>3.19 (2.10,4.50)</td>
<td>3.02 (2.18,4.91)</td>
</tr>
<tr>
<td>VIIK</td>
<td>2.06 (.19,7.73)</td>
<td>2.15 (.07,7.73)</td>
</tr>
<tr>
<td>VIIIR</td>
<td>1.80 (1.08,4.50)</td>
<td>2.06 (1.28,5.64)</td>
</tr>
<tr>
<td>VIII</td>
<td>.07 (-.24,+.64)</td>
<td>.18 (-.26,+.81)</td>
</tr>
</tbody>
</table>

Notes:

a. All figures are simple averages from the number of studies using the procedure. All are derived from Killingsworth Table 4.1 except for VIIIR, which was derived from the present study. The Canadian elasticities are included in VIII.
b. Figures in parentheses in the body of the table indicate the minimum and maximum values reported.
c. Figures in parentheses in this column indicate the number of studies reported.
being Canada, where negative wage elasticities were estimated but for which there are differing interpretations of the results obtained. By contrast researchers using first generation models typically concluded that supply was very inelastic.

Despite considerable inter-country variations both in labour force participation rates and the formulations of key variables, there is substantial consistency in the results reported. Rates of return to schooling are remarkably similar across all countries, as are rates of return to previous labour market experience, although not all studies were able to include a direct measure of this latter variable in their analyses. Young children have a significant impact on both participation and hours of supply; even in countries with relatively high participation rates such as Sweden and Australia.

Given the substantial variations in both labour force participation rates and the formulations of key variables, it is surprising that there is such a high degree of similarity in these results, especially given the lack of discussion of country-specific institutional factors and their impact on labour supply decisions.

The other function of interest, the reservation wage function, has received scant attention. Typically, its importance is acknowledged at the theoretical level but it is not examined in empirical work; of the studies discussed, Ross (1986) is the only one which attempts to estimate equation (2). Even if the reservation wage function is not identified (see footnote 2), some insights can be gleaned from inspection of the estimated coefficients of equations (1) and (3), provided that the latter is estimated. For example, equation (4) indicates that if a variable is expected to affect the reservation wage (equation 2) but not the offered wage (equation 1), then if that
variable (e.g. spouse's income, young children) is significant in the
hours function (equation 3) it follows that the coefficient in the
reservation wage function should be proportional to that in the hours
function12 and should also be significant. Further, for those variables
expected to influence both wage functions, the combination of a
significant coefficient in the offered wage function and an
insignificant coefficient in the hours function indicates that the
coefficient in the reservation wage function is of equal sign and
magnitude to that in the offered wage.

There would appear to be three priority areas for attention in
empirical research on labour supply in this scenario13; an inter-country
study of the impact of institutional factors, unemployment modelling,
and estimation of the reservation wage function. Further research on
each of these areas would enable even further insights into the labour
market behaviour of married women throughout the world.
1. In addition to the Heckman references above, see also Heckman, Killingsworth and MacCurdy 1981, pp 106-112, and Killingsworth 1982, chapter 4, as well as any of the studies referred to in this paper.

2. Provided there is one, but only one, variable in X_o not in X_r, successfull estimation of all three equations in the system requires only that the hours equation and the offered wage equation can be estimated. This is so since once estimates of α and β are obtained β can be uniquely derived. If there is more than one variable in X_o not in X_r, as is potentially the case, then multiple estimates for β would be obtained and the reservation wage W_r could not be identified. In this case, researchers tend to present estimates for (1) and (3) and pay scant attention to (2). Of the studies covered in this survey, none apart from my own explicitly discusses estimates of (2).

3. As has already been mentioned, although a random sample of working women is used it is not a random sample of all women.

4. I am grateful to Ernestine Gross for explanation of the West German education system.

5. Although the formulation reported here imputes all return on experience to the last five years, when a variable capturing all previous work experience was used the rate of return was even higher, at 15%; see Ross, 1986.

6. Denoting β^* as the true coefficient (i.e. that relating to the net wage), and β as the observed coefficient (i.e. that relating to the
gross wage), it can be shown that $\delta = \delta_t(1-t_a)$, where t_a is the average tax rate.

