MORAL HAZARD WITH COST
AND REVENUE SIGNALS

by

Steffen Ziss

No. 179   DECEMBER 1992

ABSTRACT

A risk neutral principal hires a risk averse agent to produce quality which
is unobservable by the principal but generates a random stream of
observable revenues. Unobservable effort and some other input called
capital costs are perfect complements in the product of quality. The
minimum level of capital costs required to produce a particular level of
quality is random but provides a signal of agent effort. In particular
agent effort serves to increase both expected capital costs and expected
revenues. We assume that the principal offers a contract which specifies a
set of linear revenue and capital cost shares and then examine how the
correlation between capital costs and revenues determines whether the agent
is rewarded or punished for incurring high capital costs.
CONTENTS

Introduction 1
I. The Model and Observable Effort 3
II. Unobservable Effort 4
Appendix 9
References 13
Addendum 14
INTRODUCTION

The motivation for this paper arose from discussions with academics concerning whether successful grant applications should be counted as a measure of performance. There are three views that one can take. First is the double-counting view which says that successful grant applications result in publications and only the later should be counted, otherwise double-counting occurs. The double-counting view thus implies that the successful grant application should get a zero weighting. A second view is the input view which contends that grants are inputs in the production of publications and thus should be given a negative weighting. A final view is the output view which states that grant applications themselves reflect research and thus should be given a positive weighting. If one presumes that the measuring of research output is done for the purpose of compensation and encouraging research effort and sharing risk then it is not at all clear which of the three views is appropriate.

One characterization of the academic research example which encompasses a wide variety of other situations is the following. A risk neutral principal hires a risk averse agent to produce quality which is unobservable by the principal but generates a random stream of revenues. Unobservable effort and observable capital costs are perfect complements in the production of quality. The minimum level of capital cost required to produce a given level of quality is determined by a random production shock which is observed by the agent before choosing effort. The agent then chooses effort and selects the minimum level of cost to induce the level of quality indicated by his
effect. Revenues are then determined by quality and a random shock.

In the above model expected capital costs and revenues are increasing in effort and furthermore there is no relationship between the random process which generates revenues and that which generates costs. As a result both can be fruitfully used as signals regarding agent effort, as shown in a general context by Holmstrom (1979). The purpose of our analysis is thus to explore the manner in which the principal uses these two signals to compensate the agent. In particular we address the issue of whether or not the principal will reward or punish the incurring of capital costs. In the latter instance the agent will have an incentive to overstate the capital costs required to implement his effort. Consequently the principal will be induced to set up a monitoring system to detect hocus capital expense claims reported by the agent. We argue that in this instance these monitoring costs will be sufficiently low to merit using capital costs as a signal. Furthermore we assume that the principal offers a contract which specifies a set of linear revenue and capital cost shares. The linearity assumption is restrictive but has the virtue of simplicity. Furthermore Holmstrom and Milgrom (1987) and Leffont and Tirole (1986, 1987) have shown that in certain cases linearity is optimal.

The paper is organized as follows. In Section I we describe the model and consider the benchmark observable effort case. The unobservable effort case is then discussed in Section II.

I THE MODEL AND OBSERVABLE EFFORT

A risk neutral principal hires a risk averse agent to produce quality $q$ which requires agent effort $x$ and capital costs $c$ as inputs. The two inputs are perfect complements and the minimum level of $c$ required to produce a given level of $q$ is determined by the random variable $\theta$. The production of quality is thus given by

$$(1) \quad q = \min(x, C - \theta)$$

The contract offered by the principal specifies a level of quality or effort and a wage schedule $\omega(x, \theta)$. Assuming that the agent observes the production shock and selects the minimum level of capital cost associated with the level of effort or quality implies

$$(2) \quad q = x$$

$$(3) \quad c = x + \theta = C(x, \theta)$$

Now assume that revenues are determined by $q = x$ and a random term $\varepsilon$ in the following linear fashion

$$(4) \quad R = ax + \varepsilon = R(x, \varepsilon)$$

where $a > 1$

Agent utility $U$ depends on wealth $W$ which is defined as the wage minus effort costs $\omega(x)$. Now let subscripts denote partial derivatives then risk aversion and the assumption of convex effort costs imply

$$(5a) \quad U_{\text{w}} > 0 \text{ and } U_{\text{w}} < 0$$

$$(5b) \quad E_{x} > 0 \text{ and } E_{xx} > 0$$

Now let $E(\cdot)$ denote expectation then the objective functions for agent and principal are given by $\tilde{A}$ and $\tilde{P}$ respectively as follows

$$(6a) \quad \tilde{A} = E(A) = E\left[ U(W) \right] \text{ where } W = \omega(x, \theta) - \omega(x)$$
(6b) \( P = E(P) = E\left( R(x, e) - C(x, \theta) - \omega(e, \theta) \right) \)

