THE EFFECT OF VERTICAL DIMENSION IN A MANDIBULAR ADVANCEMENT SPLINT FOR OBSTRUCTIVE SLEEP APNOEA

ANDREW J. PITSIS
B.D.S. Hons. (Syd.)

A literature review and manuscript submitted in partial requirement for the degree of

MASTER OF DENTAL SCIENCE
(Orthodontics)

Discipline of Orthodontics
Faculty of Dentistry
University of Sydney
Australia

2001
DEDICATION

To my fiancée, Zenna, for her total devotion, patience and everlasting love. Thank you for your help and for your complete confidence in my abilities. You are outstanding.

To my mother, Antonia, who has given me everything – her strength, her love and her extraordinary faith. Thank you for being the best mother I could ever have. I am forever grateful.

To my father, Christopher, for his continual support, love and generosity and to my brother, George, for his endless love, support and friendship.
DECLARATION OF AUTHORSHIP

I, Andrew John Pitsis, postgraduate candidate for the Master of Dental Science degree, Discipline of Orthodontics, Faculty of Dentistry, University of Sydney, declare that this work has not been submitted to any other university or institution for a higher degree.

31st August 2001

Andrew J. Pitsis
ACKNOWLEDGEMENTS

Professor M. Ali Darendeliler, Head – Discipline of Orthodontics, Faculty of Dentistry, University of Sydney for his inspirational and exceptional teaching, guidance and support. He has become a true friend who has helped me achieve my ultimate academic goal and has honed my skills to a level beyond my expectation. I am forever grateful.

Dr Peter Cistulli, Director – Sleep Disorder Centre, St. George Hospital, for his expert guidance and advise.

Dr Helen Gotsopoulos, Sleep Disorder Centre, St. George Hospital, for the study concept and design as well as her help with the critical appraisal of the manuscript.

Dr Peter Petocz, Senior Lecturer – School of Mathematical Sciences, University of Technology Sydney, for analysing the data.

Dr Om P. Kharbanda, Senior Lecturer – Discipline of Orthodontics, Faculty of Dentistry, University of Sydney for proof reading the literature review.

Steph Van Wensveen, Lab Technician, United Dental Hospital, for the construction of the appliances.

Michael Lazaris, Jin Qian, M Troth and W Eaglesham, Sleep Technologists – St. George Hospital for their technical support with polysomnography.
# TABLE OF CONTENTS

DEDICATION .................................................................................................................. 2

DECLARATION OF AUTHORSHIP ................................................................................. 3

ACKNOWLEDGEMENTS ................................................................................................. 4

TABLE OF CONTENTS ...................................................................................................... 5

LIST OF FIGURES ........................................................................................................... 7

LIST OF TABLES .............................................................................................................. 8

ABBREVIATIONS ............................................................................................................ 9

ABSTRACT ..................................................................................................................... 10

LITERATURE REVIEW ................................................................................................... 11

1. INTRODUCTION .......................................................................................................... 11

2. BACKGROUND ............................................................................................................ 12

3. SNORING .................................................................................................................. 12
   3.1 Definition ............................................................................................................ 12
   3.2 Pathophysiology ................................................................................................. 13
   3.3 Clinical Consequences ......................................................................................... 13

4. SLEEP APNOEA .......................................................................................................... 13
   4.1 Definition ............................................................................................................ 13
   4.2 Classification .................................................................................................... 14
   4.3 Prevalence ......................................................................................................... 15
   4.4 Pathophysiology ................................................................................................ 16
      4.4.1 Predisposing Factors .................................................................................... 17
      4.4.2 Anatomical Structures Affecting Upper Airway Size .................................. 17
      4.4.3 Functional Processes Related to Upper Airway Muscle Activity ................. 21
   4.5 Clinical Features ................................................................................................. 23
      4.5.1 Symptoms of OSA ...................................................................................... 23
      4.5.2 Clinical Consequences of OSA .................................................................. 26
   4.6 Diagnosis ............................................................................................................ 27

5. MANAGEMENT OF OSA ........................................................................................... 28
   5.1 Conservative Measures ....................................................................................... 28
   5.2 Medical Treatment .............................................................................................. 30
   5.3 Dental Treatment ................................................................................................. 31
   5.4 Surgical Treatment .............................................................................................. 31
LIST OF FIGURES

LITERATURE REVIEW

Figure 1. Anatomy of a normal airway  Figure 2. Anatomy of an OSA.................................16
Figure 3. Examples of oral appliances used to treat Obstructive Sleep Apnoea..............................41

MANUSCRIPT

Figure. 1 Photograph of the Mandibular Advancement Splint with minimal mandibular opening (MAS-1)...77
Figure. 2 Photograph of the Mandibular Advancement Splint with an additional 10mm of mandibular
opening (MAS-2)... ............................................................................................................78
Figure. 3 Definitions of cephalometric landmarks and measurements. ............................................79
Figure. 4 Treatment outcome for MAS-1, MAS-2, and MAS-1 or MAS-2 combined.........................84
LIST OF TABLES

LITERATURE REVIEW
Table 1. Peer Reviewed Literature on the Efficacy of Oral Appliances on OSA.................................44
Table 2. Peer Reviewed Literature on the Side Effects, Complications and patient Compliance using OA’s .46

MANUSCRIPT
Table. 1 Side Effects of MAS-1 and MAS-2.................................................................................82
Table. 2 Effect of Each MAS on Polysomnographic Variables .......................................................83
# ABBREVIATIONS

<table>
<thead>
<tr>
<th>AHI</th>
<th>Apnoea Hypopnoea Index</th>
</tr>
</thead>
<tbody>
<tr>
<td>AI</td>
<td>Apnoeic Index</td>
</tr>
<tr>
<td>AMP</td>
<td>Anterior Mandibular Positioner</td>
</tr>
<tr>
<td>BMI</td>
<td>Body Mass Index</td>
</tr>
<tr>
<td>CPAP</td>
<td>Continuous Positive Airway Pressure</td>
</tr>
<tr>
<td>CPITN</td>
<td>Community Periodontal Index of Treatment Needs</td>
</tr>
<tr>
<td>dB</td>
<td>Decibels</td>
</tr>
<tr>
<td>ECG</td>
<td>Electrocardiogram</td>
</tr>
<tr>
<td>EEG</td>
<td>Electroencephalogram</td>
</tr>
<tr>
<td>EMG</td>
<td>Electromyogram</td>
</tr>
<tr>
<td>EOG</td>
<td>Electro-oculogram</td>
</tr>
<tr>
<td>ESS</td>
<td>Epworth Sleepiness Scale</td>
</tr>
<tr>
<td>GLM</td>
<td>General Linear Model</td>
</tr>
<tr>
<td>kg/m²</td>
<td>Kilograms per square metre</td>
</tr>
<tr>
<td>MAD</td>
<td>Mandibular Advancement Device</td>
</tr>
<tr>
<td>MAS</td>
<td>Mandibular Advancement Splint</td>
</tr>
<tr>
<td>min</td>
<td>Minutes</td>
</tr>
<tr>
<td>MinSaO2</td>
<td>Minimum arterial oxygen saturation level</td>
</tr>
<tr>
<td>mm</td>
<td>Millimetres</td>
</tr>
<tr>
<td>NREM</td>
<td>Non-Rapid Eye Movement</td>
</tr>
<tr>
<td>nCPAP</td>
<td>Nasal Continuous Positive Airway Pressure</td>
</tr>
<tr>
<td>OA</td>
<td>Oral Appliance</td>
</tr>
<tr>
<td>OSA</td>
<td>Obstructive Sleep Apnoea</td>
</tr>
<tr>
<td>REM</td>
<td>Rapid Eye Movement</td>
</tr>
<tr>
<td>RDI</td>
<td>Respiratory Disturbance Index</td>
</tr>
<tr>
<td>TMJ</td>
<td>Temperomandibular Joint</td>
</tr>
<tr>
<td>TST</td>
<td>Total Sleep Time</td>
</tr>
<tr>
<td>TRD</td>
<td>Tongue Retaining Device</td>
</tr>
<tr>
<td>UPPP</td>
<td>Uvulopalatopharyngopasty</td>
</tr>
</tbody>
</table>
ABSTRACT

There has been no systematic comparison to determine the effect of vertical mandibular opening of Mandibular Advancement Splints (MAS) on the efficacy and side effects of obstructive sleep apnea (OSA), which was our aim. Twenty-three patients underwent a randomized, 2 period (AB/BA) crossover study with either MAS-1 or MAS-2 (additional 10mm opening) for 2-week periods. Data from the baseline polysomnograph, lateral cephalometric radiograph and questionnaire were compared to those of the treatment periods. MAS-1 was preferred by 78% of patients. One hundred percent and 91% of patients using MAS-1 and MAS-2 reported subjective improvements in snoring with 91% and 78% reporting every night use, respectively. There were significant improvements in AHI (21 ± 2/hr vs MAS-1: 8 ± 1/hr and MAS-2: 10 ± 2/hr, p < 0.001), arousal index (36 ± 4/hr vs MAS-1: 26 ± 4/hr and MAS-2: 24 ± 4/hr, p < 0.001) and for the longest apnea (31 ± 5s vs MAS-1: 16 ± 3s, p < 0.02 and MAS-2: 18 ± 4s, p < 0.04). Polysomnographic variables did not differ significantly between MAS’s. Complete or partial success was achieved in 74% and 61% of patients using MAS-1 and MAS-2 respectively, which were not significantly different. Three cephalometric predictors for AHI were identified when using either MAS: narrowest posterior airway space, cranio-cervical angle and tongue length. In conclusion, the increased vertical opening in MAS-2 does not significantly affect treatment outcome and was not preferred by the majority of patients.
LITERATURE REVIEW

1. INTRODUCTION

The literature review details the current knowledge on snoring and obstructive sleep apnoea (OSA). The prevalence, pathophysiology, clinical features, consequences, diagnosis and management of OSA are discussed. It will focus on the design and use of Mandibular Advancement Splints (MAS) in the treatment of snoring and OSA.

Obstructive sleep apnoea (OSA) is caused by partial or complete collapse of the pharyngeal airway during sleep (McNamara et al., 1994). These episodes of upper airway narrowing terminated by arousal may recur many hundred times in a night and the recurrent sleep disruption accounts for the daytime symptoms and clinical features of the condition (Douglas, 1993). Decreased muscle tone during sleep and upper airway narrowing are aetiological factors (Cistulli and Sullivan, 1994). It affects approximately 4% of men and 2% of women in the middle-aged workforce (Young et al., 1983). Continuous positive airway pressure (CPAP) was first reported in 1981 and is a highly effective and safe treatment (Sullivan et al., 1981). Some patients poorly tolerate it, which makes compliance less than optimal (Kribbs et al., 1993; Engleman et al., 1996; Weaver, 1997). Thus there is a need for an alternative treatment which is safe, cheap, silent and less obtrusive.

Extensive research into treatment of OSA has developed since, including numerous oral appliance designs that primarily act by advancing the mandible during sleep. The postulated mechanism of action is to increase the anteroposterior dimension of the retroglossal space and thereby reduce the degree of pharyngeal airway collapse (Schmidt-Nowara et al., 1995). Oral appliances are an effective form of treatment, including patients with moderate or severe OSA (Mehta et al., 2001). At present it is uncertain which patients do best with such treatment. Similarly, it is not certain how appliance design influences treatment outcome, particularly vertical mandibular opening.
2. BACKGROUND

Guilleminault and colleagues (Guilleminault et al., 1973) were the first to describe sleep apnoea as a syndrome. They described the interaction between sleep and the respiratory muscles of the chest and upper airway, which partially explained why the upper airway collapses during sleep, leading to OSA.

Sullivan (Sullivan et al., 1981) from Australia published the first account of treating sleep apnoea patients with continuous positive airway pressure (CPAP). This initiated the most common and successful treatment currently known for OSA. Prior to this, tracheostomy was the only effective treatment (Westbrook and Millman, 1994). Sullivan's landmark paper prompted increasing research into the pathophysiology, incidence and treatment for sleep apnoea.

3. SNORING

3.1 Definition

Snoring is the noise emanating from the soft tissue portion of the oropharyngeal walls that occurs during inspiration (Bailey, 1997). It results from a partially obstructed upper airway during sleep and affects people of all ages. It is most common in overweight, middle-aged and elderly adults (American Sleep Disorders Association and Sleep Research Society {ASDA}, 1995). According to different studies, 20% of the adult population (60% men, 40% women) snore (Bailey, 1997); 44% men, 28% women (Young et al., 1993) and 50% men, 19% women (Katsantonis et al., 1990). Not all snorers have sleep apnoea but snoring is a cardinal symptom of almost all OSA patients (Chaudhary and Smith, 1991; Ryan et al., 1991; Stradling and Crosby, 1991; Boudewyns and Van de Heyning, 1995).

The term "primary snoring" refers to snoring that is not accompanied by apnoea, hypoventilation or excessive sleepiness. However, snoring in some patients without apnoea has been associated with significant sleep disturbance, which leads to excessive daytime sleepiness. This is known as "upper airway resistance syndrome" (Guilleminault et al., 1992) and is characterised by repeated arousals without recognisable hypopnoea or apnoea.
3.2 Pathophysiology
Snoring is an example of a flutter valve in which elements of the upper pharyngeal airway vibrate under the force of inspiratory pressure (Cistulli and Sullivan, 1994). The soft palate is the structure most important for the fluttering to occur.

During sleep, the muscles and soft tissues in the throat and mouth relax which causes narrowing of the airway. This decrease in the airway space increases the velocity of air flowing through during breathing. This causes the soft palate and uvula to vibrate resulting in snoring (Isono and Remmers, 1994).