7. The true uncompensated own wage elasticity of hours is
 \[(dHR/HR)/(dNW/NW),\] where NW denotes the net wage. However, the estimate of this elasticity derived here is \[(dHR/HR)/(dGW/GW),\] where GW denotes the gross wage. Denoting the marginal tax rate as t_m, and noting that $NW = GW(1-t_a)$ but that $dGW = dNW(1-t_m)$, it follows that the estimated elasticity differs from the true elasticity by a factor of \[(1-t_m)/(1-t_a).\] With the progressive income tax systems used in each of the countries in this survey, the elasticity estimates must be underestimates since $t_m > t_a$ will apply in each case.

8. This statement is certainly true for many part-time workers and, depending on the slope of the tax schedule, may well apply to most workers.

9. Joint filing is also mandatory in France and Spain.

10. Note that hours functions were not presented in the studies using IX and X.

11. Procedure VIII does not fit this claim. However apart from the Canadian study with its negative own wage elasticities, there is only one other study which used VIII; Cogan (1980) reports positive but inelastic elasticities for both white and black women.

12. From equation (4), the factor of proportionality is h.

13. i.e. when using a cross-sectional data base which contains neither longitudinal panel data nor expenditure data.
APPENDIX A: Definitions of key variables

DEPENDENT VARIABLES:
WAGE (gross of income tax unless otherwise stated):
Australia: Weekly earnings divided by HOURS (as defined below)
USA (Dooley), Canada: Annual Earnings divided by HOURS (as defined below)
USA (Heckman):
Usual hourly wage (as defined below)
West Germany:
Net hourly wage (no more precise definition given)
France:
Annual earnings divided by annual hours worked
Spain:
Not defined, assumed to be annual earnings divided by annual hours worked
Holland:
Weekly earnings divided by mid-point of reported hours range
Sweden:
Hourly wage (no more precise definition given)

HOURS:
Australia, West Germany:
Hours worked in survey week
USA (Dooley), Canada:
Hours worked in survey week*weeks worked in previous twelve months
USA (Heckman):
Annual earnings divided by usual hourly wage
France, Spain, Holland, Sweden:
no hours variable

INDEPENDENT VARIABLES:

CHILDREN: (number of children in specified age group)
Australia:
C04 (aged 0-4), C59 (5-9)
USA (Heckman):
C11 (6-11), C15 (12-15)
USA (Dooley):
none used
France:
C25 (0-24)
Spain:
CT, total number of children
Canada:
C05 (see USA), C11 (6-11), C15 (12-15)
C20 (19-24 in education)
CT (see Spain)
West Germany:
C02 (0-2), C35 (3-5), C69 (6-9)
C10 (10-14), C15 (15-18)
C19 (19+)
Holland:
C05 (see USA), C11 (6-11), C15 (12-15)
Sweden:
C05 (see USA), C65 (6-15)
EDUCATION:

Australia, USA (Heckman), France, Spain, Canada:
S, Years of completed schooling

USA (Dooley)
S, as above
SV (=1 if any vocational training)

West Germany:
S1 (=1 if Hauptschule)
S2 (=1 if Realschule)
SF (=1 if Fachhochschule)
S3 (=1 if Abitur)
SV (as above)

Holland:
SB (=1 if completed basic primary school only)
SP (=1 if completed extended primary school)
SS (=1 if completed high school)
SH (=1 if vocational training or university degree)

Sweden:
S6 (=1 if no more than 6 years of schooling)
S6V (=1 if 6 years of schooling and vocational training)
S9 (=1 if 9 years of schooling)
S9V (=1 if 9 years plus some vocational training)
SU (=1 if completed high school or university)

EXPERIENCE:

Australia:
EX5, full-time equivalent months of experience in the last five years

USA (Heckman):
EXH, number of years in which woman has worked six months or more

France:
EXF = age - age at first job - estimate of length of time out of the labour force

Spain:
EXS, not clearly defined, described as 'years of experience'

USA (Dooley):
not available, age dummies used

Canada:
not available, age at first marriage used as proxy

West Germany:
not available, no proxy used

Sweden, Holland:
not available, own age and number of children variables used as proxies
OTHER INCOME (gross of tax unless indicated):

Australia
- HW, husband's hourly wage
- OY, other family income per annum

USA (Heckman):
- HW, as above

USA (Dooley):
- PH, husband's predicted earnings
- TH, husband's actual earnings

France, Spain:
- HA, husband's annual earnings
- OY, (as above)

