Early Archaean crustal evolution:
evidence from ~3.5 billion year old greenstone
successions in the Pilgangoora Belt, Pilbara Craton, Australia

MICHAEL GODFREY GREEN

Submitted in fulfilment of the requirements
for the degree of Doctor of Philosophy

School of Geosciences
Division of Geology & Geophysics
The University of Sydney
March 2001
Acknowledgements

This project was conceived by Roger Buick who recognised the significance of the Pilgangoora successions in addressing crustal growth processes. I hope that this thesis goes some way towards answering the questions that occupied so many of our discussions. Thanks for your encouragement, advice and belief.

Support for this project was generally funded through ARC Grants, although Sipa Resources assisted with the 1997 field season and also provided aerial photographs, maps and other assistance; thanks Mike, Pete, Walter and John. Whole-rock geochemistry was undertaken in collaboration with Paul Sylvester and isotopic studies with Sam Bowring, Mark Schmitz and Jeff Vervoort. Support to attend conferences was provided by Edgeworth David Travelling Scholarships and the Geochemical Society.

I have been greatly assisted during my studies by many of the technical staff at The University of Sydney, especially Tom, Rob, Phil, Dave, George, Nancy, Maria and Erica. Thanks also to the students and academic staff who enriched my life at Sydney. A special thanks to all who shared the wonderful days in the Pilbara, particularly Mike, Owen, Ian, Kevin and even Jochen. Thanks also to Dave, Richard and Peter from AGSO.

To Natalie for putting up with all my absences, especially during the last 6 months when my mind was elsewhere, no amount of thanks can repay. Thanks to Mum and Dad and the rest of my family (including the Maloneys) for always believing and for always being there.
## CONTENTS

### CHAPTER 1: INTRODUCTION

1.1 PREAMBLE  
1.2 REGIONAL GEOLOGICAL SETTING  
1.3 FIELD AREA  
1.4 AIMS AND METHODS OF RESEARCH  
1.5 TERMINOLOGY AND CONVENTIONS  
1.6 THESIS ORGANISATION

### CHAPTER 2: GEOLOGY

2.1 INTRODUCTION  
2.2 PREVIOUS WORK  
2.3 GEOLOGICAL INVESTIGATION  
  2.3.1 Geological overview  
2.4 COONTERUNAH GROUP  
  2.4.1 Mafic rocks  
  2.4.2 Felsic rocks  
  2.4.3 Sedimentary units  
  2.4.4 Interpretation  
2.5 CARLINDI GRANITOID COMPLEX  
  2.5.1 Granodiorite  
  2.5.2 Monzogranite  
  2.5.3 Inclusions  
  2.5.4 Dykes  
  2.5.5 Interpretation  
2.6 COONTERUNAH-CARLINDI / WARRAWOONA UNCONFORM.  
2.7 WARRAWOONA GROUP  
  2.7.1 Strelley Pool Chert (SPC)  
    2.7.1.1 Quartz-rich sandstone  
    2.7.1.2 Laminated carbonates  
    2.7.1.3 Black-white plane-laminated chert  
    2.7.1.4 Volcanic sediments
2.7.2 Basalts and gabbros 32
2.7.3 Mafic volcaniclastic units 33
2.7.4 Interpretation 33

2.8 POST-DEPOSITIONAL PROCESSES 36
2.8.1 Deformation 36
2.8.2 Metamorphism 37

2.9 SYNTHESIS 39

2.10 DISCUSSION 40
2.10.1 Pilgangoora Belt stratigraphy 40
2.10.2 Pilbara correlations 41

2.11 SUMMARY 42

CHAPTER 3: GEOCHRONOLOGY

3.1 INTRODUCTION 43
3.2 PREVIOUS WORK 44
3.3 ANALYTICAL METHODS 46
3.3.1 Sample preparation 46
3.3.2 Analytical conditions 47
3.3.3 Data processing 49

3.4 COONTERUNAH GROUP 54
3.4.1 Results 54
3.4.1.1 Central dacite, Sample 70649 54
3.4.1.2 Eastern rhyolite, Sample 70601 55
3.4.1.3 Lower rhyolite, Sample 70660 56
3.4.1.4 Granitic xenoliths, Sample 520798 57
3.4.2 Interpretation of Coonterunah geochronology 61

3.5 CARLINDI GRANITOIDS 62
3.5.1 Results 62
3.5.1.1 Unconformity microgranite, Sample 94058 63
3.5.1.2 Unconformity granodiorite, Sample 95037 64
3.5.1.3 Wilson Well granodiorite, Sample 153188 65
3.5.1.4 Shilliman Well granodiorite, Sample 153190 66
3.5.1.5 Xenolith host granite, Sample 100698 69
3.5.1.6 Gneissic tonalite xenolith, Sample 080698
3.5.1.7 Gneissic granite xenolith, Sample 090698
3.5.2 Interpretation of the Carlini granitoids

3.6 WARRAWOONA GROUP
3.6.1 Results
3.6.1.1 Strelley Pool Chert Sandstone, Sample 98OB5002
3.6.1.2 North Pole Dome (#9 chert), Sample 94001
3.6.2 Interpretation