3.3 Clinical Consequences
Snoring is a possible risk factor for hypertension, ischaemic heart disease and stroke, although its aetiological role in these conditions is not clear (Waller and Bhopal, 1989). It has been argued that age and obesity could confound the association between snoring and cardiovascular disease. However, the increased risk of these conditions is still demonstrated after adjusting for age and body mass index (Koskenvuo et al., 1987; D'Alessandro et al., 1990).

Snoring is recognised as a symptom that may be related to clinical conditions with significant morbidity. It is for this reason that treatment may be necessary, in addition to the fact that snoring is a social embarrassment and can be disturbing to family members.

4. SLEEP APNOEA

4.1 Definition
An apnoea is defined as a cessation of breathing during sleep that lasts for 10 seconds or more. The average number of episodes of apnoea per hour of sleep is termed the Apnoeic Index and at least 5 episodes must occur per hour for OSA to be diagnosed (Guilleminault and Dement, 1978).

A hypopnoea is when a 50% or greater reduction in tidal volume occurs, simultaneously with a 4% or greater reduction in blood oxygen saturation, lasting 10 seconds or more
(Wynne et al., 1979; Guilleminault et al., 1980). The average number of episodes of apnoea plus hypopnoea per hour during sleep is called the Apnoea Hypopnoea Index (AHI). AHI is used to quantify the degree of severity of OSA and to evaluate the efficacy of treatment by measuring the change in this index before and after therapy (Parisi et al., 1988). The Respiratory Disturbance Index (RDI) is the same as AHI but also includes the average number of arousal per hour of sleep (Loube et al., 1999).

The term 'sleep apnoea syndrome', is when cessation of breathing occurs repeatedly during sleep for long enough periods to cause measurable blood deoxygenation (Berkow Robert, 1992). It refers to the occurrence of at least 5 apnoeas or hypopnoeas per hour of sleep when combined with two or more of the following features: excessive daytime sleepiness, loud snoring, witnessed apnoeas by the bed partner or unrefreshing sleep (Naughton, 1997).

4.2 Classification

Apnoeas and hypopnoeas can be classified into 3 types: central, obstructive or mixed.

1. Central sleep apnoea is characterised by the cessation of airflow and respiratory movements. It occurs when the brain fails to send impulses to the respiratory muscles so that breathing is not initiated.

2. Obstructive sleep apnoea, the most common of the three types of apnoea, is related to upper airway blockage despite impulses sent from the brain. It is a progressive and potentially life-threatening disorder in which breathing stops repeatedly for at least 10 seconds for each apnoeic event, during 7 hours of nocturnal sleep in both rapid eye movement (REM) stage and non-rapid eye movement (NREM) stage (see Appendix I for definition of sleep stages).

3. Mixed apnoea occurs when initially there is no inspiratory effort but subsequently when efforts are initiated the apnoea persists because the upper airway is collapsed (Guilleminault and Dement, 1978). Mixed apnoea occurs more often than central but less often than the obstructive type (Berkow Robert, 1992).
Current opinion has moved away from the early rigid definitions that, although useful for research, excluded many patients with disabling symptoms (Royal College of Physicians of London, 1993). For example, the individual with one or two apnoeas per hour, oxygen desaturation to 60-70% and impaired arousal reflexes due to autonomic neuropathy, can be far more vulnerable to the consequences of OSA than a healthy, asymptomatic 75 year old with 15 apnoeas per hour (Guilleminault et al., 1977).

4.3 Prevalence

Prevalence studies vary widely, ranging from 1 to 24%, for groups of middle aged adults (Gisalon et al., 1988; Cirignotta et al., 1989; Young et al., 1993). These studies have concluded that 2% of females and 4% of males in the USA, have a degree of sleep apnoea severe enough to warrant treatment. This makes OSA one of the most common medical disorders within the adult population and the second most common respiratory disorder to asthma (McNicholas, 2000).

The wide range in prevalence of OSA reported could be attributed to differences in the diagnostic criteria employed, patient groups studied or methodologies used. For instance, the percentage of the population with heavy snoring doubles when the bed partner contributes to the questionnaire (Stradling et al., 1991). Population differences in age, obesity, alcohol consumption and genetic variability could also have a bearing on prevalence figures. OSA prevalence has been found to increase with age (Roehrs et al., 1983) and obesity (Battagel, 1996).

Middle-aged (greater than 40 years) and overweight men (Guilleminault and Dement, 1978) are most prevalent to OSA but it can occur among infants, children (Brouillette et al., 1982) and women (Wilholt and Suratt, 1987; Guilleminault et al., 1988).
4.4 Pathophysiology

The upper airway includes the structures of the nasopharynx, oropharynx and hypopharynx (Worsnop et al., 1998). The upper airway is a soft tissue structure with minimal bony support (Figures 1, 2). Each structural segment has been considered as a possible site of obstruction in OSA (Solow, 1992).

![Figure 1. Anatomy of a normal airway](image1)

![Figure 2. Anatomy of an OSA patient during an apnoea](image2)

Source: Ivanhoe, 1999

The precise mechanism of OSA is complex and not fully understood. Current evidence (Anch et al., 1982; Lowe et al., 1986; Rodenstein et al., 1990; Hudgel, 1992; Cistulli and Sullivan, 1994) suggests that the aetiology is multifactorial due to:

- **Predisposing factors**
- **Anatomical structures** which may affect upper airway size
• *Functional processes* related to upper airway muscle activity

These aetiological factors in combination are thought to lead to a narrowing of the airway with repetitive closure during sleep. The aetiology of OSA is presented to allow an understanding of the rationale for OSA treatment.

### 4.4.1 Predisposing Factors

Numerous factors in combination may contribute to the severity of OSA. Pre-existing heart or lung disease makes breathing more difficult which leads to decreased blood oxygen tensions. Central nervous system depressants such as alcohol, sedatives and sleeping pills induce relaxation of the pharyngeal airway musculature, which can result in airway occlusion (Dolly and Block, 1982; Issa and Sullivan, 1982; Chaudhary and Smith, 1991; Battagel, 1996).

Increasing age has also been shown to predispose to OSA (Prinz, 1995; Strohl and Redline, 1996). Other factors associated are metabolic and endocrine disorders, in particular hypothyroidism, male gender, sleeping supine and familial tendency (McNamara et al., 1994).

Obesity and excess fat in peripharyngeal and subcutaneous regions will also narrow the airway, encouraging its occlusion once the subject is supine (Homer et al., 1989; Battagel, 1996). Obesity and neck circumference may be a significant predictor of OSA (Davies and Stradling, 1990; Katz et al., 1990; Millman et al., 1995). One study found that men and women were at greater risk for OSA if they had neck circumferences of 17 and 16 inches or greater, respectively (Davies and Stradling, 1990).

### 4.4.2 Anatomical Structures Affecting Upper Airway Size

A direct causal relationship between craniofacial structure and OSA has not been established (Miles et al., 1996). However, studies using fluoroscopy (Suratt et al., 1983), acoustic reflection (Katz et al., 1990), fibreoptic endoscopy (Borowiecki et al., 1978), cephalometric radiographs (DeBerry-Borowiecki et al., 1988), computerised tomography (Lowe and Fleetham, 1991; Bhattacharyya et al., 2000), cinematographic computerised tomography (Shepard et al., 1990a) and magnetic resonance imaging (Abbey et al., 1989) have demonstrated that OSA patients have narrower airways than control subjects.
These studies have limitations, such as studying patients are awake and are often in the erect posture. Despite this, they have implicated various skeletal and soft tissue craniofacial structures in the narrowing of the upper airway in patients with OSA. The sites of minimum cross-sectional area during wakefulness can vary between individual patients but the majority demonstrate maximum narrowing in the velopharyngeal (retropalatal) segment (Shepard et al., 1991).

Anatomical structures affecting upper airway size can be divided into skeletal and soft tissue structures. Skeletal structures implicated are the cranial base, maxilla, mandible, hyoid bone and head posture.

**Cranial Base**
Bacon et al. (1990); Tangugsorn et al. (1995); Battagel and L'Estrange (1996) and Liu et al. (2000) have reported a reduction in the anterior cranial base length in OSA subjects. A more acute cranial base angle (Ba-SN) has been reported in OSA subjects by Jamieson et al. (1986), Battagel and L'Estrange (1996) and Battagel et al. (2000).

**Maxilla and Mandible**
Bimaxillary retrusion (Lowe et al., 1986) or retrognathia of the mandible alone has been reported in OSA subjects (Jamieson et al., 1986; Series et al., 1992; Hochban and Bradenburg, 1994). Other studies however, have found no evidence of mandibular retrognathia in OSA subjects (DeBerry-Borowiecki et al., 1988; Zuconi et al., 1992). Tsuchiya et al. (1992) found mandibular retrognathia in patients with a high Apnoec Index (AI) and low Body Mass Index (BMI). This suggests that skeletal abnormality may be an important aetiological factor in OSA in non-obese patients with a high AI.

Although a reduction in the length of the body of the mandible in OSA patients was reported by Rivlin et al. (1984), Battagel and L'Estrange (1996) and Battagel et al. (2000); Bacon et al. (1990), Tangugsorn et al. (1995) and Trenouth and Timms (1999) did not find any such reduction.
Therefore, in the anteroposterior dimension the cranial base, maxilla and mandible have been implicated as being shorter or repositioned (Battagel and L'Estrange, 1996).

In the vertical dimension most studies have reported an increase in the lower anterior facial height with a concomitant increase in the maxillo-mandibular plane angle (Lowe et al., 1986; Bacon et al., 1990; Tsuchiya et al., 1992; Tangugsorn et al., 1995; Liu et al., 2000).

**Head Posture and Hyoid Bone**

Flexion or extension of the head has been postulated by some authors to influence the dimensions of the oropharyngeal airway (Hellsing, 1989; Davies and Stradling, 1990). Solow et al. (1993) found that the average cranio-cervical angulation of OSA patients in the standing position was significantly greater than in controls. This was mainly mediated by a forward inclination of the cervical column and confirmed by Petri et al. (1994) and Solow et al. (1996).

Hyoid bone position has been found to be more inferior in relation to the mandibular plane for OSA subjects (Jamieson et al., 1986; DeBerry-Borowiecki et al., 1988; Tsuchiya et al., 1992). The position of the hyoid bone becomes more inferior during growth and at adulthood it is at the level of C4 in normal subjects (Durzon and Brodie, 1962). In OSA patients it has been found between C4-C6 (Tangugsorn et al., 1995).

The position of the hyoid bone however is subject to a high degree of variation because of physiological adaptations and changes of head position. During normal growth Winnberg et al. (1988) demonstrated that a more extended head posture dropped the hyoid apparatus inferiorly and anteriorly. Pae (1989) investigated the relationship between airway size and body position and suggested that patients with OSA had an inferiorly positioned hyoid bone and extended head postures. He concluded that a smaller than optimal airway induced an extended head posture for better airway patency and that an extended head posture elicited an inferiorly positioned hyoid bone. The contemporary view regarding an inferiorly positioned hyoid bone and an extended head position suggests that, rather than predisposing factors, these are physiological adaptations to lift away the base of the tongue and the soft palate from the posterior pharyngeal wall in order to alleviate the obstructive condition.
Soft tissue factors implicated as possible aetiological factors for OSA are the tongue, soft palate and pharyngeal dimensions.

**Tongue**

It is unclear on exactly what role the tongue plays in the aetiology of OSA. Some authors (Lowe *et al.*, 1986; DeBerry-Borowiecki *et al.*, 1988; Strelzow *et al.*, 1988; Battagel *et al.*, 2000) have reported a larger tongue length and area in OSA patients. Pracharktam *et al.* (1994) found tongue size and area is normal but the functional space of the tongue is reduced, forcing the tongue backwards into the pharynx and diminishing the airway space at this level. Ryan *et al.* (1991) found that obese OSA patients have larger tongues and smaller airways. Do *et al.* (2000) found that tongue volume only positively correlated with BMI and neck circumference but there was no correlation with age or AHI.

**Soft Palate**

OSA patients have longer and thicker soft palates, with an area approximately 20% greater than normal subjects which results in further reduction of the airway (Jamieson *et al.*, 1986; Lyberg *et al.*, 1989; Battagel and L'Estrange, 1996; Battagel *et al.*, 2000). Pae *et al.* (1994) also showed that the thickness of the soft palate increases and the oropharyngeal cross sectional area decreases when a patient changes from an upright to supine position. Johnston and Richardson (1999) studied the longitudinal changes of the airway in 16 adults with a mean age of 20 years. A lateral cephalometric radiograph was taken at this age and 32 years later. It was found that the soft palate became longer and thicker and the oropharynx became narrower, which may explain the increased prevalence of OSA in later life.

**Pharyngeal Dimensions**

The dimensions of the pharynx are reduced (Battagel *et al.*, 2000), whether the subjects are investigated in the upright or supine position (Yildirim *et al.*, 1991) and independent of the assessment technique (Lowe *et al.*, 1986; DeBerry-Borowiecki *et al.*, 1988). The narrowest pharyngeal diameter is located behind the soft palate (Borowiecki *et al.*, 1978; Rojewski *et al.*, 1984) with about a 50% reduction of the pharyngeal diameter in OSA patients compared to controls.
Some authors (Djupesland *et al.*, 1987; Strelzow *et al.*, 1988) have suggested that soft tissue abnormalities are more important than skeletal factors in patients with OSA. It has not yet been established whether the soft tissue abnormalities are in fact a consequence of the vibratory trauma associated with OSA, rather than the cause.

Three categories of OSA have been proposed based on the anatomical site of obstruction (Riley *et al.*, 1990):

- **Type I (oropharynx):** patients with larger soft palates and related factors, such as a longer hard palate with the resultant reduction of this region of the airway.

- **Type III (hypopharynx):** patients who are retrognathic with a concurrent reduced posterior airway space due to the posterior positioning of the tongue and/or macroglossia.

- **Type II:** is a combination of oro- and hypopharyngeal obstruction (Types I and III).