Canada:
- HA, as above
- AI, family asset income
- PPFT, = (HA + AI)/persons in family

West Germany:
- HNE, husband's net monthly income

Holland:
- PHW, husband's predicted hourly wage

Sweden:
- NI, = HA + OY (some tax adjustment on OY)
APPENDIX B: Alternative Procedures Used for Estimating Static Disaggregate Labour Supply Models

There have been at least ten different estimation procedures applied to data fitting the scenario outlined in section 2 above. Killingsworth (1983, Table 4.1) surveys eight procedures, and two more have been introduced in the research discussed in the present paper. Adopting the terminology used by Killingsworth, the ten procedures are denoted here sequentially as Procedure I to Procedure X. Readers are referred to Killingsworth – see especially his discussion of Table 4.1 at pages 149–161 – for further information on procedures I to VIII.

As Killingsworth notes, procedures I and II are the first generation methods, procedure III is the Tobit approach, while procedure IV uses a linear participation likelihood function. Procedure V is a modified tobit likelihood function approach, while procedure VI is Heckman's tobit (or Heckit; Killingsworth p 156). Procedure VII is the standard Heckman method, and procedure VIII is a variation on the Heckman method in which an imputed wage is used in place of the determinants of the wage in the hours function.

Procedures IX and X have been introduced since the Killingsworth survey. Procedure IX uses the Heckman procedure to correct for sample selectivity bias in the wage equation but then re-estimates the participation function using the imputed wage as a regressor in place of its determinants. Procedure X differs from procedure IX in two respects; logit analysis is used in place of probit analysis and the natural log of the imputed wage is used in the re-estimation of the likelihood function. No author using either of these two procedures presents an hours function.
APPENDIX C: Estimation Formulae for the Wage and Income Elasticities

Six different elasticities are reported in the text: the uncompensated own wage elasticity of hours, the compensated own wage elasticity of hours, the income elasticity of hours, the uncompensated own wage elasticity of participation, the compensated own wage elasticity of participation, and the income elasticity of participation.

In the text, point elasticities are presented and have been calculated using sample mean values of all relevant variables. The formulae used are set out below.

I. Hours Equation

(i) Uncompensated Own Wage Elasticity of Hours (denoted Δ_{HW})

$$\Delta_{HW} = \frac{\Delta \text{change in hours}}{\Delta \text{change in wage}}$$

$$= \frac{d(\text{Hours})/\text{Hours}}{d(\text{Wage})/\text{Wage}}$$

$$= \frac{d(\text{Hour})/\text{Wage}}{d(\text{Wage})/\text{Hour}}$$

Denoting hourly wages by W, hours of work by H, years of schooling by S, the natural log of W by $\ln W_0$, then by applying the product rule of differentiation and noting that $d\ln(x) = (dx)/x$, the uncompensated own wage elasticity Δ_{HW} can be rewritten as

$$\Delta_{HW} = \frac{dH \cdot dS \cdot W}{dS \cdot dW \cdot H}$$

$$= \frac{dH \cdot dS \cdot \ln W}{dS \cdot dW_0 \cdot H}$$

$$= \frac{\alpha_S \cdot \ln \cdot \ln W}{\alpha_S \cdot \ln \cdot \ln W_0}$$

(C2)

For those studies which reported an experience variable, the elasticity was also calculated replacing α_S and $\ln W_0$ by α_E and $\ln W$, respectively, i.e.
(ii) Income Elasticity of Hours (Σ_{HY})

Following Killingsworth, (note to Table 4.3, p 199)

$\Sigma_{HY} = W_o \cdot dH / DHI$

$= W_o \cdot \delta_{HI}$

(C3)

(iii) Compensated Own Wage Elasticity of Hours

This is just the uncompensated wage elasticity less the income elasticity, i.e.

$= (C2) - (C3)$

II. Participation Function

(i) Uncompensated Own Wage Elasticity of Participation (Σ_{PUW})

$\Sigma_{PUW} = \frac{\text{change in participation probability}}{\text{change in hourly wage}}$

$= \frac{d(\text{probability})/\text{probability}}{d(\text{wage})/\text{wage}}$

$= \frac{d(\text{probability})}{\text{probability}} \cdot \frac{\text{wage}}{d(\text{wage})}$

(C4)

As indicated in the text four variations on this formula are needed; one for the probit function, one for the logit function, and country-specific ones for both Sweden and Holland. Each is discussed in turn.