If competition between agents ensures that each agent receives only his reservation utility \( \hat{\lambda} \) and if \( \lambda \) denotes a Lagrange multiplier then the first-best problem of the principal is to choose \( x \) and \( \omega(e, \theta) \) to maximize

\[
Z_f^{\lambda}(\cdot) = E\left( R(x, e) - C(x, \theta) - \omega(e, \theta) \right) + \lambda \left[ E\left( \omega(e, \theta) - e(x) \right) - \hat{\lambda} \right]
\]

Differentiating (7) with respect to \( w \) (in piecewise fashion) and \( x \) gives

\[
(8a) \quad \frac{\partial Z}{\partial w} = -1 + \lambda U_w = 0 \quad \text{for all } e \text{ and } \theta
\]

\[
(8b) \quad \frac{\partial Z}{\partial x} = R_x - C_x - \lambda U_{w_x} = 0
\]

Substituting (8a) into (8b) we obtain the productive efficiency condition

\[
(8b) \quad R_x - C_x - e_x = 0
\]

II UNOBSERVABLE EFFORT

Now assume that agent effort and quality are both unobservable. Furthermore assume that the contract offered by the principal specifies the agent's salary \( S \) and his linear share of revenues \( r \) and costs \( k \) then

\[
9) \quad \omega(e, \theta) = S + rR(x, e) - kC(x, \theta)
\]

We continue to assume that the agent observes the production shock and selects the minimum level of capital costs for any level of quality. As a result the agent's choice of effort also implies a level of capital cost and is given by substituting (9) into (6a) and then maximizing with respect to \( x \) to obtain

\[
(10) \quad \hat{x}_x = \frac{E\left( U_w\left[ R_x - kC_x - e_x \right] \right)}{E[x]} = 0
\]

Since \( R_x, C_x \) and \( e_x \) are non-random then (10) implies

\[
(10)' \quad rR_x - kC_x - e_x = 0
\]

Furthermore the solution to (10)' is non-random is given by

\[
(11a) \quad x = x(r, k) \text{ where}
\]

\[
(11b) \quad x_r = a/e_{xx} > 0
\]

\[
(11c) \quad x_k = -1/e_{xx} < 0
\]

represent comparative statistics and were obtained by differentiating (10)' and then using (3), (4) and (5b). Substituting (9) and (11a) into (7) then yields

\[
(12) \quad Z_f^{ab}(\cdot) = E\left[ \left( 1 - r \right) R(x, e) - \left( 1 - k \right) C(x, \theta) \right] - S
\]

\[
+ \lambda \left[ E\left( U\left[ S + rR(x, e) - kC(x, \theta) - e(x) \right] \right) - \hat{\lambda} \right]
\]

as the principal's second-best problem. Now let terms with(out) bars denote expectation of (non)-random terms and define

\[
(13) \quad P_x = E\left[ \left( 1 - r \right) R_x - \left( 1 - k \right) C_x \right] = \left( 1 - r \right) P_x - \left( 1 - k \right) C_x
\]

as the principal's marginal benefit of agent effort then maximizing (12) with respect to \( r, k \) and \( S \) yields

\[
(14a) \quad \frac{\partial Z_f^{ab}}{\partial r} = -\hat{\lambda} + P_x x_r + \lambda \left[ U_w R_w + \hat{x}_x x_r \right] = 0
\]

\[
(14b) \quad \frac{\partial Z_f^{ab}}{\partial k} = \hat{\lambda} + P_x x_k + \lambda \left[ U_w C_w + \hat{x}_x x_k \right] = 0
\]

\[
(14c) \quad \frac{\partial Z_f^{ab}}{\partial S} = -1 + \lambda U_w = 0
\]