(Posterior airway space is the linear measurement between the base of the tongue and the posterior pharyngeal wall.)

### 4.4.3 Functional Processes Related to Upper Airway Muscle Activity

**Breathing**

Breathing occurs when the intercostal muscles and the diaphragm receive electrical impulses from the brain, causing them to contract. This leads to expansion of the thorax and creates a negative pressure inside the chest, drawing air into the lungs. This negative intraluminal pressure is transmitted to the upper airway creating the tendency for it to occlude. Activation and contraction of the upper airway dilator muscles such as the genioglossus and tensor palatini prevent this. The patency of the airway at any time is influenced by the balance of forces generated by the dilator muscles of the airway and the forces of inspiration that tend to occlude it. Normally the upper airway remains patent.
during breathing because the dilating force exerted by the upper airway muscles exceeds the subatmospheric intraluminal pressure generated during inspiration (Remmers et al., 1978; Suratt et al., 1985; Howell et al., 1989).

There is greater predisposition to closure in a narrower airway and a greater dependence on the dilator muscle activity to maintain patency. This is due to a greater subatmospheric inspiratory pressure that is generated in an attempt to achieve adequate airflow through the narrow airway (Cistulli and Sullivan, 1994).

Breathing And Sleeping
The awake person is capable of making the upper airway muscles contract sufficiently so that the upper airway does not collapse when they are lying down. Studies (Mezzanotte et al., 1992, 1996) have indicated that the genioglossus and tensor veli muscles may have increased activity in the awake OSA patients and thus help maintain the shape of the upper airway. This is clearly demonstrated in OSA patients during wakefulness where genioglossus electromyographic (EMG) activity is reduced significantly following the application of continuous positive airway pressure. In normal controls, there is only a small reduction in EMG activity (White and Mezzanotte, 1993). White and Ballard (1990) also found that patients with sleep apnoea had considerable phasic inspiratory-linked electromyographic activity in the genioglossus, both awake and asleep, whereas little or no activity could be found in normal subjects.

However, when the patient assumes a supine position and goes to sleep, there is a decrease in the activity of the genioglossus and tensor veli palatini muscles that result in a decreased airway space (Adachi et al., 1993). This decreased airway space may result in an increase in the velocity of the air passing through the airway, increasing the degree of subatmospheric pressure. The combination of decreased negative pressure and decrease in muscle activity allows the tongue and soft palate to move toward and often contact the posterior wall of the oropharynx, resulting in a decreased airway space. If the blockage is not complete, the increase in airflow velocity during inspirataton and expiration may cause the soft tissues, particularly the uvula, to vibrate. For others, this combination of negative pressure, decreased muscle activity and movement of the tongue and soft palate toward the
posterior wall of the pharynx results in a complete blockage of the airway. The resulting conditions may be snoring and/or OSA (Surrat et al., 1983; Cartwright, 1984)

When there is a 50% or greater reduction in resting tidal volume a hypopnoea occurs and if the airway closes completely for 10 seconds or more then apnoea results. This leads to a drop in the body's blood oxygen level (hypoxaemia), an increase in the blood carbon dioxide concentration (hypercapnia) as well as an increase in blood pressure and heart rate (Ivanhoe et al., 1999).

An apnoea is terminated by a brief arousal from sleep. During this arousal the subject partially awakes and the brain increases the stimulus to the upper airway muscles causing them to contract harder and thus open the upper airway. This enables the subject to take several large breaths and quickly corrects the oxygen and carbon dioxide levels. Normally the subject will quickly return to sleep without any recollection of arousal. This cycle of apnoea and arousal repeats itself for part or all of the sleep period.

In summary, these studies support the theory that the main underlying cause of sleep apnoea is airway narrowing due to relaxation of the upper airway muscles.

4.5 Clinical Features

4.5.1 Symptoms of OSA

Patients describe a number of symptoms that may be considered typical of OSA. Many of these symptoms are observed and reported by the spouse or partner and include (McNamara et al., 1994):

- Snoring
- Excessive daytime somnolence (sleepiness)
- Witnessed apnoeas
- Nocturnal choking episodes
- Nocturnal arousals
- Sleep disruption/insomnia
- Abnormal motor activity in sleep
• Nocturia
• Gastroesophageal reflux
• Headaches (morning; nocturnal)
• Atypical chest pain
• Nocturnal sweating
• Diminished libido/impotence
• Concentration and memory deficit
• Personality changes/depression

Snoring and daytime sleepiness are the most likely reasons for a patient to consult a clinician. The symptoms of OSA can be divided into nocturnal, daytime and neuropsychological.

Nocturnal Symptoms
The most obvious problem is loud snoring (Schwab, 1996). The snoring typically crescendos whilst futile respiratory movements occur and then breaks off suddenly, as air finally enters the lungs. At this point the subject's sleep becomes lighter, they may wake up or the event may be accompanied by a period of choking. Some subjects complain that they wake up with a very sore and/or dry throat (Battagel, 1996).

It is not uncommon for patients to wake up numerous times per night as a consequence of apnoeic events, however most patients do not remember these events when they finally awaken in the morning (Flemons, 1996). An increased frequency of nocturia is a further symptom, waking the subject. OSA subjects and their partners also complain of restlessness that is manifested by involuntary kicking movements of the legs.

The chemical changes resulting from an apnoeic event (hypoxaemia and hypercapnia) are partially responsible for an increased cardiac workload together with an increase in blood pressure. The body's attempts to continue to breathe with an obstructed upper airway, places strain on the respiratory muscles and diaphragm. Severe medical conditions can result, including tachycardia, systmeic hypertension, pulmonary hypertension, acute pulmonary oedema, reversible high grade protein-urea and possibly Sudden Infant Death
Syndrome (Chaudhary and Smith, 1991; Boudewyns and Van de Heyning, 1995; Fletcher, 1995; Rappaport et al., 1986)

Daytime Symptoms
Daytime somnolence is the most common daytime symptom of OSA patients. This is due to the frequent arousals from sleep, which interferes with the amount and quality of sleep (Ivanhoe et al., 1999). Sleep apnoea also interferes with the normal architecture and stages of sleep (Flemons, 1996). Many OSA patients spend an inordinate amount of time in Stages 1 and 2 NREM sleep and much less time in Stages 3 and 4 NREM and REM sleep (Appendix 1). Nasal obstruction and headaches are common during the day for patients who suffer from OSA (Ferguson et al., 1995)

Daytime hypersomnolence can be extreme and the subject may fall asleep at unexpected and inappropriate moments. Driving a car or operating machinery therefore presents a danger. Epidemiological studies have shown an increased motor vehicle accident rate in OSA patients including those with mild disease (Young et al., 1997). In a study by Findley et al. (1988), 24% of a sample of OSA sufferers reported falling asleep whilst driving, at least once per week. Aldrich (1989) found that 31% of drivers with OSA had been involved in a road traffic accident within the last 5 years. Drivers suffering from excessive sleepiness were up to seven times as likely to be implicated in an accident than normal individuals (Findley et al., 1988; Aldrich, 1989; Haraldsson et al., 1990). Findley et al. (2000) studied 50 OSA patients, of which 36 were using CPAP. Using traffic records, the CPAP treated patients had no motor vehicle accidents in the 2-year study period compared with a significant 0.07 amount of accidents with those not using CPAP.

Driving simulator data suggest that sleepiness due to OSA is associated with a marked driving impairment comparable to that produced by a blood alcohol level above the legal limit for driving in the United Kingdom. This impairment was shown to respond to CPAP therapy in a controlled study by Hack et al. (2001).

Neuropsychological Symptoms
Poor memory and difficulty concentrating are further consequences of patients suffering from OSA, leading to an inability to remember everyday items. Some OSA subjects have
been described as short-tempered or as having undergone a personality change. OSA patients may even experience depression. These symptoms are thought to be the result of the change in sleep quality (Kales et al., 1985; Bedard et al., 1991).

4.5.2 Clinical Consequences of OSA

Many patients with sleep apnoea are overweight and therefore it is unclear to what extent the medical problems are a direct result of obesity or the effects of sleep apnoea itself. The following section details the medical conditions that sleep apnoea have been associated with.

Nocturnal hypoxaemia (inadequate blood and tissue oxygenation during sleep) occurs with sleep apnoea and if this is prolonged, hypertension and cardiac abnormalities may develop or be exacerbated, if these conditions already exist (Klitzman and Miller, 1994; Rapoport, 1994).

Cardiac arrhythmia, nocturnal angina and myocardial ischaemia may result, with the possibility of the latter culminating in a myocardial infarction (Guillemainault et al., 1994). Although hypertension in patients with OSA is often confounded by the presence of obesity and increased age, some studies implicate sleep apnoea as an independent contributor to the development of hypertension (Carlson, 1994; Hoffstein, 1991).

Cerebral blood flow reduction is a further complication and there is an increased risk of suffering a cerebrovascular accident. An increase in the frequency of OSA in patients with recent stroke has been reported (Dyken, 1996), however, there is less evidence for this condition (Hedner et al., 1994).

In summary, OSA patients are at increased risk of injury and cardiovascular disease compared to normal subjects, as well as a poorer quality of life (AHTAC, 1993). These consequences highlight the importance of OSA research and the rationale for adequate management of this condition.
4.6 Diagnosis

A careful history and clinical examination are the essential first steps in diagnosing OSA. This includes taking a history from the patient's spouse or partner. However, clinical evaluation has significant limitations and does not identify all OSA patients. One study identified only 52% of OSA patients based on history and physical examination (Viner et al., 1991).

Polysomnography is an objective measure of respiration during sleep and is the most accepted diagnostic investigation distinguishing between simple snoring and true obstructive sleep apnoea (Aboussouan et al., 1997). It monitors a wide range of parameters while the subject is asleep, including the assessment of respiratory and cardiac function. These include:

- Electroencephalogram (EEG) to monitor brain wave activity
- Electro-oculogram (EOG) to monitor eye movements
- Electromyogram (EMG) attached below the chin and to each leg, to monitor throat muscle and leg muscle activity respectively
- Electrocardiogram (ECG) to monitor the heart's electrical activity, in particular arrhythmia
- Pulse oximetry to monitor the peripheral arterial oxygen saturation
- Respiratory thermistors to indicate whether the subject is breathing, by detecting the temperature of expired air
- Measurement of respiratory effort by measuring chest and abdominal wall movement
- Snore microphone snoring and choking sounds are charted

The data is recorded, allowing the number of apnoeas and hypopnoeas to be quantified. This allows a definitive diagnosis to be made and permits an evaluation of the severity of the OSA (Battagel, 1996). The severity is established in order to make an appropriate treatment decision (ASDA, 1995).
There are limitations of polysomnography. The studies are carried out in a sleep laboratory and not in the patient's home. Portable monitoring devices are available, however these systems do not record all data (Flemons, 1996). Secondly, there is significant night-to-night variability in the apnoea index. Studies however have demonstrated that one overnight polysomnograph is sufficient and identifies OSA in 94% of subjects that would be detected by two consecutive overnight studies (Mendelson, 1994).

5. MANAGEMENT OF OSA

Management options for OSA are diverse because the aetiology is not precisely understood. Also, a number of different treatment approaches may be required as a result of possible multiple sites of airway obstruction in any one patient. The rationale for treatment of OSA is primarily based on two aspects: consequences of excessive daytime sleepiness and susceptibility to cardiovascular illness.

The treatment outcomes desired by the American Sleep Disorders Association (ASDA) include resolution of clinical signs and symptoms of OSA, normalisation of sleep quality, normalisation of the AHI and arterial oxygen saturation levels (ASDA, 1996).

CPAP remains the treatment of choice for OSA more than 20 years after its use was first reported (Sullivan et al., 1981). Although CPAP is the most effective therapy, there are questions about compliance, tolerance and acceptance by patients. OAs and surgery provide alternative treatment approaches to the management of OSA.

The following section reviews the management strategies in treating OSA. A separate section will follow where the major focus will be on the treatment of OSA using OAs. It should be noted that the majority of treatments outlined below offer symptomatic relief rather than curative therapy.

5.1 Conservative Measures

Management of predisposing factors associated with sleep apnoea is an important aspect in the treatment of OSA. Predisposing risk factors include obesity, adenotonsillar hypertrophy, hypothyroidism, nasal obstruction and evening alcohol ingestion.
Conservative measures include advice on sleep posture, weight loss, avoidance of alcohol consumption and cessation of sedative drugs. Therapeutic control of co-existing medical conditions such as chronic obstructive airways disease, asthma and hypothyroidism are also important (Battagel, 1996).

Patients with known OSA are observed to have an increased frequency and duration of apnoeic episodes as well as a low haemoglobin oxygen saturation during sleep after alcohol ingestion (Guilleminault and Rosekind, 1981; Issa and Sullivan, 1982). These authors found that alcohol induced obstructive apnoea in heavy snorers who did not otherwise suffer from OSA. Alcohol ingestion decreases genioglossus activity in normal individuals (Krol et al., 1984) and increases upper airway collapsibility (Issa and Sullivan, 1982) in both non-snorers and snorers. Such patients should be advised to reduce their alcohol intake.

The majority of patients with sleep apnoea present with obesity. It is a well recognised aggravating factor of upper airway obstruction during sleep (Peiser et al., 1984). Weight loss may improve breathing during sleep by increasing lung volumes and resting arterial blood gas tensions (Thomas et al., 1989) and by decreasing nasopharyngeal collapsibility (Suratt et al., 1987; Rubinstein et al., 1988). Weight loss has been shown to decrease the number of apnoeic events, although the relationship is not linear (Browman et al., 1984). The number of apnoeas will decrease by approximately 50% with weight loss of 10%, suggesting that weight loss should receive a major focus in the management of OSA (Hudgel, 1996).