(i.a). the probit function

Using the chain rule, and denoting the participation probability by p, Σ_{PUW} becomes

$\Sigma_{PUW} = \frac{dp \cdot ds \cdot W}{ds \cdot dW \cdot p}$
\[
\frac{d\rho_i}{dX_j} = \frac{d\rho_i}{dZ_i} \cdot \frac{dZ_i}{dX_j} \\
= f(Z_i) \cdot (\delta_j/\sigma_{hh}^{1/2})
\]

where \(f(Z_i) \) is the density of a standard normal variable \(Z_i \) \([-=(\delta_j/\sigma_{hh}^{1/2}) \cdot X_{hi}^1 \)], and \((\delta_j/\sigma_{hh}^{1/2})\) is the probit coefficient for \(X_j \). But \(f(Z_i) \) is equal to \((\delta_j/\sigma_{hh}^{1/2})\). Substituting (C6) into (C4), the elasticity becomes

\[
\Sigma_{PUW} = \lambda_i \cdot \rho_i \cdot \frac{dS}{dW \cdot \rho_i} \\
= \lambda_i \cdot (\delta_j/\sigma_{hh}^{1/2})/S
\]

(i.b). logit function

Here \(d\rho/dX_j = (1 - \rho) \cdot \rho \), and so the elasticity becomes

\[
\Sigma_{PUW} = (1-\rho) \cdot \rho \cdot (\delta_j/\sigma_{hh}^{1/2}) \cdot \frac{1}{S} \\
= (1-\rho) \cdot (\delta_j/\sigma_{hh}^{1/2})/S
\]

(i.c). Sweden

The Swedish study used the imputed hourly wage, denoted \(PW \), as a regressor in the probit function. Substituting (C6) directly into (C4), and after re-arrangement, the elasticity becomes

\[
\Sigma_{PUW} = \lambda \cdot PW \cdot (\delta_{PW}/\sigma_{hh}^{1/2})
\]

(i.d). Holland
The Dutch study used the natural log of the imputed wage, denoted LW here, as a regressor in the logit function. The elasticity now becomes

\[\Sigma_{PUW} = (1-r)(\delta_{LW}/\sigma_{HH})^{1/2} \] \hspace{1cm} (C10)

(ii) Income elasticity of participation (\(\Sigma_{PI}\))

To maintain comparability with the income elasticity of hours, this formula is

\[\Sigma_{PHI} = W_0 \cdot d\rho/dHI \]

\[\Sigma_{PHI} = W_0 \cdot \lambda \cdot \rho \cdot (\delta_{HI}/\sigma_{HH})^{1/2} \] \hspace{1cm} (C11)

(iii) Compensated Own Wage Elasticity of Participation (\(\Sigma_{PCW}\))

This is the uncompensated elasticity adjusted for the income elasticity, i.e.

\[\Sigma_{PCW} = \Sigma_{PUW} - \Sigma_{PHI} \] \hspace{1cm} (C12)

\(\Sigma_{PCW}\) will therefore have four variations, one for each variation of \(\Sigma_{PUW}\).
BIBLIOGRAPHY