Now set \( \hat{x}_x = 0 \) by the Envelope Theorem and then substitute (14c) into (14a) and (14b) to obtain

\[
(14a) \quad \frac{\partial Z_f^{ab}}{\partial r} = -\hat{\lambda} + P_x x_r = 0
\]

\[
(14b) \quad \frac{\partial Z_f^{ab}}{\partial k} = \hat{\lambda} + P_x x_k = 0
\]
utility of wealth evaluated at \( x(r, k) \) (see Thoman (1972)). Since \( x = x(r, k) \) is non-random then this approximation is given by

\[
(20) \quad U_w(x, \tilde{c}, \tilde{o}) = U_w(x, \tilde{c}, \tilde{o}) + U_{\tilde{c}}(x, \tilde{c}, \tilde{o})[c - \tilde{c}] + U_{o}(x, \tilde{c}, \tilde{o})[o - \tilde{o}]
\]

where

\[ (21a) \quad U_{\tilde{c}}(x, \tilde{c}, \tilde{o}) = U_{\tilde{c}}(x, \tilde{c}, \tilde{o})r \]

\[ (21b) \quad U_{o}(x, \tilde{c}, \tilde{o}) = -U_{o}(x, \tilde{c}, \tilde{o})k \]

Now substitute (21) into (20) to obtain

\[
(20') \quad U_w(x, c, o) = U_w(x, \tilde{c}, \tilde{o}) + U_{\tilde{c}}(x, \tilde{c}, \tilde{o})[r(c - \tilde{c}) - k(o - \tilde{o})]
\]

which yields the following proposition. (see Appendix for proof).

PROPOSITION 2 : Let \( \sigma_c \) and \( \sigma_o \) denote standard deviations and \( \rho \) denote the correlation coefficient between \( c \) and \( o \). Now define \( \rho^* = \frac{\sigma_c}{\sigma_o} \). If marginal utility is approximated using a first-order Taylor series expansion then the following properties arise

1) if \( \rho > \rho^* < 1 \) then \( r > 0 \) and \( k > 0 \)

11) if \( \rho > 1/\rho^* < 1 \) then \( r < 0 \) and \( k < 0 \)

111) if \( \rho < \min\{\rho^*, 1/\rho^*\} \) then \( r > 0 \) and \( k < 0 \)

1v) if \( \rho^2 = 1 \) then the first best is attained using the following scheme

a) if \( \rho = 1 \) then \( r = \frac{R_x - C_x}{\sigma_c} \) and \( k = \frac{R_x - C_x}{\sigma_o} \)

\[
\begin{bmatrix}
R_x - C_x \\
\sigma_c
\end{bmatrix}
\]

b) if \( \rho = -1 \) then \( r = \frac{R_x - C_x}{\sigma_c} \) and \( k = \frac{R_x - C_x}{\sigma_o} \)

\[
\begin{bmatrix}
R_x + \frac{\sigma_c}{\sigma_o}C_x \\
\sigma_c
\end{bmatrix}
\]
v) If $\rho^2 \neq 1$ then effort is underprovided.

Proposition 2 states that when the revenue and cost signals are not sufficiently positively correlated (parts (iii) and (iv) b)) then there is relatively less risk and thus the principal is mainly with providing incentives. No does so by rewarding the agent for incurring costs ($k < 0$) as well as earning revenues ($r > 0$). On the other hand when the cost and revenue signals are too positively correlated (parts (i), (ii) and (iv) a)) then the income stream becomes more risky thereby inducing the principal to become more concerned about minimizing agent risk. As a result the principal rewards revenues or costs but not both. In particular revenues (costs) are rewarded and costs (revenues) are punished when revenues (costs) have relatively low variance. Furthermore effort is underprovided because the principal trades-off reduced productive efficiency for risk-sharing gains.