Many studies have investigated the effect of sleep posture and sleep apnoea severity (Cartwright, 1984; Cartwright et al., 1985; Cartwright et al., 1991; George et al., 1988). The beneficial effects of a lateral sleeping position appear to be limited to patients with mild obesity and mild forms of sleep apnoea syndrome (Cartwright, 1984; George et al., 1988). Patients with marked obesity and hypoxaemia benefit by sleeping in a more upright position at a 60 degree angle to the horizontal plane (McEvoy et al., 1986).
5.2 Medical Treatment

CPAP is the most widely prescribed treatment for OSA (Hudgel, 1996) and can provide dramatic relief of symptoms by keeping the airway patent during sleep (Sullivan et al., 1981). A continuous stream of air under pressure generated by an electrically driven pump is delivered to the pharynx via a nasal mask which counteracts the subatmospheric pressure occurring during an obstructive apnoea (Hudgel, 1996). It is 100% successful in keeping the airway open but the success of CPAP is dependent on the patient's compliance with wearing the device. One study found a compliance failure rate of approximately 35% in subjects who use CPAP (Hans et al., 1997). Other studies have found treatment success using CPAP ranges from 62% (Ferguson et al., 1996) to 70% (Ferguson et al., 1997). Success was measured by a reduction in the AHI to less than 10 per hour with relief of symptoms.

Disadvantages Of CPAP

Compliance is a major limitation of CPAP therapy. To be effective it should be in place for 6 hours per night, 7 days a week (Battagel, 1996). Only 46% of users meet these strict criteria of regular use (Barone Kribbs et al., 1993) and recent studies have shown that as many as 24% of patients discontinue therapy with CPAP (Reeves-Hoche et al., 1994; Waldhom et al., 1990). Reported long-term use of CPAP is 50% to 80%, and covert monitoring has shown that the average usage is less than 50% of the night. Less symptomatic patients are also more likely to discontinue treatment (Ferguson, 1996).

There are also a number of problems associated with the use of CPAP (Hudgel, 1992; Battagel, 1996; Naughton, 1997) including:

- Noise
- Cumbersome nature of CPAP (to both patient and partner)
- Nasal or oral dryness
- Nasal congestion
- Sneezing
- Sinusitis
- Nose bleeds and/or rhinorrhea
- Skin reactions from facemask
• Nasal bridge abrasions
• Red eyes
• Aerophagia (swallowing of air)
• Electronically fed
• Cost

5.3 Dental Treatment
The role of OAs in the management of OSA is discussed in Section 6.

Randomised, cross-over studies using OAs and CPAP by Ferguson et al. (1996, 1997) and Clark et al. (1996) have demonstrated that OAs are less effective than CPAP for treating OSA. Efficacy of OAs verses CPAP ranged from 48% verses 62% (Ferguson et al., 1996) to 55% verses 70% (Ferguson et al., 1997). Treatment success was defined as a reduction in post-treatment AHI to less than 10 per hour. These studies have also demonstrated that patients prefer treatment with OAs over CPAP (Loube and Strauss, 1997).

Ferguson and colleagues (1996) reported that side effects were more common and the patients were less satisfied with CPAP when compared to use of OAs. In a more recent study, the same authors have reported no difference in side effects or compliance between CPAP and OAs (Ferguson et al., 1997).

Rapid maxillary expansion for OSA patients with maxillary constriction has also been reported (Palmisano et al., 1996). The study was a case report and further research is recommended to validate the use of this procedure in the treatment of OSA.

5.4 Surgical Treatment
Historically, tracheostomy was the surgical procedure undertaken for patients with OSA. It is the only operation shown to be consistently effective as a sole procedure in successfully treating obstructive sleep apnoea (Guilleniiault and Rosekind, 1981). Due to the cosmetic defects and the associated morbidity, patients do not favourably accept it and its use is limited to emergency situations (ASDA, 1996).
Surgery is indicated in patients who have an anatomical abnormality, such as nasal polyps, deviated nasal septa, enlarged tonsils or severe craniofacial abnormalities. Surgery is also indicated for those patients in whom conservative or medical treatments have been unsuccessful or have been unacceptable, who desire surgery and who have stable cardiopulmonary function (ASDA, 1996). The severity of OSA must be determined before initiating surgical therapy (ASDA, 1996).

Uvulopalatopharyngoplasty (UPPP) is the most widely used surgical technique. It is a procedure in which the uvula, part of the soft palate and tonsillar pillars are excised, with or without tonsillectomy. The process by which this surgical procedure works is unclear and although it does improve the symptoms of OSA, minimal improvement is observed in the apnoea pattern (Miljeteig et al., 1994). The success rate of UPPP in treating OSA patients as reported by retrospective studies is only 50%. Criteria for success was defined in these studies as a reduction in AHI by 50% (Shepard and Olsen, 1990; Sher et al., 1996). The incidence of complications with UPPP appear to be low, with the most common complication reported as velopharyngeal insufficiency for greater than one month (Sher et al., 1996).

Maxillo-facial surgery is another surgical treatment option (Powell et al., 1990). Advancement of the maxilla will increase the airway patency at the level of the soft palate and advancement of the mandible will increase the airway posterior to the tongue base. Mandibular advancement is thought to be effective in patients with mandibular retrognathia, however, more commonly bimaxillary surgery is undertaken. Advancement and repositioning of the hyoid bone are also recommended (Riley et al., 1987; Riley et al., 1990). Riley and colleagues (1993) reported a success rate of 97% in patients undergoing maxillary-mandibular advancement osteotomy with hyoid advancement. Criteria for success were based on AHI of less than 20 in addition to a 50% or greater reduction in AHI. When maxillary-mandibular advancement was carried out with no adjunctive procedures, the response rate was much lower at 20%. The response rate was defined as post-operative AHI of less than 10 (Waite et al., 1989).
Distraction osteogenesis has shown a high success rate as shown by Molina et al., (1998) with maxillary distraction and Cohen et al., (1998) with mandibular distraction. Other surgical procedures include genioglossal advancement with or without hyoid myotomy and suspension and inferior sagittal mandibular osteotomy (ASDA, 1996).

6. THE ROLE OF ORAL APPLIANCES IN THE MANAGEMENT OF OSA

6.1 Background

Pierre Robin in 1902 was the first to report the use of any oral appliance for treatment of upper airway obstruction and mandibular deficiency (Robin, 1934). No further articles were published in the English literature on the use of OAs as a therapeutic method for snoring and OSA until the mid 1980's.

Cartwright and Samelson (1982) published the first description of the tongue retaining device (TRD), which was followed 2 years later by an abstract from Meier-Ewert and co-workers (1984) describing the use of a mandibular advancement device (MAD). Soll and George (1985) published a case report on the effectiveness of a modified one-piece activator advancement device, which resulted in improvement of the apnoea index and oxygen saturation.

Since then there has been a growing interest in the use of OAs in the treatment of snoring and OSA. In 1998, there were at least twenty-five different OAs being used in the treatment of snoring or OSA with the efficacy of individual OAs varying widely (Lowe, 1994). Since then, hundreds of different OAs have been made with varying designs and efficacy.

There is no consensus in the literature regarding the suitability of OA therapy for mild, moderate or severe cases of OSA. According to ASDA (1995), OA therapy is indicated as a primary treatment for patients with mild OSA and as a secondary treatment for patients with moderate and severe OSA who cannot tolerate treatment with CPAP. However, the definition of mild OSA is not specified in these practice parameters and even among
respiratory physicians there are no accepted criteria for classifying OSA severity. A report by Loube and Strauss (1997) suggests that the role of OAs in the treatment of OSA may be broader than that envisaged in the ASDA practice parameters. Recently, Mehta et al., (2001) found that MAS therapy was an effective treatment even in patients with moderate or severe OSA.

OAs are divided into 2 types:

- Those that hold the tongue forward during sleep which are called tongue retaining devices (TRD) (Cartwright and Samelson, 1982)
- Those that advance the mandible. This group made up 93% of OA used in 1997 (Loube and Strauss, 1997) and has a variety of names, including: mandibular advancement devices (MAD) (Schmidt-Nowara et al., 1995); mandibular advancement splints (MAS) (O'Sullivan et al., 1995); and anterior mandibular positioning devices (AMP) (Clark et al., 1996).

6.2 Tongue-Retaining Devices

6.2.1 Mechanism of Action
TRD hold the tongue forward during sleep. The tongue is placed into a cup or a bubble positioned between the front teeth and is held there by surface adhesion (Pack, 1994). The aim is to prevent backward motion of the tongue during sleep that could otherwise occlude the airway.

6.2.2 Evaluation of Efficacy
Studies show that TRD is an effective appliance in causing a reduction of the mean AHI (Cartwright and Samelson, 1982; Cartwright et al., 1985; Cartwright et al., 1988; Cartwright et al., 1991). TRD are believed to be most successful in patients who are less than 50% above ideal weight and in whom their OSA is worse when they sleep in the supine position (Cartwright et al., 1985). In another study, TRD was shown to be more effective when used in conjunction with behaviour modification (Cartwright et al., 1991). In this study, a sample of 60 adult men with AHI values greater than 12.5 who had two or
more times the apnoea rate during supine sleep, in comparison with their lateral sleep rate, were assigned to four treatment groups:

- TRD only
- posture alarm
- TRD plus posture alarm
- health habit instruction

Using a 50% reduction in AHI as the index of successful treatment, 73% of the TRD group and 80% of the TRD plus posture alarm group were successful. The 15 subjects treated with the TRD alone had a reduction in mean AHI from 27 to 11. For the 15 subjects in the TRD plus posture alarm group, a mean AHI reduction from 31 to 8 was achieved, therefore demonstrating the effectiveness of this treatment.

However, none of the studies have shown that the TRD is successful at eliminating OSA by reducing the mean AHI to below 5, the level at which sleep apnoea is diagnosed. Other criticisms include a small sample size (12 to 15 patients), are retrospective case series and have provided no data about relief of snoring, sleepiness or long-term usage patterns. Therefore the efficacy of TRD in the successful treatment of OSA has not been proven objectively.

### 6.3 Mandibular Advancement Splints

#### 6.3.1 Mechanism of Action

MAS are thought to treat OSA in the following ways (Bonham et al., 1988; Lowe, 1990; Lowe, 1994; Ayas and Epstein, 1998):

- increase the airway space
- provide of a stable anterior position of the mandible
- advance the tongue and soft palate
- change the genioglossus and pharyngeal muscle activity

Mechanisms for the improvement in snoring include an increase in oropharyngeal and hypopharyngeal dimensions with associated reduction in turbulent airflow in the region
and/or an increase in passive tension within the pharyngeal wall. These events serve to reduce the vibration of these structures which is the source of the noise (Lugasesti et al., 1984).

Woodson et al. (1997) used video endoscopy during sleep and found that the area of the retroglossal airway increased when using a MAS, however hypopharyngeal airway size decreased. Schwab et al. (1996) used magnetic resonance imaging to show that MAS’s increase the lateral dimension of the airway space due to thinning of the pharyngeal walls. Masumi et al. (1996) demonstrated the functional consequence of increasing airway size. They found increases in flow during a forced inspiration with a MAS in place in subjects with and without OSA. The variability in the location of the airway changes in the various studies may be due to differences in appliance design, patient characteristics or imaging technique.

Several studies have evaluated the effect of oral appliances on pharyngeal muscle activity. Downward rotation of the mandible increases the baseline electromyogram activity of the genioglossus, an upper airway dilator muscle (Lowe et al., 1990). Because oral appliances also cause downward rotations of the mandible, it has been postulated that some of the improvement in the AHI after treatment with an oral appliance may be due to an augmentation in genioglossus tone. Two studies cast doubt on this hypothesis. First, Ono et al. (1996) determined the effect of a tongue-retaining device on genioglossus muscle activity (assessed by surface electrodes) in 10 awake subjects with OSA and 6 control subjects. In non-OSA subjects, tongue protrusion resulted in increases in peak genioglossus electromyogram activity compared with baseline. In those with OSA however, decreases in electromyogram activity were noted after use of a tongue-retaining device. These data are consistent with a study by Mezzanotte et al. (1992) in which individuals with OSA had increased awake genioglossus tone compared with control subjects. The increased genioglossus activity was thought to represent neuromuscular compensation to prevent airway collapse.

Therefore, in Ono et al.’s study, the decrease in genioglossus muscle tone seen in those with OSA after use of an oral appliance may represent a decrease in the need for this compensation due to enlargement of the upper airway by the oral appliance. Also, a study
by Oshima et al. (1998) demonstrated that genioglossus electromyogram activity, as measured with subcutaneous electrodes, decreased with progressive mandibular advancement with an oral appliance in sleeping subjects with OSA. In conclusion therefore, the improvements in AHI after oral appliance treatment are likely due to changes in upper airway anatomy rather than augmentation of genioglossus activity.

Liu et al. (2000) found that the cross sectional area of the soft palate and the vertical distance of the hyoid bone to the mandibular plane decreased significantly with the use of an MAS. Thus the soft palate and hyoid bone are implicated in the mechanism of action of MAS.

Lowe et al. (2000) used fiber optic video endoscopy on 9 OSA patients with and without an MAS. They found no significant differences in hypopharynx or oropharynx cross sectional areas, but at the level of the velopharynx, the airway size was significantly increased.

6.3.2 Appliance Design

Numerous designs have been described for the treatment of snoring or sleep apnoea, but essentially they resemble a functional appliance. Most of these appliances use traditional dental techniques to attach the device to both dental arches and vary in design from relatively simple acrylic mouldings (Nakazawa et al., 1992) to appliances incorporating metallic rod and tube fittings (Herbst attachments) and interarch elastics (Clark et al., 1993; Clark et al., 1996). Construction requires dental impressions, a protrusive bite registration and fabrication by a dental laboratory. Prefabricated forms are also available and according to a survey by Loube and Strauss (1997), these designs represent 14% of OAs used by dentists to treat patients with OSA. 45% are custom made while 34% are adjustable and 7% are TRD.