<table>
<thead>
<tr>
<th>#</th>
<th>Author(s)</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>I.G. Sharpe, R.G. Walker</td>
<td>Asset Revaluation and Stock Market Prices, June 1975</td>
</tr>
<tr>
<td>3</td>
<td>N.V. Lam</td>
<td>Incidence and Stabilization Impact of Tin Export Taxation in West Malaysia, June 1975</td>
</tr>
<tr>
<td>4</td>
<td>Y.B. Hall & M.L. King</td>
<td>Inflationary Expectations in New Zealand: A Preliminary Study, August 1975</td>
</tr>
<tr>
<td>5</td>
<td>A.J. Phipps</td>
<td>Strike Activity and Inflation in Australia, September 1975</td>
</tr>
<tr>
<td>6</td>
<td>N.V. Lam</td>
<td>Incidence of the Rice Export Premium in Thailand, December 1975</td>
</tr>
<tr>
<td>7</td>
<td>I.G. Sharpe</td>
<td>Secondary Reserve Requirements, the Monetary Base and the Money Supply in Australia, January 1976</td>
</tr>
<tr>
<td>9</td>
<td>W.P. Hogan</td>
<td>Economic Strategies for Recovery, November 1976</td>
</tr>
<tr>
<td>10</td>
<td>T.P. Truong</td>
<td>Asset Revaluations and Share Prices: A Study using the M.S.A.E. Regression Technique, February 1977</td>
</tr>
<tr>
<td>13</td>
<td>I.G. Sharpe & P.A. Volker</td>
<td>The Impact of Institutional Changes on the Australian Short-Run Money Demand Function, February 1977</td>
</tr>
<tr>
<td>16</td>
<td>A.J. Phipps</td>
<td>The Impact of Wage Indexation on Wage Inflation and Strike Activity in Australia, June 1977</td>
</tr>
<tr>
<td>17</td>
<td>V.B. Hall</td>
<td>Pricing Behaviour in Australia: A Data Evaluation Study, June 1977</td>
</tr>
<tr>
<td>18</td>
<td>I.G. Sharpe</td>
<td>Australian Money Supply Analysis: Direct Controls and the Relationship Between the Monetary Base, Secondary Reserves and the Money Supply, June 1977</td>
</tr>
<tr>
<td>19</td>
<td>L. Haddad</td>
<td>Economic Systems: Towards a New Classification, June 1977</td>
</tr>
<tr>
<td>20</td>
<td>G. Lewis</td>
<td>A Strategy for Winning at Roulette, July 1977</td>
</tr>
<tr>
<td>21</td>
<td>R.L. Brown</td>
<td>A Test of the Black and Scholes Model of Option Valuation in Australia, November 1977</td>
</tr>
<tr>
<td>23</td>
<td>I.G. Sharpe & P.A. Volker</td>
<td>The Selection of Monetary Policy Instruments: Evidence from Reduced Form Estimates of the Demand and Supply of Money in Australia, December 1977</td>
</tr>
<tr>
<td>24</td>
<td>V.B. Hall</td>
<td>Excess Demand and Expectations Influences on Price Changes in Australian Manufacturing Industry, February 1978</td>
</tr>
<tr>
<td>25</td>
<td>I.G. Sharpe & P.A. Volker</td>
<td>The Tradeoff Between Improved Monetary Control and Market Interest Rate Variability in Australia: An Application of Optimal Control Techniques, February 1978</td>
</tr>
<tr>
<td>26</td>
<td>Evan Jones with the assistance of Mary MacDonald</td>
<td>An Examination of Earnings Differentials in Australian Manufacturing Industry, June 1978</td>
</tr>
<tr>
<td>27</td>
<td>W.P. Hogan</td>
<td>Questions on Structural Adjustment Policies, September 1978</td>
</tr>
<tr>
<td>28</td>
<td>P. Saunders</td>
<td>Price and Cost Expectations in Australian Manufacturing Firms, February 1979</td>
</tr>
<tr>
<td>29</td>
<td>W.P. Hogan, I.G. Sharpe & P.A. Volker</td>
<td>Regulation, Risk and the Pricing of Australian Bank Shares 1967-76, April 1979</td>
</tr>
<tr>
<td>30</td>
<td>W.P. Hogan</td>
<td>Quicksands of Policy-Making, March 1979</td>
</tr>
</tbody>
</table>
C. Emerson

31

R.W. Bailey, V.B. Hall & P.C.B. Phillips

Taxing Natural Resources Projects, May 1979

W.P. Hogan

32

A Small Model of Outwai, Employment, Capital Formation and Inflation, Applied to the New Zealand Economy, May 1979

W.P. Hogan

33

Eurofinancing: Currencies, Loans and Bonds, December 1979

S. Adel

34

W.P. Hogan

35

The 40 Per Cent Investment Allowance, January 1980

W.P. Hogan

36

Controlling Eurofinance Markets, December 1979

R.T. Ross

37

Disaggregate Labour Supply Functions For Married Women: Preliminary Estimates For New Zealand, April 1980

U.R. Kohli

38

Beginning and End-of-Period Specifications of Asset Market Equilibrium in Balance-of-Payments Theory, April 1980