3.7 DISCUSSION
3.7.1 Geological history
3.7.2 Regional stratigraphy
3.7.3 Pre-Coonterunah zircons

3.8 SUMMARY

CHAPTER 4: ELEMENTAL GEOCHEMISTRY - MAFIC ROCKS
4.1 INTRODUCTION
4.2 PREVIOUS WORK
4.3 ANALYTICAL METHODS
4.3.1 ICP-MS versus pressed-powder XRF
4.3.2 Interpretation
4.4 MAJOR ELEMENTS
4.5 TRACE ELEMENTS
4.6 NORMALISED DIAGRAMS
4.7 INTERPRETATION
4.7.1 Relationships within and between basalt suites
4.7.2 Crustal component
4.7.3 REE models
4.7.4 Eccentric basalts
4.7.5 Contamination estimate
4.8 DISCUSSION
4.8.1 Previous Pilgangoora survey
4.8.2 Other Pilbara basalts
4.9 SUMMARY
CHAPTER 5: ELEMENTAL GEOCHEMISTRY - FELSIC ROCKS
5.1 INTRODUCTION 126
5.2 WHOLE-ROCK GEOCHEMISTRY 126
   5.2.1 Major elements 127
   5.2.2 Trace elements 130
   5.2.3 Normalised diagrams 134
5.3 INTERPRETATION 138
   5.3.1 Petrogenesis: Coonterunah felsic volcanics 138
   5.3.2 Petrogenesis: Carlindi granitoids 143
      5.3.2.1 Trondhjemite 143
      5.3.2.2 Granites 152
      5.3.2.3 Anomalous samples 154
5.4 DISCUSSION 155
   5.4.1 Pilbara correlations 155
   5.4.2 Basalt contaminant 159
5.5 SUMMARY 160

CHAPTER 6: RADIOGENIC ISOTOPE GEOCHEMISTRY
6.1 INTRODUCTION 161
6.2 PREVIOUS WORK 162
6.3 ANALYTICAL METHODS 163
6.4 RESULTS 164
   6.4.1 Sm-Nd system 164
   6.4.2 Lu-Hf system 167
6.5 INTERPRETATION 168
   6.5.1 Sm-Nd system 170
   6.5.2 Lu-Hf system 172
   6.5.3 Basalt components 172
   6.5.4 Origins of the components 176
      6.5.4.1 Mantle source 176
      6.5.4.2 Crustal component 178
      6.5.4.3 Combined Nd-Hf system 179
   6.5.5 Origin of the granitoids 181
9.2.2 Crustal growth 220

9.3 IMPORTANCE OF THE PILBARA 223

9.4 CRUSTAL GROWTH 224

9.4.1 Nd-Hf isotopic constraints 224
  9.4.1.1 Mantle isotope evolution 225

9.4.2 Nb/U systematics 232
  9.4.2.1 Mantle Nb/U evolution 234

9.4.3 Synthesis 235

9.5 CRUSTAL GENESIS 236

9.5.1 Nd-Hf isotopic correlation 236
  9.5.1.1 Hf-paradox - complementary reservoir 237
  9.5.1.2 Hf-paradox - reappraisal of BSE 239
  9.5.1.3 Early Archaean Nd-Hf decoupling 241

9.6 SUMMARY 242

CHAPTER 10: CONCLUSIONS 243

REFERENCES 245

APPENDIX 1: SHRIMP U-Pb GEOCHRONOLOGY

APPENDIX 2: WHOLE-ROCK ELEMENTAL ABUNDANCES

APPENDIX 3: Nd-Hf ISOTOPES
ABSTRACT

In the Pilgangoora Belt of the Pilbara Craton, Australia, the ~3517 Ma Coonterunah Group and ~3484-3468 Ma Carlindi granitoids underlie the ≤3458 Ma Warrawoona Group beneath an erosional unconformity, thus providing evidence for ancient emergent continental crust. The basalts either side of the unconformity are remarkably similar, with N-MORB-normalised enrichment factors for LILE, Th, U and LREE greater than those for Ta, Nb, P, Zr, Ti, Y and M-HREE, and initial $\varepsilon$(Nd, Hf) compositions which systematically vary with Sm/Nd, Nb/U and Nb/La ratios. Geological and geochemical evidence shows that the Warrawoona Group was erupted onto continental basement, and that these basalts assimilated small amounts of Carlindi granitoid. As the Coonterunah basalts have similar compositions, they probably formed likewise, although they were deposited >60 myr before. Indeed, such a model may be applicable to most other early Pilbara greenstone successions, and so an older continental basement was probably critical for early Pilbara evolution.

The geochemical, geological and geophysical characteristics of the Pilbara greenstone successions can be best explained as flood basalt successions deposited onto thin, submerged continental basement. This magmatism was induced by thermal upwelling in the mantle, although the basalts themselves do not have compositions which reflect derivation from an anomalously hot mantle. The Carlindi granitoids probably formed by fusion of young garnet-hornblende-rich sialic crust induced by basaltic volcanism.

Early Archaean rocks have Nd-Hf isotope compositions which indicate that the young mantle had differentiated into distinct isotopic domains before 4.0 Ga. Such ancient depletion was associated with an increase of mantle Nb/U ratios to modern values, and hence this event probably reflects the extraction of an amount of continental crust equivalent to its modern mass from the primitive mantle before 3.5 Ga. Thus, a steady-state model of crustal growth isfavoured whereby post ~4.0 Ga continental additions have been balanced by recycling back into the mantle, with no net global flux of continental crust at modern subduction zones. It is also proposed that the decoupling of initial $\varepsilon$(Nd) and $\varepsilon$(Hf) from its typical covariant behaviour was related to the formation of continental crust, perhaps by widespread formation of TTG magmas.