Important aspects of MAS design include (Battagel, 1996):

- Good retention to both the upper and lower teeth
  This is important to ensure that the maxilla or mandible does not dislodge out of the appliance during sleep.


**Sufficient protrusion to prevent pharyngeal collapse in the supine position**

Some studies have proposed sufficient protrusion to be 75% of maximal protrusion (Clark et al., 1993; O'Sullivan et al., 1995). However, the degree of forward protrusion required may vary and some subjects show no alteration in airway dimensions even with maximal protrusion (L'Estrange et al., 1995). Hence, there is no scientific basis in proposing 75% of maximal protrusion as the ideal advancement. Furthermore, the individual must tolerate the amount of protrusion. Since tolerance increases with time, splints capable of incremental advancement (such as Herbst and AMP used by Ferguson et al., 1997) may have practical advantages although cost of fabrication will increase. Also, the side effects such as TMJ discomfort and occlusal changes may increase.

**Vertical opening**

There are no randomized clinical crossover trials in the literature that systematically assess the effect of vertical mandibular opening on OSA. The amount of vertical mandibular opening varies greatly in the literature. There are many appliances that do not cause vertical mandibular opening (Snore guard used by Schmidt-Nowara et al., 1991; Esmarch device used by Mayer and Meier-Ewert, 1995; MAS used by O'Sullivan et al., 1995; Ferguson et al., 1996). However, there are many appliances that do cause vertical mandibular opening (O'Sullivan et al., 1995; Lamont et al., 1998; Bloch et al., 2000; Mehta et al., 2001) even up to an interincisal space of 15mm (Lowe et al., 1994).

O'Sullivan et al. (1995) used a MAS with 10mm of mandibular vertical opening to aid the retention during sleep by inducing passive tension in the jaw musculature. They also used a suggestion by Lowe (1993) for their design justification, who suggested that the displacement of the mandible anteriorly moves the tongue away from the posterior wall of the pharynx while displacement of it inferiorly moves the tongue away from the soft palate.

However, excess opening is thought to diminish the benefits to the airway from protrusion according to Battagel (1996). L' Estrange et al. (1996), used fluoroscopy on 6 subjects with OSA for assessing the upper airway dimension changes. They found that vertical mandibular opening resulted in synchronous posterior movement of both
the tongue and soft palate, with a consequent narrowing of the oropharyngeal airway space.

Lamont et al. (1998) compared two MAS’s for 24 patients. Type A-MAS had maximal mandibular protrusion and 3-4mm interincisal opening whereas Type B-MAS had up to 70% maximal protrusion and 6-9mm of interincisal opening. Type A-MAS had no significant effect on AHI whereas Type B did, reducing AHI from 7.1 to 0.8. They concluded that splint design might have a considerable bearing on efficacy including the amount of vertical mandibular opening. Unfortunately the subjects could open their mouths during sleep so it is unsure whether the amount of vertical mandibular opening remained constant during polysomnography. Also, the amount of sagittal protrusion varied between each appliance, which may have had an effect on AHI reduction.

Bloch et al. (2000) also compared two MAS’s for 24 patients. They compared a Herbst with 4-6mm of interincisal opening to that of a Monobloc with 5-10mm of interincisal opening. The initial AHI of 22.6 decreased significantly with both appliances to 8.7 and 7.9 respectively. They suspected that the difference in the vertical mandibular opening between the two MAS’s may have had an effect on their efficacy. They thought it conceivable that a downward rotation of the mandible with jaw opening may result in a retrusive motion of the tongue base. Unfortunately the subjects could open their mouths during sleep so it is unsure whether the amount of vertical mandibular opening remained constant during polysomnography.

Bucca et al. (1999) reported that the number of apnoeas/hypopneas increased significantly when 6 edentulous male patients did not wear their full dentures at night. Supine lateral cephalometry showed that removal of dentures led to a striking decrease in the anteroposterior oropharyngeal wall distance from 1.5cm to 0.6mm.

It has also been reported that the vertical mandibular posture during sleep in patients with OSA is more open than in normal subjects, that it increases during apnoeic episodes and decreases at the termination of those episodes (Miyamoto et al., 1999). This increase in vertical mandibular opening may be causing a collapse of the airway; however, it may also be the consequence of a stronger effort to breathe.
- *An anterior space between upper and lower segments of the splint*
  This is helpful for those patients who are mouth breathers.
- *Full occlusal coverage*
  This is to prevent long term vertical dental changes from eruption of teeth.

Apart from fulfilling the above criteria the ideal MAS should be inexpensive, easy to fabricate and well accepted by patients. It is evident from the literature that most splints do not meet these design criteria. In addition, there are no well-designed studies that directly compare the efficacy of specific appliances to each other.
6.3.3 Evaluation of Efficacy

Treatment consists of the benefit, including efficacy and patient compliance, and the cost, including side effects, complications and the financial cost of treatment (Schmidt-Nowara et al., 1995). Efficacies of oral appliances include their effects on snoring and sleep apnoea as well as their secondary consequences, including sleep disturbance, daytime sleepiness and any long-term sequelae.

The following section reviews the scientific evidence regarding the efficacy of the MAS on snoring and OSA.

Efficacy of MAS in Snoring

Numerous studies (Schmidt-Nowara et al., 1991; Clark et al., 1993; O'Sullivan et al., 1995; Ferguson et al., 1996) in which snoring was assessed, representing a variety of devices, has shown that snoring improved in 76% to 100% of patients. However the improvement in snoring has been inferred from reports of patients or bed partners (Schmidt-Nowara et al., 1995) and not measured objectively in relation to the sound intensity or snoring frequency. O'Sullivan et al., (1995) has objectively measured snoring frequency as well as sound intensity. This study found that snore frequency significantly decreased by 18% and that sound intensity of snores (% snores ≥50 dB) also significantly decreased by 38% with MAS use. Bloch et al. (2000) showed a 36% reduction in snoring frequency with a Herbst type MAS and a 58% reduction with a monobloc type MAS. Mehta et al. (2001) found that the mean snoring frequency decreased by 47% and the mean intensity by 3 dB with MAS use as compared to the control plate.
Efficacy of MAS in OSA

1. Effect on AHI

All reports show a significant improvement in the average AHI with patients who use an appliance. Table 1 (pg. 44) outlines some of the studies performed for the efficacy of oral appliances. Examples include:

- Schmidt-Nowara et al., (1991) evaluated 68 patients with snoring and/or OSA. In the 20 patients with follow-up polysomnography the Snore-Guard reduced the AHI by more than 50% and also significantly improved arterial oxygen saturation and sleep quality.

- Clark et al. (1993) reported their experience with a Herbst appliance in 24 patients with OSA. In the 15 patients who had polysomnography before and after treatment, 12 had a reduction in AHI to less than 15/h. Several of the patients who had a poor response to treatment did not have follow-up polysomnography, so the precise success rate is not known.

- Eveloff et al. (1994) reported a 53% success rate with a Herbst appliance in 19 patients with OSA. Success was defined as patients having an AHI less than 10/h with the MAS.

- O'Sullivan et al. (1995) showed that a MAS decreases AHI to less than 20/h in 12 of 17 patients in whom untreated AHI was between 20 to 60/h, and in 2 of 9 patients in whom untreated AHI was more than 60/h.

- Liu et al. (2000) showed a significant decrease in RDI in 21 of 22 patients from 40.3 to 11.7. The mandible was advanced 75% and the vertical opening was 7mm.

- Lowe et al. (2000) found a significant reduction in RDI from 32.6 to 12.1 in 38 patients using an MAS.

- Bloch et al. (2000) showed a reduction in AHI from 22.6 to 8.7 with a Herbst type MAS and to 7.9 with a monobloc type MAS.

- Mehta et al. (2001) showed a reduction in AHI from 30 to 14 with a MAS. This is the first prospective randomized placebo controlled crossover study of a MAS.

A review of publications reporting the effects of OAs on OSA carried out by Schmidt-Nowara et al. (1995), showed that the mean AHI before and with treatment were 42.6 and
18.8 respectively, an average reduction of 56%. Although 70% of the patients in these studies had at least a 50% reduction in AHI, many did not correct to normal levels and some patients did not improve or became worse. 51% of patients achieved success, defined as an AHI less than 10 with treatment. 39% of patients with an initial AHI of greater than 20 remained above that level with treatment.

In summary, OAs have been shown to be an effective method of treatment for OSA when AHI is used as a measure of effectiveness. However, whether it can be regarded as providing a successful treatment has yet to be established because the definition of success varies in each of the studies.

2. Effect on Arterial Blood Oxygenation
Numerous studies (Schmidt-Nowara et al., 1991; Clark et al., 1993; Ferguson et al., 1996; Mehta et al., 2001) have reported an improvement in oxygenation assessed by the minimum arterial oxygen saturation (MinSaO2). In one study (O'Sullivan et al., 1995), the median oxygen saturation during sleep remained unchanged, but the time in sleep with oxygen saturation of less than 90% was reduced from 4.4% to 3.1% (p>0.01).

3. Effect on Sleep and Sleepiness
Polygraphic assessments of sleep before and during oral appliance treatment have shown a reduction in stage 1 sleep, an increase in slow wave (NREM) and REM sleep and a reduction in sleep fragmentation, mid-sleep wake time and arousals (Schmidt-Nowara et al., 1995). Most patients reported a reduction in daytime sleepiness. This was a subjective evaluation based on patient reports.

6.3.4 Compliance
The data on long-term compliance of OAs vary from 100% (Ichioaka et al., 1991) to 52% (Clark et al., 1993). This variation may be related to the length of follow up. In the first study, patients were queried after 3 to 21 months; in the latter study the follow up period was 3 years. Pantin et al., (1999) had a 5-year follow up where 76% of patients reported regular use of their MAS. Another drawback of the reported compliance rates is they are based on patient reports, which may significantly over-estimate actual use (Reeves-Hoche et al., 1994).
Table 1. Peer Reviewed Literature on the Efficacy of Oral Appliances on OSA

<table>
<thead>
<tr>
<th>Authors</th>
<th>Sample Size</th>
<th>Study Design</th>
<th>Device</th>
<th>Mean AHI without appliance</th>
<th>Minimum SaO2</th>
<th>AHI with treatment</th>
<th>Sleep</th>
<th>Sleepiness score</th>
</tr>
</thead>
<tbody>
<tr>
<td>Meier-Ewert et al., 1987</td>
<td>44</td>
<td>Case Series</td>
<td>Easmarsh</td>
<td>50/23</td>
<td>-</td>
<td>59%</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Bonham et al., 1988</td>
<td>12</td>
<td>Case Series</td>
<td>MAS</td>
<td>54/36</td>
<td>75/80</td>
<td>58%</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Lyon et al., 1990</td>
<td>15</td>
<td>Case Series</td>
<td>MAS</td>
<td>47% decrease</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Ichioka et al., 1991</td>
<td>14</td>
<td>Case Series</td>
<td>MAS</td>
<td>32/9</td>
<td>Improved</td>
<td>100%</td>
<td>71%</td>
<td>9%</td>
</tr>
<tr>
<td>Schmidt-Nowara et al., 1991</td>
<td>20</td>
<td>Case Series</td>
<td>Snoreguard</td>
<td>47/20</td>
<td>75/80</td>
<td>75%</td>
<td>40%</td>
<td>31%</td>
</tr>
<tr>
<td>Nakazawa et al., 1992</td>
<td>12</td>
<td>Case Series</td>
<td>MAS</td>
<td>50/19</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Clark et al., 1993</td>
<td>15</td>
<td>Case Series</td>
<td>Herbst</td>
<td>48/12</td>
<td>Improved</td>
<td>87%</td>
<td>46%</td>
<td>20%</td>
</tr>
<tr>
<td>Eveloff et al., 1994</td>
<td>19</td>
<td>Case Series</td>
<td>Herbst</td>
<td>35/13</td>
<td>84/88</td>
<td>-</td>
<td>53%</td>
<td>33%</td>
</tr>
<tr>
<td>O'Sullivan et al., 1995</td>
<td>51</td>
<td>Case Series</td>
<td>MAS</td>
<td>32/18</td>
<td>84/87</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Clark et al., 1996</td>
<td>21</td>
<td>Cross-over</td>
<td>AMP</td>
<td>34/20</td>
<td>84/90</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Ferguson et al., 1996</td>
<td>19</td>
<td>Cross-over</td>
<td>Snoreguard</td>
<td>20/10</td>
<td>83/84</td>
<td>-</td>
<td>48%</td>
<td>-</td>
</tr>
<tr>
<td>Ferguson et al., 1997</td>
<td>19</td>
<td>Cross-over</td>
<td>AMP</td>
<td>25/14</td>
<td>79/76</td>
<td>-</td>
<td>55%</td>
<td>-</td>
</tr>
<tr>
<td>Mehta et al., 2001</td>
<td>24</td>
<td>Cross-over</td>
<td>MAS</td>
<td>30/14</td>
<td>87/91</td>
<td>63%</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Notes: 9/12 improved, patient report
10/12 improved, patient report
18/35 improved, subjective scale
24/39 improved, patient report
65% improved, subjective scale
91% improved, subjective scale
6.3.5 Side Effects

Tables 2 (pg. 46) outlines the literature of the side effects with the use of OAs including:

- discomfort
- occlusal changes
- sore teeth
- TMJ pain
- dryness of mouth
- salivation
- gum irritation
- bruxism

Excess salivation and transient discomfort after waking are commonly reported, but with regular use these symptoms subside (Schmidt-Nowara et al., 1995). The published reports suggest that TMJ pain and occlusal changes are relatively uncommon occurrences.