G. Mills

39

Government Incentive Contracts with Private Companies: Some Lessons from the Channel Tunnel, April 1980

C.G.F. Simkin

40

Closer Economic Relations Between Australia and New Zealand, June 1980

U.R. Kohli

41

Relative Price Effects and the Demand for Imports, July 1980

W.J. Merrilees

42

Alternative Models of Apprentice Recruitment: With Special Reference to the British Engineering Industry, August 1980

P. Saunders

43

Price Determination in Australian Manufacturing Firms: A Cross-Section Study, August 1980

W.P. Hogan

44

Immigration Policies and Issues, October 1980

W.J. Merrilees

45

Labour Market Segmentation in Canada: A Translog Approach, October 1980

W.J. Merrilees

46

Pricing Strategies in the Newspaper Industry, November 1980

J.L. Whiteman

47

The Micro-Foundations of Layoffs and Labour-Hoarding, November 1980

U.R. Kohli

48

On the Duality between Fixed and Flexible Exchange Rates, November 1980

U.R. Kohli

49

Nonjoint Technologies, December 1980

P. Saunders

50

J.L. Whiteman

51

Rational Choice, Learning-by-doing and the Personal Distribution of Income, April 1981

J.L. Whiteman

52

Firm-Specific Human Capital, Experience and the Differential Incidence of Unemployment, April 1981

J. Yates

53

An Analysis of Asset Holdings in Australia by Income Class, May 1981

J. Yates

54

An Analysis of the Distributionsal Impact of Imputed Rent Taxation, June 1981

G. Mills

55

Investment in Airport Capacity - A Critical Review of the MANS Study, January 1982

V.B. Hall & P. Saunders

56

Pricing Models in Australian Manufacturing: The Evidence from Survey Data, January 1982

P. Saunders

57

How Rational are Australian Price Expectations? January 1982

F. Gill

58

The Costs of Adjustment and the Invisible Hand with Special Reference to the Labour Market, February 1982

G. Mills & W. Coleman

59

Peak Load Pricing and the Channel Tunnel: A Re-Examination, March 1982

J. Yates

60

Access to Housing Finance and the Campbell Report: The Implications of Implementing the Recommendations of Chapter 37, July 1982

