Phase control and measurement in digital microscopy

Matthew Raphael Arnison

A thesis submitted for the degree of
Doctor of Philosophy

Physical Optics Laboratory
School of Physics
University of Sydney

July 2003
Summary

The ongoing merger of the digital and optical components of the modern microscope is creating opportunities for new measurement techniques, along with new challenges for optical modelling. This thesis investigates several such opportunities and challenges which are particularly relevant to biomedical imaging. Fourier optics is used throughout the thesis as the underlying conceptual model, with a particular emphasis on three-dimensional Fourier optics.

A new challenge for optical modelling provided by digital microscopy is the relaxation of traditional symmetry constraints on optical design. An extension of optical transfer function theory to deal with arbitrary lens pupil functions is presented in this thesis. This is used to chart the 3D vectorial structure of the spatial frequency spectrum of the intensity in the focal region of a high aperture lens when illuminated by linearly polarised beam.

Wavefront coding has been used successfully in paraxial imaging systems to extend the depth of field. This is achieved by controlling the pupil phase with a cubic phase mask, and thereby balancing optical behaviour with digital processing.

In this thesis I present a high aperture vectorial model for focusing with a cubic phase mask, and compare it with results calculated using the paraxial approximation. The effect of a refractive index change is also explored. High aperture measurements of the point spread function are reported, along with experimental confirmation of high aperture extended depth of field imaging of a biological specimen.

Differential interference contrast is a popular method for imaging phase changes in otherwise transparent biological specimens. In this thesis I report on a new isotropic algorithm for retrieving the phase from differential interference contrast images of the phase gradient, using phase shifting, two directions of shear, and non-iterative Fourier phase integration incorporating a modified spiral phase transform. This method does not assume that the specimen has a constant amplitude. A simulation is presented which demonstrates good agreement between the retrieved phase and the phase of the simulated object, with excellent immunity to imaging noise.
Acknowledgements

Thanks to Carol Cogswell, my first supervisor in this project, for her ideas, energy and enthusiasm. It was Carol who got me addicted to biomedical imaging research a whole decade ago. Colin Sheppard was my second supervisor and shared with me his creativity and curiosity, his delight in discussing simple yet mind–bending optical ideas, and his ability to answer even my most primitive questions with patience and clarity.

I found Peter Török to be a most generous and supportive collaborator, who has a great passion for accurate optical modelling of important but challenging microscopy problems. He is wonderfully persistent in seeking the physical meaning behind the mathematics. Working with Peter has been very rewarding.

Kieran Larkin is one of those people who thinks in 3D Fourier space just as easily as most people think in real space. Nicholas Smith has been a great friend and colleague. I have been lucky to be able to collaborate with such a playful pair of physicists.

W. Thomas Cathey, Edward Dowski and Sara Tucker shared their pioneering expertise in the world of wavefront coding. CDM Optics provided an extended loan of a cubic phase mask and a 1 µm pinhole.

Thanks to Ken Weigert for his excellent craftsmanship. He helped design and then carefully constructed our custom microscope components. Graham Mannes and the rest of the physics workshop crew have also contributed in various practical matters.

Thanks to all my colleagues at the optics tea table, including Chris Barton, Ian Cooper, Paul Cronin, Janey Lin, Felix Margadant, Kiyofumi Matsuda, Trina Ng, David Philp, Maitreyee Roy, Shakil Rehman, Manjula Sharma, Shoshanna Cole, Elizabeth West, and Paul Xu. We all did our best never to talk about anything which any of us knew the least thing about. Paul “just quietly” Cronin was a great lab mate and co-conspirator in linoleum optics. Daniel Andruczyk, Nicholas Parslow and Shoshanna Cole suffered an office invasion by our couch and were good fun to hang out with after the tea table was lost.

I enjoyed my conference and email discussions with fellow microscopy researchers Martin Booth, Mats Gustafsson, Rainer Heintzmann, Farnaz Massoumian, and David Paganin. Taisuke Ota shared with me a manic month of experimental development in Osaka, and my experimental results in this thesis owe much to the skills I learned in that time. I also gained a lot from working with David Philp and Janey Lin on our early wavefront coding experiments at the University of Sydney. Eleanor Kable and Guy Cox at the Australian Key Centre for Microscopy and Microanalysis were ever ready to help with practical microscopy questions.
Thanks to Andreas Schönle for gently bringing to my attention a mathematical error I made in a journal paper published as part of this project.