APPENDIX : PROOF OF PROPOSITION 2

1) Taking an expectation of (20)' we obtain the following expression for expected marginal utility of wealth evaluated at $x$

$$U_\omega (x, e, \varnothing) = U_\omega (x, \bar{e}, \bar{\varnothing})$$

which when combined with (20)' yields

$$U_\omega (x, e, \varnothing) - U_\omega (x, \bar{e}, \bar{\varnothing}) = U_\omega (x, \bar{e}, \bar{\varnothing}) \left[ r \left[ e - \bar{e} \right] - k \left[ \varnothing - \bar{\varnothing} \right] \right]$$

Using (3) and (4) we obtain

$$R(x, e) - \bar{R}(x, e) = \left[ e - \bar{e} \right]$$

$$C(x, e) - \bar{C}(x, \varnothing) = \left[ \varnothing - \bar{\varnothing} \right]$$

Now (A3a) and (A3b) result in

$$\text{cov}(U_\omega, R) = E \left[ \left( U_\omega (x, e, \varnothing) - U_\omega (x, \bar{e}, \bar{\varnothing}) \right) \left[ R(x, e) - \bar{R}(x, e) \right] \right]$$

$$= E \left[ U_\omega (x, \bar{e}, \bar{\varnothing}) \left[ r e - \bar{e} \right] - k \left[ e - \bar{e} \right] \left[ \varnothing - \bar{\varnothing} \right] \right]$$

$$= U_\omega (x, \bar{e}, \bar{\varnothing}) \left[ r e^2 - k \rho^2 \sigma_e \sigma_\varnothing \right]$$

Similarly (A2) and (A3b) derive

$$\text{cov}(U_\omega, C) = U_\omega (x, \bar{e}, \bar{\varnothing}) \left[ r \rho^2 \sigma_e \sigma_\varnothing - k \sigma_\varnothing^2 \right]$$

Substituting (A4), (A5), (11b), (11c) into (17) we obtain the following relationship between $r$ and $k$ which can be written in one of two ways.
(A6a) \( r \equiv k \cdot \frac{\mu - \frac{\rho \sigma}{\sigma} \cdot \rho}{\rho \sigma \cdot \frac{\sigma}{\sigma} - \frac{\rho^2}{\rho}} \)

(A6b) \( r \equiv k \cdot \frac{\rho - \frac{\rho}{\rho} \cdot \rho}{\rho \cdot \rho - \rho} \) where \( \rho^* = \frac{\sigma^2}{\sigma^2} \)

Substituting (A6a) into \( r = k \cdot \frac{\rho - \frac{\rho}{\rho} \cdot \rho}{\rho \cdot \rho - \rho} \) yields

(A7) \( r = k \cdot \frac{\mu - \frac{\rho \sigma}{\sigma} \cdot \rho}{\rho \sigma \cdot \frac{\sigma}{\sigma} - \frac{\rho^2}{\rho}} \)

(A8) \( \text{cov}(U, C) = k \cdot \frac{\sigma^2 \cdot \frac{\sigma}{\sigma} - \frac{\rho^2}{\rho}}{\rho \sigma \cdot \frac{\sigma}{\sigma} - \frac{\rho^2}{\rho}} \)

Now let \( U \equiv (x, c, \bar{c}) = U \cdot (\cdot) \) and then substitute (A7), (A8) and \( \rho^* = \frac{\sigma^2}{\sigma^2} \) into (19) to obtain

(A9) \( k \equiv \frac{\mu - \frac{\rho \sigma}{\sigma} \cdot \rho}{\rho \sigma \cdot \frac{\sigma}{\sigma} - \frac{\rho^2}{\rho}} \)

Substituting (A6b) into (A9) gives

(A10) \( r \equiv \frac{\mu - \frac{\rho \sigma}{\sigma} \cdot \rho}{\rho \sigma \cdot \frac{\sigma}{\sigma} - \frac{\rho^2}{\rho}} \)

1. If \( \rho > \rho^* \) then \( k < 0 \) from (A9). Furthermore since \( \rho^* < 1 \) then

1. If \( \rho > \rho^* < 1 \) then \( r < 0 \) from (A10). Furthermore since \( \rho^* < 1 \) then \( \rho^* > 1 \) and thus \( \rho < 1/\rho \) since \( -1 < \rho \leq 1 \). Since \( \rho < 1/\rho \) then from (A10) we obtain \( r > 0 \) as required.

2. If \( \rho > 1/\rho^* < 1 \) then \( r < 0 \) from (A10). Furthermore since \( 1/\rho^* < 1 \) then \( \rho^* > 1 \) and thus \( \rho < \rho^* \) since \( -1 < \rho \leq 1 \). Since \( \rho < \rho^* \) then from (A9) we obtain \( k < 0 \) as required.