S.S. Joson

61

The Gatt Agreement on Government Procurements: Canada and Australia, July 1982

R.T. Ross

62

W.J. Merrilees

63

W.P. Hogan

64

Industry, Employment and Inflation, October 1982
<table>
<thead>
<tr>
<th>No.</th>
<th>Author(s)</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>66</td>
<td>E.M.A. Gross & W.P. Hogan</td>
<td>Short Term Management of the Australian Exchange Rate, 1977-82, December 1982</td>
</tr>
<tr>
<td>67</td>
<td>V.B. Hall</td>
<td>Industrial Sector Interfuel Substitution Following the First Major Oil Shock, January 1983</td>
</tr>
<tr>
<td>68</td>
<td>J. Yates</td>
<td>Access to Housing Finance and Alternative Forms of Housing Loans in the 1980's, July 1983</td>
</tr>
<tr>
<td>70</td>
<td>F. Gill</td>
<td>Inequality and Arbitration of Wages in Australia: An Historical Perspective, December 1983</td>
</tr>
<tr>
<td>71</td>
<td>W.J. Merrilees</td>
<td>Do Wage Subsidies Stimulate Training? An Evaluation of the Craft Rebat Scheme, November 1983</td>
</tr>
<tr>
<td>72</td>
<td>M.C. Blad</td>
<td>Economic Policy and Catastrophe Theory, November 1983</td>
</tr>
<tr>
<td>74</td>
<td>J. Yates</td>
<td>Home Purchase Assistance for Low Income Earners, March 1984</td>
</tr>
<tr>
<td>75</td>
<td>C.G.F. Simkin</td>
<td>Long-Term Aspects of New Zealand's External Deficits, April 1984</td>
</tr>
<tr>
<td>76</td>
<td>C.G.F. Simkin</td>
<td>Methodological Scepticism, July 1984</td>
</tr>
<tr>
<td>77</td>
<td>V.B. Hall</td>
<td>Industrial Sector Fuel Price Elasticities of Demand Following the First and Second Major Oil Shocks, August 1994</td>
</tr>
<tr>
<td>78</td>
<td>S.S. Joson</td>
<td>Substitutability of 'Buy Local' Policy for Tariff Protection in Small Economies, January 1985</td>
</tr>
<tr>
<td>80</td>
<td>J. Yates</td>
<td>Discrimination in Lending, May 1985</td>
</tr>
<tr>
<td>82</td>
<td>P.D. Groenewegen</td>
<td>Alfred Marshall as Professor of Political Economy at Cambridge 1885-1908, June 1985</td>
</tr>
<tr>
<td>83</td>
<td>C.G.F. Simkin</td>
<td>Popper's Methodology and Economic Theory, July 1985</td>
</tr>
<tr>
<td>84</td>
<td>E.M.A. Gross, W.P. Hogan & I.G. Sharpe</td>
<td>Market Information and Potential Insolvency of Australian Financial Institutions, July 1985</td>
</tr>
<tr>
<td>85</td>
<td>F. Gill</td>
<td>Over-Award Payments: Result of a Survey conducted in 1982, December 1985</td>
</tr>
<tr>
<td>87</td>
<td>E. Kiernan & D.B. Madan</td>
<td>Stochastic Stability in a Rational Expectations Model of a Small Open Economy, March, 1986</td>
</tr>
<tr>
<td>88</td>
<td>E. Gross</td>
<td>A Note on the Testability of Fama's Efficient Capital Market Hypothesis, February, 1986</td>
</tr>
<tr>
<td>89</td>
<td>M.C. Blad & E. Gross</td>
<td>Multinational Producers in an Arrow-Debreu type General Equilibrium Model March 1987</td>
</tr>
<tr>
<td>90</td>
<td>P. Saunders</td>
<td>Explaining International Differences in Public Expenditure: An Empirical Study* August, 1986</td>
</tr>
<tr>
<td>91</td>
<td>W.P. Hogan</td>
<td>International Debt and Foreign Exchange Markets, January, 1987</td>
</tr>
<tr>
<td>92</td>
<td>Michael C. Blad & Nicholas Oulton</td>
<td>Union-Firm Bargaining as a Repeated Prisoner's Dilemma, January 1987</td>
</tr>
</tbody>
</table>

Papers marked with an asterisk are out of stock. Copies of the others are available upon request from:

Department of Economics,
The University of Sydney,
N.S.W. 2006, Australia.

New Zealand Economic Papers, Vol. 10, 1976

Economic Record, Vol. 53, No. 143, September 1977

Australian Journal of Management, April 1976

Economic Papers, No. 55, The Economic Society of Australia and New Zealand

Economics Letters, 2, (1979)

Kredit und Kapital, Vol. 12, No. 1, 1979

Some Calculations in Stability and Inflation, A.R. Bergström et al. (eds), John Wiley and Sons, 1978

Journal of Banking and Finance, 4, 1980

The Australian Monetary System in the 1970s, N. Porter (ed.), Supplement to the Economic Board 1978

Economic Record, Vol. 56, No. 156, March 1980

Australian Journal of Management, October 1979

Malayan Economic Review, Vol. 24, No. 1, April 1979

Australian Economic Papers, Vol. 19, No. 34, June 1980

Economics Letters, 6 (1980)

Economics Letters, 7 (1981)

Australian Economic Papers, Vol. 18, No. 33, December 1979

Australian Economic Papers, Vol. 21, No. 39, December 1982

Journal of Industrial Economics, Vol. CXXI, March 1983

Economic Record, Vol. 57, No. 159, December 1981

AFSI, Commissioned Studies and Selected Papers, AGPS, IV 1982

Economic Record, Vol. 58, No. 161, June 1982

Seventh Australian Transport Research Forum-Papers, Hobart, 1982

Economic Record, Vol. 59, No. 166, September 1983
58 F. Gill Economic Applicae, Vol XXXVII - 1984 - No's 3-4, pp. 523-541
67 V.B. Hall Economics Letters, 12, (1983)
69 V.B. Hall Energy Economics, Vol. 8, No. 2, April 1986
71 W.J. Herrlkes Australian Economic Papers, Vol. 23, No. 43, December 1984
74 J. Yates Australian Quarterly, Vol. 56(2), Winter 1984