I was fortunate to journey widely as part of this project, and the following people were kind enough to invite me and look after me at various overseas destinations:

- W. Thomas Cathey, Edward Dowski, Sara Tucker, Sherif Sherif, and Carol Cogswell at Colorado University;
- Peter Török at Oxford University;
- Satoshi Kawata, Nicholas Smith and Taisuke Ota at Osaka University;
- Joseph Braat at TU Delft; and
- Fu–Jen Kao at National Sun Yat-sen University.

Christopher Durrant gave me a personal course in electromagnetic theory from the ground up. Information technology support was provided by David Dawes, Sebastian Juraszek, and Anthony Monger. Felix Margadant leant me his second hand computer equipment. Felix runs so close to the bleeding edge, that using only his hand–me–downs I was able to run my calculations at blazing speed. Andrew Trimboli lent me his laptop for several of my overseas trips, which made a big improvement on carting my desktop compter around.

Cheerful and efficient administration support was provided by Leanne Howie, Evelyn Soh, Elizabeth Morris, and the legendary Noni McIntosh. Vicky Moore was always helpful at the physics library counter. Gotaro Mori at STA Travel helped me squeeze, juggle and shift a complicated round–the–world itinerary.

This work was supported financially by the Australian Research Council, a Sydney University Physics Scholarship, the School of Physics Denison Fund, the University of Sydney Postgraduate Research Support Scheme, a James Kently Memorial Scholarship, and an Optical Society of America New Focus Student Travel Grant.

Thanks to the people who develop and distribute the free software I depended on, including Debian GNU/Linux, XFree86, icewm, galeon, mozilla, pine, SpamAssassin, LyX, \LaTeX, Pybliographer, ghostscript, gcc, nedit, octave, OpenDX, and all the free software that runs the internet. Thanks also to the creators of Mathematica, MATLAB, Photoshop, Illustrator, and Acrobat PDF. I relied on a huge and diverse music soundtrack for this project. Thanks to all those artists for music to do physics by.
I have been nurtured and entertained by the copious support and companionship of my friends and family. My dad John and my mum Jocelyn have looked after me in so many ways.

I am privileged to share life’s journey with my partner Colleen, laughing, learning, living and growing together in our orbit around the Sun. Thank you Colleen for your tender care and support.

Ruby and Rudi, our canine companions, come last but not leashed. They never tire of taking simple and intuitive pleasure in mastering the physics of motion.
Declaration of originality

In this thesis I have acknowledged the contributions to my research made by my colleagues and collaborators. I have also cited the literature as appropriate. All other work presented is mine alone.

Significant contributions and collaborations included the following:

- Chapter 3: It was Colin Sheppard’s suggestion to extend the transfer function theory from his papers (Sheppard et al., 1994; Sheppard and Larkin, 1997) in order to deal with arbitrary pupil functions. Andreas Schönle gently pointed out a mathematical error in the article which chapter 3 is based on (Arnison and Sheppard, 2002), enabling me to correct the error while preparing this thesis.

- Chapter 4: Peter Török collaborated with me on the refractive index change model for cubic phase mask imaging, contributing both his theoretical expertise and his source code. My heavy use of the projected pupil integration method was inspired by a personal demonstration of the technique by Kieran Larkin.

- Chapter 5: Carol Cogswell provided the vision and leadership for high aperture wavefront coding and worked on all the experiments and processing steps for the biological imaging result presented in section 5.3. Eleanor Kable and Theresa Dibbayawan prepared the HeLa cell specimen. David Philp and Janey Lin assisted with the 1 μm fluorescent bead point spread function measurement used to restore the HeLa cell EDF image, while Edward Dowski and Claude Rosignol worked on inverse filter design and image restoration.