3. If \( \rho < 1/\rho^* \) and (A10) imply \( r > 0 \). \( \rho < \rho^* \) and (A9) imply \( k < 0 \).

4. In order to show that the agent receives a riskless return when \( \rho^2 = 1 \) we examine the variance of the marginal utility of income. Taking an expectation of the square of (A2) yields

(A11a) \( \text{var}(U) = \mathbb{E} \left[ \left( U \cdot (x, c, \bar{c}) - \bar{U} \cdot (x, c, \bar{c}) \right)^2 \right] \)

(A11b) \( \mathbb{E} \left[ \left( U \cdot (x, c, \bar{c}) \right)^2 \right] = \mathbb{E} \left[ \left( U \cdot (x, c, \bar{c}) - \bar{U} \cdot (x, c, \bar{c}) \right)^2 \right] \)

(A11c) \( \mathbb{E} \left[ \left( U \cdot (x, c, \bar{c}) \right)^2 \right] = \mathbb{E} \left[ \left( U \cdot (x, c, \bar{c}) - \bar{U} \cdot (x, c, \bar{c}) \right)^2 \right] \)

Substituting \( \rho = 1 \) and \( \rho = -1 \) into (A11c) yields

(A12a) \( \text{var}(U) = \mathbb{E} \left[ \left( U \cdot (x, c, \bar{c}) \right)^2 \right] \) if \( \rho = 1 \)

(A12b) \( \text{var}(U) = \mathbb{E} \left[ \left( U \cdot (x, c, \bar{c}) \right)^2 \right] \) if \( \rho = -1 \)

Substituting \( \rho = 1 \) and \( \rho = -1 \) into (A10) gives

(A13a) \( r = k \sigma^2 / \sigma \) if \( \rho = 1 \)

(A13b) \( r = k \sigma^2 / \sigma \) if \( \rho = -1 \)

Substituting (A13) into (A12) we obtain that \( \text{var}(U) = 0 \) when \( \rho^2 = 1 \).
which implies that the agent bears none of the risk. Furthermore by substituting $\rho^2 = 1$ into (A8) we obtain that $\text{cov}(U_{w}, C) = 0$ which implies that (18) and (8b)' coincide and thus that the first-best level of effort is provided. The incentive scheme which gives rise to this first-best outcome is obtained by substituting $\text{cov}(U_{w}, C) = 0$ into (A19) to obtain

$$ (A14) \quad k = \frac{R_{x} - C_{x}}{[r/k]R_{x} - C_{x}} \quad \text{and/or} \quad c = \frac{R_{x} - C_{x}}{R_{x} - [k/r]C_{x}} $$

Substituting (A13) into (A14) yields the result.

Now substitute (A9) into (A8) and then divide by $\bar{u}_w x_k$ and use $\rho^* = \sigma_c / \sigma_p$ to obtain

$$ (A15) \quad \frac{\text{cov}(U_{\nu}, C)}{\bar{u}_w x_k} = \frac{\left[ R_{x} - C_{x} \right] \sigma_p^2 \sigma_c^2 \left[ \rho^2 - 1 \right] \bar{u}_w \left( - \right) \sigma_c \sigma_p e_{xx} }{\left[ \sigma_p^2 - \sigma_c^2 \left( 1 - \rho \right) \bar{u}_w + \sigma_c^2 \sigma_p \left( \rho^2 - 1 \right) \bar{u}_w \left( - \right) \sigma_c \sigma_p e_{xx} \right]^{\left( + \right) \left( - \right) \left( - \right) \left( + \right)}} \Rightarrow 0 $$

which implies underprovision given (18), (8b)' and (8b). Q.E.D.