Pantin et al., (1999) showed that 14% (15) of 106 patients using MAS over a 5-year period had occlusal changes. 13 patients had a 1mm decrease in overjet while the other 2 patients had a 1.5mm and 3mm decrease in overjet. The proportion of patients with occlusal change increased with the length of use of the MAS up to 2 years. Beyond 2 years the proportion remained relatively the stable. Other side effects included excess salivation (38%), xerostomia (28%), TMJ pain (33%) and dental discomfort (33%).

Bondemark et al. (1999) studied 30 patients after 2 years of use with a MAS giving 70% mean protrusion and 5mm vertical opening. A small but statistically significant forward (0.4mm) and downward (0.3mm) change in mandibular position were found.

Bondemark and Lindman (2000) studied 32 patients after 2 years of use with an MAS giving 70% mean protrusion and 5mm vertical opening. The patients TMJ’s were studied clinically and none of the patients showed more than five symptoms of dysfunction.

In conclusion, the side effects of MAS’s vary greatly. This is most probably due to patient selection/population and the fact that all MAS’s vary in design.
Table 2. Peer Reviewed Literature on the Side Effects, Complications and patient Compliance using OA’s

<table>
<thead>
<tr>
<th>Author</th>
<th>Sample Size</th>
<th>Device</th>
<th>Side Effects of Complications</th>
<th>Rate of Occurrence</th>
<th>Compliance</th>
<th>Length of Follow-up (Years)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ichiooka et al., 1991</td>
<td>14</td>
<td>MAS</td>
<td>Discomfort</td>
<td>14%</td>
<td>100%</td>
<td>0.4-1.75</td>
</tr>
<tr>
<td>Schmidt-Nowara et al., 1991</td>
<td>68</td>
<td>Snore-Guard</td>
<td>Discomfort</td>
<td>48%</td>
<td>75%</td>
<td>Mean 0.6</td>
</tr>
<tr>
<td>Nakazawa et al., 1992</td>
<td>12</td>
<td>MAS</td>
<td>Discomfort. Occusal changes.</td>
<td>10%</td>
<td>67%</td>
<td>Mean 0.6</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>TMJ dullness.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Clark et al., 1993</td>
<td>24</td>
<td>Herbst</td>
<td>TMJ pain</td>
<td>15%</td>
<td>50%</td>
<td>3</td>
</tr>
<tr>
<td>Eveloff et al., 1994</td>
<td>19</td>
<td>Herbst</td>
<td>No pain</td>
<td>-</td>
<td>93%</td>
<td>1-3.5 (mean, 2)</td>
</tr>
<tr>
<td>O’Sullivan et al., 1995</td>
<td>51</td>
<td>MAS</td>
<td>Jaw discomfort. Dryness of mouth. Excessive Salivation. Gum irritation, Bruxing</td>
<td>67%</td>
<td>79%</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Clark et al., 1996</td>
<td>21</td>
<td>AMP</td>
<td>Did not evaluate side effects</td>
<td>-</td>
<td>81%</td>
<td>0.25-.0.85</td>
</tr>
<tr>
<td>Ferguson et al., 1996</td>
<td>19</td>
<td>Snore-Guard</td>
<td>Sore teeth, sore jaw muscles, excess salivation</td>
<td>-</td>
<td>60%</td>
<td>0.33</td>
</tr>
<tr>
<td>Ferguson et al., 1997</td>
<td>19</td>
<td>AMP</td>
<td>Sore teeth, sore jaw muscles, excess salivation, difficulty in chewing</td>
<td>-</td>
<td>70%</td>
<td>0.33</td>
</tr>
</tbody>
</table>

Adapted from: Schmidt-Nowara et al., (1995)
6.3.6 Predictors of Treatment Response

Attempts have been made to predict treatment success with OAs. In 3 studies (Schmidt-Nowara et al., 1991; Eveloff et al., 1994; O'Sullivan et al., 1995; Schmidt-Nowara et al., 1991) success was related to the initial AHI. Two studies (Schmidt-Nowara et al., 1991; O'Sullivan et al., 1995) suggested success would be unlikely with an AHI of less than 60, but substantial improvement has been reported in patients with AHI greater than 60 (George, 1987; Lowe et al., 1990 Clark et al., 1993; Eveloff et al., 1994).

Cephalometric parameters have also been considered to predict post treatment AHI (Eveloff et al., 1994; Mayer and Meier-Ewert, 1995). Mehta et al. (2001) used a multiple regression analysis to identify neck circumference, baseline AHI, mandibular plane angle and posterior airway space as predictors of treatment outcome.

7. FUTURE DIRECTIONS

Electrical pacing

Electrical pacing using the submental approach was initially attempted by Miki et al. (1989) who showed favourable results in a small number of OSA patients. Guilleminault et al. (1995) attempted electrical stimulation using the submental and sublingual approaches in 7 patients and found that both approaches did not produce any significant change in AHI, obstructive duration, or the lowest oxygen saturation level. In addition, alpha-electroencephalography arousals were seen secondary to electrical stimulation when breaks of apnoea occurred. Schwartz et al. (1996) attempted pacing of the soft palate via a dental plate with a lower voltage and managed to abolish snoring, but they were unable to consistently stop apnoea. Hence, there is currently no convincing support for the use of electrical stimulation to treat OSA but may be an area of future research.

Radio-frequency ablation

Radio-frequency ablation has been used experimentally for cranial nerve problems, cancer, the Wolff-Parkinson-White syndrome and prostate hypertrophy for the past two decades. Using a radio-frequency generator, low-level energy is generated producing temperatures around 80 degrees celcius. Because human protein denatures at approximately 46 degrees celcius, the radio-frequency energy produces tissue necrosis, scar formation and a
reduction in tissue volume. Using this approach, Powell et al. (1997) were able to achieve a volume reduction of 26% in a pig’s tongue. Radio-frequency ablation of the soft palate has been attempted in a small group of humans with simple snoring, upper-airway resistance syndrome, or mild OSA. The participants showed significant reduction in soft palate size, subjective snoring, scores on the Epworth sleepiness scale and excessive daytime sleepiness. However, there was worsening of AHI two and three days postoperatively due to oedema, which subsequently subsided and caused the AHI to return to the baseline value (Powell et al., 1998). More research is needed before any conclusion can be drawn from this procedure.

**Combination Treatment**

Several studies suggest that oral appliances may be useful in combination with other interventions. For instance, Cartwright et al. (1991) found that the use of sleep position therapy combined with an oral appliance was slightly more effective than either used alone. Also, Millman et al. (1998) added oral appliance therapy to patients in whom uvulopalatopharyngoplasty had failed and found that a significant proportion (10 of 24 subjects) experienced a reduction in the AHI to less than 10 per hour with the appliance. Further prospective studies are needed to determine whether the combination of an oral appliance and uvulopalatopharyngoplasty is better than either one alone.

The combination of available treatments as well as those that require validation may provide more efficacious treatment of patients with OSA.

On the horizon for the field of oral appliance therapy is the introduction of a compliance monitor that will allow an objective determination of appliance usage. In addition, several investigators are developing systems that would allow overnight titration of oral appliances in the sleep laboratory.
8. CONCLUSION

Although CPAP provides the most efficacious treatment for OSA, it is poorly tolerated. Mandibular Advancement Splints provide a treatment alternative for those in whom conservative management measures fail and/or who cannot tolerate CPAP. At present, the exact mechanism of action of MAS’s is unclear.

Long-term studies with MAS therapy are still required to objectively measure performance and sleepiness as well as complications that may not emerge for several years. Perhaps previous authors will continue to follow their patients and report later on the long-term outcome.

There is a lack of randomized clinical trials on oral appliance therapy for OSA in the literature. Most of the published studies have several deficiencies including small sample size, with no control or comparison group and are usually retrospective in design. Also, treatment outcome criteria are usually poorly defined and subjective. Not all patients have polysomnography at baseline and during treatment and some studies exclude patients with severe OSA. The frequency, severity and duration of side effects are rarely reported and predictors of outcome are not known. Few studies have reported subjective compliance and there is a lack of description for appliance design, including the optimal amount of mandibular protrusion. Only one recent study by Mehta et al. (2001) does not have the deficiencies mentioned and proves the efficacy of MAS in even moderate to severe OSA patients. There are however, no randomized clinical crossover trials in the literature that systematically assess the effect of vertical mandibular opening on OSA.
BIBLIOGRAPHY


Bhattacharyya N, Blake SP, Fried MP. Assessment of the airway in obstructive sleep apnoea syndrome with 3-dimensional airway computed tomography. Otolaryngology & Head & Neck Surgery, 2000; 123: 444-449.


Bibliography


Flemons WW. Sleep Apnea: Internet Article - Sleep Apnea Society of Alberta. 1996.


George CF, Miller TW, Kryger MH. Sleep apnea and body position during sleep. Sleep, 1988; 11: 9099.


Guilleminault C, Dement WC. Sleep Apnea Syndromes. 1978, New York: Liss, A.R.


Bibliography


Bibliography


Bibliography


Naughton M. Sleep apnoea- from social to medical consequences. Modern Medicine of Australia, 1997; 36-44.


Bibliography


Bibliography

Ryan CF, Lowe AA, Li D, Fleetham JA. Magnetic resonance imaging of the upper airway in obstructive sleep apnea before and after chronic nasal continuous positive airway pressure therapy. Am Rev Respir Dis, 1991; 144: 939-44.


Sher AE, Schechtman KB, Piccirillo JF. The Efficacy of Surgical Modifications of the Upper Airway in Adults with Obstructive Sleep Apnea Syndrome. Sleep, 1996; 19: 156-177.


Solow B. Upper airway obstruction and facial development. In: The Biological Mechanisms of Tooth Movement and Craniofacial Adaptation. 1992, Columbus, Ohio, USA: The Ohio State University College of Dentistry. 571-579.


Bibliography


Bibliography


MANUSCRIPT

The Effect of Vertical Dimension in a Mandibular Advancement Splint for Obstructive Sleep Apnea

Authors:
Andrew J. Pitsis¹,², M. Ali Darendeliler², Helen Gotsopoulos¹, Peter Petocz³, Peter A. Cistulli¹

Institution:
¹Centre for Sleep Disorders and Respiratory Failure, Department of Respiratory Medicine, St George Hospital, University of New South Wales, ²Discipline of Orthodontics, Faculty of Dentistry, University of Sydney, and ³School of Mathematical Sciences, University of Technology, Sydney, Australia.

Address for correspondence and reprint requests:
Dr PA Cistulli. Centre for Sleep Disorders and Respiratory Failure. Department of Respiratory Medicine, St George Hospital Belgrave St, Kogarah, 2217, NSW, Australia. Ph: 61-2-93502696, Fax: 61-2-93502570, E-mail: CistulliP@sesahs.nsw.gov.au

Supported by grants from National Health & Medical Research Council of Australia, and Australian Society of Orthodontists Foundation of Research and Education Inc.

Running Head: Oral splint design for sleep apnea

Descriptor Number: 111

Word count for body of manuscript: 3,828
Abstract

There has been no systematic comparison to determine the effect of vertical mandibular opening of Mandibular Advancement Splints (MAS) on the efficacy and side effects of obstructive sleep apnea (OSA), which was the aim of the study. Twenty-three patients underwent a randomized, 2 period (AB/BA) crossover study with either MAS-1 or MAS-2 (additional 10mm opening) for 2-week periods. Data from the baseline polysomnograph, lateral cephalometric radiograph and questionnaire were compared to those of the treatment periods. MAS-1 was preferred by 78% of patients. One-hundred percent and 91% of patients using MAS-1 and MAS-2 reported subjective improvements in snoring with 91% and 78% reporting every night use, respectively. There were significant improvements in AHI (21 ± 2/hr versus MAS-1: 8 ± 1/hr and MAS-2: 10 ± 2/hr, p < 0.001), arousal index (36 ± 4/hr versus MAS-1: 26 ± 4/hr and MAS-2: 24 ± 4/hr, p < 0.001) and for the longest apnea (31 ± 5s versus MAS-1: 16 ± 3s, p < 0.02 and MAS-2: 18 ± 4s, p < 0.04). Polysomnographic variables did not differ significantly between MAS’s. Complete or partial success was achieved in 74% and 61% of patients using MAS-1 and MAS-2 respectively, which were not significantly different. Three cephalometric predictors for AHI were identified when using either MAS: narrowest posterior airway space, cranio-cervical angle and tongue length. In conclusion, the increased vertical opening in MAS-2 does not significantly effect treatment outcome and was not preferred by the majority of patients.

Key Words: Obstructive sleep apnea, vertical splint dimension, mandibular advancement splint

Word count for Abstract: 244
Introduction

Obstructive sleep apnea (OSA) is one of the most common medical disorders within the adult population and the second most common respiratory disorder to asthma (1). It is characterized by repetitive partial or complete collapse of the pharyngeal airway during sleep resulting in oxygen desaturation and arousals from sleep (2). This can lead to snoring, excessive daytime sleepiness, cardiovascular sequelae, decreased cognitive functioning (3) and an increased risk of road accidents (4). OSA is thought to result from upper airway narrowing and the normal physiological decrease in muscle tone during sleep (5). Obesity (6) is a major risk factor for the disorder, and anatomical factors such as tonsillar hypertrophy (7), macroglossia (8), retrognathia and a low hyoid bone (9, 10) may also contribute to its development. Treatment of OSA with nasal continuous positive airway pressure (nCPAP) during sleep is highly effective; however, some patients tolerate it poorly (11), making compliance less than optimal (12-14).

Several studies have reported successful treatment of OSA by Mandibular Advancement Splints (MAS) (15-22). These removable oral appliances are an alternative form of treatment to nCPAP and are thought to act primarily by advancing the mandible during sleep. This results in an increase of the anteroposterior dimension of the retroglossal space with a consequent reduction in the degree of pharyngeal collapse (15). Whilst these devices are effective in treating a significant proportion of patients with OSA (15-22), including those that are moderate and severe (22), they are not effective in all patients and it is uncertain as to which patients are likely to benefit from such treatment. Although MAS therapy has been shown to be less effective than nCPAP (23-25) it is preferred by patients because they are less costly, easy to transport, silent, less obtrusive and do not require a power supply (6, 26). Thus an optimization in MAS design so as to increase efficacy and decrease side effects would be beneficial to such patients.