- Chapter 7: Colin Sheppard and Kieran Larkin both provided key ideas used in the spiral phase algorithm, as detailed in appendix A.
Publications and presentations

Chapters 3–5 and chapter 7 are based on the work presented in the following publications:

The following conference presentations highlighted work described in this thesis (* indicates presenting authors):

Acronyms, abbreviations and conventions

\leftrightarrow Fourier transform relation

\otimes convolution

\ast correlation

1D, 2D, 3D one dimension, two dimensions, three dimensions

α aperture half-angle

axial parallel to the optical axis, z

amplitude amplitude a of a complex field $ae^{i\phi}$

CCD charge-coupled device

CPM cubic phase mask

DC direct current, i.e. image background or bias

DIC differential interference contrast

EDF extended depth of field

FITC fluorescein isothiocyanate, a fluorescent dye

$f(x,y,z)$ functions in real space are usually lower case

$F(m,n,s)$ equivalent functions in Fourier space are often upper case

g' projection of function g

$\mathcal{F}\{h\}$ Fourier transform of function h

f vectors are set in boldface

FFT fast Fourier transform

$k_0 = 2\pi/\lambda_0$ vacuum wave number for light of wavelength λ_0

lateral orthogonal to the optical axis

$m = (m,n,s)$ vector in Fourier space, unit directional vector
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>n</td>
<td>refractive index</td>
</tr>
<tr>
<td>NA</td>
<td>numerical aperture</td>
</tr>
<tr>
<td>OTF</td>
<td>optical transfer function</td>
</tr>
<tr>
<td>paraxial</td>
<td>approximate scalar field propagation for small angles to the optical axis</td>
</tr>
<tr>
<td>phase</td>
<td>phase ϕ of a complex field $ae^{i\phi}$; optical path length variations</td>
</tr>
<tr>
<td>PSF</td>
<td>point spread function</td>
</tr>
<tr>
<td>SNR</td>
<td>signal to noise ratio</td>
</tr>
<tr>
<td>transverse</td>
<td>orthogonal to the optical axis</td>
</tr>
<tr>
<td>vectorial</td>
<td>high aperture electromagnetic focusing theory</td>
</tr>
<tr>
<td>wave</td>
<td>unit of phase (2π radians)</td>
</tr>
<tr>
<td>widefield</td>
<td>conventional microscope imaging, without pupil filters</td>
</tr>
<tr>
<td>$x = (x, y, z)$</td>
<td>vector in real space</td>
</tr>
</tbody>
</table>
Contents

I Theme and theory

1 Overview and background
1.1 Digital microscopy
1.2 Extended depth of field microscopy
1.2.1 Focus and depth of field
1.2.2 Methods for extending the depth of field
1.3 Phase microscopy
1.3.1 Methods for phase imaging
1.4 Road map for this thesis

2 High aperture lens theory
2.1 Electromagnetic waves
2.2 Vectorial focusing and point spread functions
2.3 Scattering, fluorescence and image contrast
2.4 3D Fourier optics
2.4.1 Transfer functions
2.5 Imaging systems

3 Vectorial optical transfer function
3.1 Vectorial pupil function
3.2 Three-dimensional vectorial optical transfer function
3.3 Results
3.4 Discussion

II High aperture wavefront coding

4 Wavefront coding theory
4.1 Derivation of the cubic phase function 64
4.2 Theoretical models ... 65
 4.2.1 Paraxial model .. 65
 4.2.2 High aperture PSF model ... 66
 4.2.3 High aperture OTF model ... 69
 4.2.4 Defocused OTF and PSF ... 70
 4.2.5 Refractive index change model 71
 4.2.6 Implications of the Debye approximation 74
4.3 Numerical integration issues ... 76
4.4 Simulation results ... 78
4.5 Discussion ... 87

5 High aperture cubic phase experiments 89
 5.1 Experimental method ... 91
 5.1.1 PSF measurements .. 93
 5.1.2 Biological imaging .. 95
 5.2 PSF and OTF results ... 95
 5.3 Biological imaging results ... 98
 5.4 Conclusion ... 101

III Phase measurement using DIC microscopy 103

6 DIC theory and phase retrieval ... 105
 6.1 Theory ... 105
 6.2 Enhancement methods ... 108

7 Phase imaging using DIC and spiral phase 111
 7.1 Method ... 111
 7.2 Simulation results ... 113
 7.3 Discussion ... 118

IV Conclusion .. 121

8 Conclusion ... 123
Contents

8.2 Future directions ... 125

V Appendices .. 129

A Fourier solution of the inverse gradient 131

B Code .. 133

Bibliography ... 137