References


<table>
<thead>
<tr>
<th>Title</th>
<th>Author(s)</th>
<th>Publication Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Working Papers in Economics</td>
<td></td>
<td></td>
</tr>
<tr>
<td>130 J. Sheen</td>
<td>International Monetary and Fiscal Policy Cooperation in the Presence of Wage Inflexibilities; October 1989</td>
<td></td>
</tr>
<tr>
<td>131 E. Jones</td>
<td>Was the Post-War Boom Keynesian? October 1989</td>
<td></td>
</tr>
<tr>
<td>132 S. Lahiri &amp; J. Sheen</td>
<td>A Risk Averse Price-Setting Monopolist in a Model of International Trade; October 1989</td>
<td></td>
</tr>
<tr>
<td>133 P. Gill</td>
<td>A Target-Wage Dilemma: Some Consequences of Incomplete Information; December 1989</td>
<td></td>
</tr>
<tr>
<td>134 W. P. Hogan</td>
<td>New Banks in Australia; December, 1969</td>
<td></td>
</tr>
<tr>
<td>135 Y. Varoufakis</td>
<td>Modelling Rational Conflict: The Limits of Case Theory; February 1980</td>
<td></td>
</tr>
<tr>
<td>136 L. Erani</td>
<td>Shock Persistence in Australian Output and Consumption; March 1990</td>
<td></td>
</tr>
<tr>
<td>137 S. Ziss</td>
<td>Strategic Investment, Competition and the Independence Result; March 1990</td>
<td></td>
</tr>
<tr>
<td>138 D. J. Wright</td>
<td>International Technology Transfer with an Information Asymmetry and Endogenous Research and Development; April 1990</td>
<td></td>
</tr>
<tr>
<td>139 D. J. Wright</td>
<td>International Technology Transfer and Per Unit Royalties; April 1990</td>
<td></td>
</tr>
<tr>
<td>140 P. Ganguli &amp; S. Nath</td>
<td>Optimal Mix of Urban Public Services: The Case of Three Indian Cities; May 1990</td>
<td></td>
</tr>
<tr>
<td>142 J. Sheen</td>
<td>Real Wages and the Business Cycle in Australia; June 1980</td>
<td></td>
</tr>
<tr>
<td>143 C. J. Karfakis</td>
<td>A Model of Exchange Rate Policy: Evidence for the US Dollar-Greek Drachma Rate 1975-1987; August 1990</td>
<td></td>
</tr>
<tr>
<td>144 C. J. Karfakis &amp; D. M. Moschos</td>
<td>Interest Rate Linkages within the European Monetary System: A Time Series Analysis; August 1990</td>
<td></td>
</tr>
<tr>
<td>145 C. J. Karfakis &amp; D. M. Moschos</td>
<td>Asymmetries in the European Monetary System: Evidence from Interest Rates; September 1990</td>
<td></td>
</tr>
<tr>
<td>146 W. P. Hogan</td>
<td>International Capital Adequacy Standards; October 1990</td>
<td></td>
</tr>
<tr>
<td>147 J. Yates</td>
<td>Shared Ownership: The Socialisation or Privatisation of Housing; October 1990</td>
<td></td>
</tr>
<tr>
<td>148 G. Butler</td>
<td>Contracts in the Political Economy of a Nation; November 1990</td>
<td></td>
</tr>
<tr>
<td>149 B. Rao</td>
<td>Some Further Evidence on the Policy Ineffectiveness Proposition; November 1990</td>
<td></td>
</tr>
<tr>
<td>150 D. J. Wright</td>
<td>Hidden Action and Learning-by-Doing in Models of Monopoly Regulation and Infant Industry Protection; November 1990</td>
<td></td>
</tr>
<tr>
<td>151 C. I. Karfakis</td>
<td>Testing for Long Run Money Demand Functions in Greece Using Cointegration Techniques; November 1990</td>
<td></td>
</tr>
<tr>