There are no randomized crossover clinical trials in the literature that systematically assess the effect of vertical mandibular opening on OSA. The amount of vertical mandibular opening in MAS design varies greatly between studies including those that do not cause significant vertical mandibular opening (16, 23, 27) as well as those that do (19, 22, 28, 29).
O'Sullivan and colleagues (19) justified 10mm of mandibular vertical opening by claiming that it aided retention during sleep by the jaw musculature tension. Moreover, they referred to Lowe’s proposal that the displacement of the mandible anteriorly moves the tongue away from the posterior wall of the pharynx while displacement of it inferiorly moves the tongue away from the soft palate (30). Bucca and colleagues (31) reported that the number of apneas/hypopneas increased significantly when 6 edentulous male patients did not wear their full dentures at night. Supine lateral cephalometry showed that removal of full dentures led to a striking decrease in the anteroposterior oropharyngeal wall distance from 1.5cm to 0.6cm. This decrease in vertical mandibular opening was extreme and no option for MAS therapy exists for edentulous patients with OSA due to retention and stability problems.

However, according to Battagel (6), excess opening is thought to diminish the benefits to the airway from protrusion. In a fluoroscopic study carried out on 6 subjects with OSA, L’ Estrange and colleagues (32) found that vertical mandibular opening resulted in synchronous posterior movement of both the tongue and soft palate, with a consequent narrowing of the oropharyngeal airway space. Lamont and colleagues (28) compared a MAS with maximal mandibular protrusion and 3-4mm interincisal opening to a MAS which had up to 70% maximal protrusion and 6-9mm of interincisal opening. Only the latter MAS had a significant effect on AHI reducing it from 7.1 to 0.8 per hour. They concluded that splint design, including the amount of vertical mandibular opening might have a considerable bearing on efficacy. A limitation of the study was that the subjects could open their mouths during sleep and hence it is uncertain whether the amount of vertical mandibular opening remained constant during polysomnography. In addition, the amount of sagittal protrusion varied between appliances, which may have had an effect on AHI reduction.

In a randomized study, Bloch and colleagues (29) compared a Herbst appliance with 4-6mm of interincisal opening to that of a Monobloc appliance with 5-10mm of interincisal opening in 24 patients. The initial AHI of 22.6 ± 3.1/hr decreased significantly with both appliances to 8.7 ± 1.5/hr and 7.9 ± 1.6/hr respectively. They suspected that the difference in the vertical mandibular opening between the two MAS’s might have had an effect on their efficacy. They suggested that a downward rotation of the mandible with jaw opening
may result in a retractive motion of the tongue base. These subjects could also open their mouths during sleep, hence limiting the interpretation of the results. Miyamoto and colleagues (33) reported that the vertical mandibular posture during sleep in patients with OSA is more open than in normal subjects, which increases during apnea and decreases at the termination of apnea. They suggested that collapse of the airway may occur as a consequence of an increase in vertical mandibular opening or a stronger effort to breathe.

Hence the primary aim of this study was to systematically compare the efficacy and side effects of a MAS with a predetermined increase in vertical mandibular opening, to that of a similar one previously tested (22). In addition, the study aimed to predict treatment outcome for individual patients with each appliance by using BMI and cephalometric variables.
Methods

Study population: Twenty-four patients (21 men, 3 women) with a mean age of 51 ± 10 years were recruited from St. George Hospital, Sydney, Australia. Inclusion criteria were at least two symptoms of OSA (snoring, fragmented sleep, witnessed apneas, daytime sleepiness) and evidence of OSA on polysomnography, with an Apnea/Hypopnea Index (AHI) > 5/hr. Patients were excluded if there was evidence of central sleep apnea, periodontal disease or edentulism. The institutional ethics committee approved the study and written informed consent was obtained from all patients (Appendices 2, 3, 4).

Mandibular Advancement Splint Design: A dental examination (Appendix 5) was carried out on all patients by the author (A.J.P). Dental impressions and an interocclusal record with the mandible in the most comfortable protrusive position were used to fabricate each MAS (Figures 1 and 2).

![Image of a mandibular advancement splint]

Figure. 1 Photograph of the Mandibular Advancement Splint with minimal mandibular opening (MAS-1). The design features included: (1) upper and lower removable acrylic appliances utilising tooth undercuts for retention. (2) Buccal flanges angled at 80 degrees on the lower appliance, which fitted against buccal blocks on the upper appliance to prevent posterior movement of the mandible. (3) Ball clasps embedded in the anterior aspect of the appliances to ensure that they were kept together during sleep, by use of an orthodontic elastic band. (4) The average thickness of each upper and lower appliance in the incisor region was 2.0 mm.
Figure. 2 Photograph of the Mandibular Advancement Splint with an additional 10mm of mandibular opening (MAS-2). MAS-2 was exactly the same as MAS-1 except that it had a removable acrylic overlap 10mm thick at its most anterior aspect, which fitted between the upper and lower appliances. It was retained by acrylic protrusions fitting against two retentive grooves in the lower appliance.

Study Design: A randomized crossover design (AB/BA) was used. Following an acclimatization period with MAS-1, patients were randomized into either Group I (sequence-AB) or Group II (sequence-BA). After a 1-week washout period during which no appliance was worn, patients were treated with either MAS-1 (A) or MAS-2 (B) for 2 weeks and the alternate treatment for another 2 weeks with an intervening washout period of 1-week. Polysomnography was performed on the last night of each treatment period.

Outcome Measures
A self-administered questionnaire was completed by patients at baseline and at the end of each treatment period (Appendix 6). These were used to assess the frequency, severity and duration of side effects as well as treatment compliance and satisfaction with each MAS. Daytime sleepiness was assessed by using the Epworth Sleepiness Scale (ESS), a validated self-administered questionnaire (34). Polysomnography was performed as previously described (22). Body Mass Index (BMI) was calculated using height and weight measurements.

Treatment Outcome: Complete success was defined as a resolution of symptoms and reduction in AHI to < 5/hour and with a > 50% reduction from baseline AHI. Partial
success was defined as improved symptoms and ≥ 50% reduction in AHI but remaining ≥ 5/hr. Treatment failure was defined as ongoing clinical symptoms and/or a < 50% reduction in AHI.

**Radiographs:** A lateral cephalometric radiograph was taken at baseline and with each MAS in place, as previously described (22). All radiographs were hand traced by the author (A.J.P) who was blinded to the patients' polysomnographic results. Cephalometric landmarks and measurements made are detailed in Figure 3. Seven radiographs were randomly chosen from all radiographs and were re-traced and re-measured under the same conditions a month later by the same author to quantify the percentage of absolute error.

![Cephalometric Diagram](image)

**Figure. 3 Definitions of cephalometric landmarks and measurements.** *Anatomical landmarks:* ANS = Anterior nasal spine, tip of the median sharp bony process of the palatine bone in the hard palate. A Point = deepest midline point on the maxillary alveolus between ANS and the maxillary alveolar crest. B Point = deepest midline point between the mandibular alveolar crest and gnathion. Ba = Basion, most inferior point on the anterior margin of foramen magnum in the median plane. Go = Gonion, most lateral external point
at the junction of the horizontal and ascending rami of the mandible. Gn = Gnathion, most antero-inferior point on the bony mandibular symphysis. H = Hyoidale, most superior-anterior point on the body of the hyoid bone. Me = Menton, lowest point on the bony outline of the mandibular symphysis. MP = Mandibular plane, line joining Me and Go. N = Nasion, most anterior point of the fronto-nasal suture. PNS = Posterior nasal spine, tip of the posterior spine of the palatine bone. Spt = tangent point on a line parallel to the long axis of the soft palate at the maximum width. Phw = Posterior pharyngeal wall, point on the posterior pharyngeal wall at the same horizontal level as Spt, S = Sella, centre of the sella turcica. Measurement angles (degrees): BaSN = cranial base angulation in mid sagittal plane, SNB = angle from S to N to B Point. ANB = angle from A Point to N to B Point. SN-MP = angulation of the mandibular plane with the SN line. CC = craniocervical angle formed by a line from C2 to C4 and the SN line. Measurement lengths (mm): H-MP = perpendicular distance from the MP to H. S-H = distance between sella and hyoidale. LAFH = lower anterior face height measured from ANS to Me. TAFH = total anterior face height measured from N to Me. Overbite = vertical overlap of incisors measured from the incisal tips. Overjet = horizontal distance between upper incisor tip and labial surface of the lower incisor. SPL = soft palate length measured from PNS to the end of the soft palate. SPT = maximum soft palate thickness measured perpendicular to the SPL line. RPAS = width of nasopharynx from Phw to Spt. PAS = distance between the posterior pharyngeal wall and the dorsal surface of the base of the tongue, measured on the line that intersects Go and B point. NPAS = narrowest distance between the posterior pharyngeal wall and the dorsal surface of the base of the tongue or soft palate. TL = tongue length measured from tongue tip to the base of the epiglottis.

Statistics: Data were analysed using SPSS software (Version 10.0, SPSS Inc, Chicago IL). A General Linear Model (UNIANOVA) was used to analyse polysomnographic, BMI and questionnaire data and to assess for carryover and sequence effect. A multiple regression model was constructed incorporating BMI and cephalometric variables to predict AHI with each MAS. All descriptive statistics are presented as mean ± SD, while estimated means are presented as mean ± SEM.

Methods word count: 481
Results

Study Population: Of the 24 patients recruited, 23 finished the protocol with one male patient withdrawing after initial dental examination, due to time constraints. The initial BMI did not change significantly during the treatment periods (31.5 ± 1.1 kg/m² versus MAS-1: 32.0 ± 1.1 kg/m² and MAS-2: 31.9 ± 1.1 kg/m², p=0.06). The mean baseline AHI was 21.0 ± 2.4/hr and the average MinSaO₂ was 87 ± 1%. The mean mandibular advancement of maximal protrusion was significantly greater (p=0) with MAS-1 (87 ± 4%) compared to MAS-2 (60 ± 6%) as measured by overjet change radiographically. The amount of protrusion with MAS-2 was less due to a reduction in overjet with increased opening of the mandible. The average acclimatization period was 2.6 ± 0.9 weeks.

Subjective Outcomes: The MAS was well tolerated by all patients who completed the protocol. Side effects for MAS-1 and MAS-2 respectively, did not differ significantly and included jaw discomfort (48% vs 70%; p=0.13), excessive salivation (48% vs 57%; p=0.55), mouth dryness (26% vs 22%; p=0.73), tooth grinding (22% vs 13%; p=0.43) and gum irritation (22% vs 13%; p=0.43). These were described as mild, moderate or severe in intensity with the frequency recorded as rare, sometimes or often. The duration of side effects were described as < 1-week, 1-2 weeks or > 2weeks (Table 1). There was no significant difference in the severity or duration of side effects between appliances. There was no significant difference in the proportion of patients who reported an improvement in snoring between MAS-1 and MAS-2 (100% vs 95%, p=0.31). The average daytime sleepiness improved similarly with both MAS’s, with an initial ESS of 17.9 ± 1.0 versus 12.4 ± 0.8 with MAS-1 and MAS-2 (p < 0.0001). Sleep quality improved in 87% of patients with MAS-1 and in 78% of patients with MAS-2, which did not differ significantly between appliances (p=0.43). Ninety one percent and 78% of patients reported every night use of MAS-1 and MAS-2 respectively, which was not significantly different between appliances (p=0.21). Ninety six per cent of patients stated they would like to continue to use either MAS due to a perceived improvement in symptoms. A significantly higher proportion of patients preferred to use MAS-1 than MAS-2 (78% vs 22%, p=0.007).
Table 1: Side Effects of MAS-1 and MAS-2

<table>
<thead>
<tr>
<th>Side Effect</th>
<th>Total</th>
<th>Severity</th>
<th>Frequency</th>
<th>Duration</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Mild</td>
<td>Moderate</td>
<td>Severe</td>
</tr>
<tr>
<td>Jaw Discomfort</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MAS 1</td>
<td>11 (48%)</td>
<td>8</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>MAS 2</td>
<td>16 (70%)</td>
<td>12</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>Salivation</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MAS 1</td>
<td>11 (48%)</td>
<td>9</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>MAS 2</td>
<td>13 (57%)</td>
<td>7</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>Dryness of Mouth</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MAS 1</td>
<td>6 (26%)</td>
<td>4</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>MAS 2</td>
<td>5 (22%)</td>
<td>2</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>Grinding of Teeth</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MAS 1</td>
<td>5 (22%)</td>
<td>5</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>MAS 2</td>
<td>3 (13%)</td>
<td>3</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Gum Irritation</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MAS 1</td>
<td>5 (22%)</td>
<td>4</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>MAS 2</td>
<td>3 (13%)</td>
<td>1</td>
<td>2</td>
<td>0</td>
</tr>
</tbody>
</table>
**Objective Outcomes:** Polysomnographic outcomes are outlined in Table 2. Initial AHI significantly improved with both MAS-1 (by 62%) and MAS-2 (by 52%). Arousal index decreased significantly with both MAS-1 (by 28%) and MAS-2 (by 33%). The duration of the longest apnea significantly decreased with both MAS-1 (by 48%) and MAS-2 (by 42%). Of the remaining polysomnographic variables examined, none were found differ significantly either treatment in comparison to baseline. No significant difference, carryover or sequence effect was found for any polysomnographic variable between MAS-1 and MAS-2.