<td>152 D. Hutchinson &amp; S. Nicholas</td>
<td>The Internationalisation of Australian Business: Technology Transfer and Australian Manufacturing in the 1980s; November 1990</td>
<td></td>
</tr>
<tr>
<td>153 B. Rao</td>
<td>A Disequilibrium Approach to the New Classical Model; December 1990</td>
<td></td>
</tr>
<tr>
<td>154 J. B. Towe</td>
<td>The Determinants of American Equity Investment in Australia; December 1990</td>
<td></td>
</tr>
<tr>
<td>155 F. Jones</td>
<td>Economists, The State and The Capitalist Dynamic; January 1991</td>
<td></td>
</tr>
<tr>
<td>156 J. J. Irvine &amp; W. A. Sims</td>
<td>Corman Polar Forms and the S-Branch Utility Tree; February 1991</td>
<td></td>
</tr>
<tr>
<td>158 W. P. Hogan</td>
<td>New Banks: Impact and Response; March 1991</td>
<td></td>
</tr>
<tr>
<td>159 P. D. Groenewegen</td>
<td>Decentralising Tax Revenues: Recent Initiatives in Australian Federalism; April 1991</td>
<td></td>
</tr>
<tr>
<td>161 B. Rao</td>
<td>Disaggregation, Disequilibrium and the New Classical Model; July 1991</td>
<td></td>
</tr>
<tr>
<td>162 Y. Varoufakis</td>
<td>Postmodern Challenges to Game Theory; August 1991</td>
<td></td>
</tr>
<tr>
<td>163 Y. Varoufakis</td>
<td>Freeplay Within Reason from Axioms to Marxian Praxis; August 1991</td>
<td></td>
</tr>
<tr>
<td>164 D. J. Wright</td>
<td>Permanent vs. Temporary Infant Industry Assistance; September 1991</td>
<td></td>
</tr>
<tr>
<td>166 N. Jack</td>
<td>Pollution Control Versus Abatement: Implications for Taxation Under Asymmetric Information; November 1991</td>
<td></td>
</tr>
<tr>
<td>167 C. I. Karfakis &amp; A. Frith</td>
<td>Exchange Rate Convenience and Market Efficiency; December 1991</td>
<td></td>
</tr>
<tr>
<td>168 W. Jack</td>
<td>An Application of Optimal Tax Theory to the Regulation of a Duopoly; December 1991</td>
<td></td>
</tr>
<tr>
<td>169 J. J. Irvine &amp; W. A. Sims</td>
<td>The Welfare Effects of Alcohol Taxation; December 1991</td>
<td></td>
</tr>
<tr>
<td>170 B. Fritsch</td>
<td>Energy and Environment in Terms of Evolutionary Economics; January 1992</td>
<td></td>
</tr>
<tr>
<td>171 W. P. Hogan</td>
<td>Financial Deregulation: Fact and Fantasy; January 1992</td>
<td></td>
</tr>
<tr>
<td>172 P. T. Viprao</td>
<td>An Evolutionary Approach to International Expansion: A Study for an Italian Region; January 1992</td>
<td></td>
</tr>
<tr>
<td>173 C. Rose</td>
<td>Equilibrium and Adverse Selection; February 1992</td>
<td></td>
</tr>
<tr>
<td>174 D. J. Wright</td>
<td>Incentives, Protection and Time Consistency; April 1992</td>
<td></td>
</tr>
<tr>
<td>175 A. J. Phipps</td>
<td>The Slowdown in Australian Productivity Growth: Some Aggregated and Disaggregated Evidence; April 1992</td>
<td></td>
</tr>
<tr>
<td>176 J. B. Towe</td>
<td>Aspects of the Japanese Equity Investment in Australia; June 1992</td>
<td></td>
</tr>
<tr>
<td>178 D. J. Wright</td>
<td>Television Advertising Regulation and Programme Quality; August 1992</td>
<td></td>
</tr>
<tr>
<td>179 S. Ziss</td>
<td>Moral Hazard with Cost and Revenue Signals; December 1992</td>
<td></td>
</tr>
</tbody>
</table>

Copies are available upon request from:
Department of Economics,
The University of Sydney,
N.S.W. 2006, Australia.
Working Papers in Economics Published Elsewhere

3 N.V. Lam   Journal of the Developing Economies, 17(1), March 1979
4 V.B. Hall & M.L. King   New Zealand Economic Papers, 10, 1976
5 A.J. Phipps   Economic Record, 53(143), September 1977
6 N.V. Lam   Journal of Development Studies, 14(11), October 1977
7 I.G. Sharpe   Australian Journal of Management, April 1976
9 W.P. Hogen   Economic Papers, 55, The Economic Society of Australia and New Zealand, October 1977
10 I.G. Sharpe & P.A. Volker   Economic Letters, 2, 1979
13 I.G. Sharpe & P.A. Volker   Kredit und Kapital, 12(1), 1979
15 F.Gill   Australian Economic Papers, 19(3), 1979
16 I.G. Sharpe   Journal of Banking and Finance, 1(1), April 1979
23 I.G. Sharpe & P.A. Volker   The Australian Monetary System in the 1970's, M. Porter (ed.), Supplement to Economic Record, 56(1), November 1980
24 V.B. Hall   Economic Record, 56(152), November 1980
27 W.P. Hogen   Australian Economic Papers, 20(1), April 1979
33 E. P. Hogen   Journal of the Operational Research Society, 35(1), May 1982
42 W.J. Merrilees   Applied Economics, 15, February 1983
43 B. Saunders   Australian Economic Papers, 20(37), December 1981
49 G. Gill   Journal of Industrial Economics, 31, March 1983
50 P. Saunders   Economic Record, 56(159), December 1981
53 J. Yates
54 J. Yates
55 G. Gill
56 V.B. Hall & P. Saunders
57 D. Saunders
58 F. Gill
59 G. Gill & W. Coleman
60 J. Yates
61 S.S. Joson
62 R.T. Ross
63 W.J. Merrilees
65 J. Yates
67 V.B. Hall
69 V.B. Hall
70 F. Gill
71 W.J. Merrilees
73 G. S. Simkin
74 J. Yates
77 V.B. Hall
78 S.S. Joson
79 R.T. Ross
81 R.T. Ross
82 F.D. Greenwegen
84 R.K.A. Groen, W.P. Hogen & J.G. Sharp
85 F. Gill
87 W.P. Hogen
95 J. Yates
96 B.W. Ross
97 F. Gill
99 R.T. Ross
100 L. Haddad
101 J. Pigott
102 J. Carlson & D. Findlay
102 J. Carlson & D. Findlay

APSI, Commissioned Studies and Selected Papers, APSI-J, 1982
Economic Record, 58(162), June 1982
Seventh Australian Transport Research Forum-Papers, Hobart, 1982
Economic Record, 60(168), March 1984
Economic Record, 59(166), September 1983
Economic Applications, 37(3-4), 1984
Australian Economic Papers, 24(44), June 1985
Australian Quarterly, 26(3), Spring 1984
Economic Record, 59(165), September 1983
Australian Economic Papers, 22(41), December 1983
Economic Letters, 12, 1983
Energy Economics, 8(2), April 1986
Australian Quarterly, 58(1), Winter 1977
Australian Economic Papers, 23(43), December 1984
Singapore Economic Review, 29(1), April 1984
Australian Quarterly, 26(2), Winter 1984
Economics Letters, 20, 1986
Journal of Policy Modeling, 8(2), Summer 1986
Economic Record, 62(178), 1986
Australian Bulletin of Labour, 41(4), September 1985
History of Political Economy, 20(2), Winter 1988
Scottish Journal of Political Economy, 37(1), 1990
Australian Economic Papers, 27(50), June 1988
Australian Bulletin of Labour, 16(4), Dec. 1990
Company and Securities Law Journal, 6(1), February 1998
Urban Studies, 26, 419-433, 1989
The Economic and Social Review, 20(1), April 1982
Australia's Greatest Asset; Human Resources in the Nineteenth and Twentieth Centuries, D. Popeled, J. Federation Press, 1988
Australian Bulletin of Labour, 21(1), December 1988
Hetaa Bulletin, (11), Winter 1989
Journal of Macroeconomics, 13(1), Winter 1991
107 B.W.Ross Prometheus, 6(2), December 1988
114 V.H.Hall, J.P.Truong & V.A.Nguyen Australian Economic Review, 28(7), 31989
118 V.H.Hall Abacus, 25(2), September 1993
120 P.Groenewegen Flattening the Tax Rate Scale: Alternative Scenarios & Methodologies, (eds.) J.G. Head and R. Kremer, 1, 3-31, 1990
122 W.P.Hogan & I.G. Sharpe Economic Analysis and Policy, 19(1), March 1989
126 F.Gill The Australian Quarterly, 61(4), 1989
128 S.Lahiri & J.Sheen The Economic Journal, 100(400), 1990
130 C.J.Karafakis Journal of Economic Dynamics and Control, 16, 1992
144 C.J.Karafakis Journal of Money, Credit, and Banking, 22, 3, 1990
147 J.Yates Housing Studies, 7, 2, April 1992
150 W.P.Hogan Economic Papers, 10, 1, March 1991