### Table 2 Effect of Each MAS on Polysomnographic Variables

<table>
<thead>
<tr>
<th>Variable</th>
<th>Baseline</th>
<th>MAS 1</th>
<th>MAS 2</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Sleep Variables</strong></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TST (min)</td>
<td>334 ± 12</td>
<td>363 ± 13*</td>
<td>361 ± 12*</td>
</tr>
<tr>
<td>REM Sleep (min)</td>
<td>58 ± 6</td>
<td>69 ± 6*</td>
<td>70 ± 6*</td>
</tr>
<tr>
<td>REM (%)</td>
<td>17 ± 2</td>
<td>19 ± 2*</td>
<td>19 ± 2*</td>
</tr>
<tr>
<td>NREM Sleep (min)</td>
<td>273 ± 9</td>
<td>294 ± 10*</td>
<td>291 ± 10*</td>
</tr>
<tr>
<td>NREM (%)</td>
<td>82 ± 1</td>
<td>81 ± 1*</td>
<td>81 ± 1*</td>
</tr>
<tr>
<td>Arousal Index (/hr)</td>
<td>36 ± 4</td>
<td>26 ± 4§</td>
<td>24 ± 4§</td>
</tr>
<tr>
<td>Sleep Efficiency (%)</td>
<td>79 ± 1</td>
<td>84 ± 2*</td>
<td>84 ± 3*</td>
</tr>
<tr>
<td><strong>Respiratory Variables</strong></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AHI (/hr)</td>
<td>21 ± 2</td>
<td>8 ± 1§</td>
<td>10 ± 2§</td>
</tr>
<tr>
<td>MinSaO2</td>
<td>87 ± 1</td>
<td>89 ± 1*</td>
<td>88 ± 1*</td>
</tr>
<tr>
<td>Longest Apnea (s)</td>
<td>31 ± 5</td>
<td>16 ± 3‡</td>
<td>18 ± 4†</td>
</tr>
<tr>
<td>Longest Hypopnea</td>
<td>63 ± 6</td>
<td>55 ± 4*</td>
<td>61 ± 5*</td>
</tr>
</tbody>
</table>

**Definition of abbreviations:** TST=total sleep time, REM%=time in REM sleeps as % of TST, NREM%=time in NREM sleep as a % of TST.

All values represent mean ± SEM.
* Not significant
† p < 0.04
‡ p < 0.02
§ p < 0.001
**Treatment Outcome:** Figure 4 shows treatment outcome for each MAS and combined. Treatment resulted in either partial or complete success in 74% of patients with MAS-1, in 61% of patients with MAS-2 (not significantly different, p=0.34) and in 83% patients with either MAS (taking the best result of either MAS 1 or 2). Complete success was achieved in 52% of patients with MAS-1, 35% of patients with MAS-2 (not significantly different, p=0.23) and in 57% of patients with either MAS. Partial success was achieved in 22% of patients with MAS-1, 26% of patients with MAS-2 (not significantly different, p=0.73) and in 26% of patients with either MAS.

![Graph showing treatment outcome for MAS-1, MAS-2, and MAS-1 or MAS-2 combined.](image)

*Figure. 4 Treatment outcome for MAS-1, MAS-2, and MAS-1 or MAS-2 combined.*

**Model for outcome prediction:** A multiple regression analysis using all cephalometric measurements (at baseline, with MAS-1 in place and with MAS-2 in place) as well as BMI were used to predict AHI when using either MAS (*Appendices 7, 8*). Three independent predictors were identified: narrowest posterior airway space (NPAS), cranio-cervical angle (CC), and tongue length (TL). The derived equation was:

$$AHI\text{ (MAS)} = 81.4 - 0.7 \text{ NPAS} - 0.4 \text{ CC} - 0.3 \text{ TL} \quad (R^2 = 30\%, \ S = 7.85)$$
A multiple regression analysis was also performed to try and predict which MAS would reduce AHI more but no independent predictors were found.

The percentage of absolute error of the repeated cephalometric radiographs was 0.16%, indicating a high degree of reproducibility.

The power to distinguish a difference in AHI of 5 per hour between MAS-1 and MAS-2 was 0.9.
Discussion
There is a lack of randomized clinical trials on oral appliance therapy for OSA in the literature. As stated by Ferguson (35) most of the published studies have several deficiencies including small sample size, with no control or comparison group and are usually retrospective in design. Also, treatment outcome criteria are usually poorly defined and subjective. Not all patients have polysomnography at baseline and during treatment and some studies exclude patients with severe OSA. The frequency, severity and duration of side effects are rarely reported and predictors of outcome are not known. Few studies have reported subjective compliance and there is a lack of description for appliance design, including the optimal amount of mandibular protrusion. Only one recent study does not have the deficiencies mentioned and proves the efficacy of MAS in even moderate to severe OSA patients (22, 35). There are however, no randomized clinical crossover trials in the literature that systematically assess the effect of vertical mandibular opening on OSA. This was our primary aim while trying to find predictors for treatment outcome was our secondary aim.

The selected patients were typical of the OSA population- most being male and middle aged. They were randomly assigned to the AB or BA sequence for subjective and objective comparison. No control group was required because the baseline data allowed direct comparisons to be made to either MAS. Since a crossover study design was used, the sample achieved was considered appropriate and the treatment periods long enough to compare short term side effects. The only difference between each MAS used was the amount of vertical mandibular opening. The same clinical procedure as described by Mehta and colleagues (22) was used to dictate the vertical dimension of MAS-1. The efficacy of this type of MAS had thus already been proven, even in patients with severe OSA (22). Our study also did not exclude severe OSA patients. Their study showed a lack of carryover when using a 1-week washout period after acclimatization and between treatment periods, which justifies the 1-week washout period that was used in our study. We also used similar robust definitions of treatment outcome, a weakness of almost all previous studies (Schmidt-Nowara et al., 1995).

The vertical dimension of MAS-2 was increased by 10mm at the most anterior region of the MAS, which was considered substantially greater, clinically. Also, other studies have
used similar amounts of vertical mandibular opening (19, 28, 29). Overjet was measured on the cephalometric radiographs from the most labial surface of the most protrusive mandibular incisor to the most protrusive maxillary incisal edge. Overjet decreased from MAS-1 to MAS-2 because as the mandible opened, it moved on the same trajectory-inferiorly and posteriorly guided by the 80-degree buccal flanges.

Subjectively, side effects did not differ significantly between MAS-1 and MAS-2 for frequency, severity or duration. However, there was a significant difference in the reported preference of each MAS, with the majority of patients preferring MAS-1 because it was perceived as being more effective, comfortable and less bulky. As in other studies (15, 22), the majority of our patients experienced a significant subjective benefit from MAS therapy. All patients had a substantial improvement in subjective snoring with MAS-1 and all but one patient with MAS-2. The proportion of patients who reported an improvement in sleep quality was not significantly higher with MAS-1 (87%) compared with MAS-2 (78%). There was no significant difference in the degree of improvement in subjective daytime sleepiness between the two appliances.

The short-term side effects reported in this study were mainly of mild to moderate intensity. These included jaw discomfort, salivation, dryness of the mouth and grinding of the teeth, also reported in other studies (15, 22, 36). Both MAS’s clearly improved subjective snoring, ranging from slight improvement to complete cessation as assessed by the patient or bed partner. The self-reported short-term compliance rate with the MAS was high hence comparing favourably with compliance rates reported by other studies (15, 22). Twenty-two out of 23 patients wished to continue using the MAS because of a perceived health benefit.

There may have been an element of response bias for the questionnaires, which leaves some uncertainty of the subjective results reported. Objective measures of daytime sleepiness and performance are required in future studies to verify the subjective improvements. Also, development of objective monitoring of MAS compliance in the future is required to verify the subjective response.
The impressive subjective responses corresponded with the objective polysomnographic outcomes, with 74% of patients having complete or partial success with MAS-1 and 61% with MAS-2. Both MAS's were found to be effective in significantly reducing AHI, arousal index and the longest apnea, however no significant polysomnographic difference existed between each MAS. The increased success of MAS-1 compared to a similar type previously used by Mehta and colleagues (22) may be attributed to the increased mean mandibular advancement of 87% compared with their 78%. Also, our mean baseline AHI was $21 \pm 2$/hr, being less than their AHI of $30 \pm 2$/hr. Also, the incorporation of advancement flanges in our MAS on the buccal rather than on the lingual surfaces may have increased the airway and tongue space. Our MAS had no incremental advancement screws incorporated, which decreased the cost of appliance fabrication and reduced the acclimatization period (3 weeks compared to their 20 weeks).

Treatment success with oral appliances is not achievable in all patients and it would be advantageous to be able to predict which MAS would reduce AHI more. This would result in a more optimal MAS design for patients with less wastage of resources. From our data, we were unable to derive any independent BMI or cephalometric variables to make such a prediction. This led to a further analysis so as to predict AHI with either MAS. Three independent baseline predictors were identified: narrowest posterior airway space, cranio-cervical angle and tongue length. This contrasts to the predictors previously found (22), which were posterior airway space, SN-MP angle, baseline AHI and neck circumference. A prospective study is required to validate the predictors found in both studies.

Conclusions

1. Both MAS's were shown to be effective in reducing AHI, arousal index and the longest apnea.
2. The 10mm of increased vertical opening at the incisal region of the MAS did not significantly affect treatment outcome.
3. Patients preferred the minimal mandibular opening MAS because they perceived it to be more effective, comfortable and less bulky.
4. Narrowest posterior airway space, cranio-cervical angle and tongue length, seem to be independent baseline predictors for treatment outcome.
Acknowledgements

The writers thank M. Lazaris, J. Qian, M. Troth, and W. Eaglesham for their technical support with polysomnography.
References


FUTURE DIRECTIONS

Future research recommendations are as follows:

1. Patients who derived a benefit from MAS therapy need long term follow up to confirm the improvement, investigate the side effects, and to objectively measure daytime performance and sleepiness.

2. The multiple regression model derived to predict indicators for treatment outcome should be clinically validated with a larger sample size using a prospective study design.

3. The exact mechanism of action of MAS therapy is unknown. Computerised tomography and magnetic resonance imaging techniques might resolve this question.

4. Overnight titration of sagittal advancement and vertical mandibular opening so as to design the most effective MAS for individual patients.

5. Objective assessment of daytime sleepiness and performance is required for MAS therapy.

6. Covert compliance monitoring is required to confirm subjective compliance results.

APPENDICES

APPENDIX 1. DEFINITION OF SLEEP STAGES
APPENDIX 2. COVER LETTER FOR CONSENT FORM
APPENDIX 3 SUBJECT INFORMATION STATEMENT AND CONSENT FORM
APPENDIX 4. LETTER OF REQUEST
APPENDIX 5. ORTHODONTIC HISTORY AND EXAMINATION FORM
APPENDIX 6. SLEEP QUESTIONNAIRES
APPENDIX 7. INDIVIDUAL PATIENT CHARACTERISTIC DATA
APPENDIX 8. INDIVIDUAL PATIENT CEPHALOMETRIC MEASUREMENTS
APPENDIX 1. DEFINITION OF SLEEP STAGES (McNamara et al., 1994)

Sleep consists of two different states known as rapid-eye movement (REM) sleep and non-REM (NREM) sleep. EEG patterns distinguish between the two sleep states.

REM sleep is characterised by “desynchronised” or “activated” EEG patterns. Sleep is characterised by recurrent, typically periodic episodes of relative motor inactivity with raised thresholds of sensory response. By most parameters, the brain is in a state like that seen in waking. There are intermittent twitches in fine distal muscles, including the extraocular eye muscles that produce the rapid eye movements. Sleep episodes are rapidly reversible by arousal.

It is the slow-wave “synchronised” EEG patterns that characterise the NREM state (also known as slow-wave sleep). NREM sleep is divided into stages 1, 2, 3 and 4 based on details of the EEG patterns. Stages 3 and 4 are considered to be “deeper” sleep.

When apneas are present, they appear more frequently during light NREM sleep (stages 1 and 2) and REM sleep, than in NREM 3 and 4 sleep, when breathing is in general, more regular.
APPENDIX 2. COVER LETTER FOR CONSENT FORM

Faculty of Dentistry
The University of Sydney

United Dental Hospital
Level 8, 2 Chalmers Street
Surry Hills 2010, Australia
Telephone: (61-2) 9351 8329
Facsimile: (61-2) 9351 8336

Dr. Andrew J Pitsis  B.D.S. Hons.(Syd.)
Orthodontic Department

May, 2000

Dear Patient,

Thank you for considering participation in our clinical trial investigating the effect of Mandibular Advancement Splint design on the treatment of Obstructive Sleep Apnoea. Enclosed, please find an information statement and consent form providing details of all treatment and testing procedures to be undergone should you choose to participate. The study is being conducted by the Sleep Disorders Centre, at St. George Hospital, The University of New South Wales and by the United Dental Hospital, University of Sydney.

Your decision to participate or otherwise should be made following careful consideration of the enclosed information and its discussion with members of the research team from the Sleep Disorders Centre at St. George Hospital. If you elect to consent, a dental appointment at the United Dental Hospital finally determines whether you meet certain dental criteria for inclusion in the study and subsequent commencement of treatment.

I will contact you in the near future regarding an appointment at the United Dental Hospital, Surry Hills. At your first appointment you will need to bring with you, your plastic bite device and a cheque for $400.00 as outlined in the subject information statement and consent form.

If you require any further information, please contact Dr. Andrew Pitsis, Orthodontic Registrar (Ph: 9293 3389) or Dr. Peter Cistulli, Director of the Centre for Sleep Disorders & Respiratory Failure, St. George Hospital (Ph: 9350 2696).

Yours Sincerely,

Dr. Andrew J. Pitsis
APPENDIX 3. SUBJECT INFORMATION STATEMENT AND CONSENT FORM

CENTRE FOR SLEEP DISORDERS AND RESPIRATORY FAILURE

Ground Floor
Prince William Wing
St George Hospital
KOGARAH NSW 2217
Ph: (02) 9350 2696
Fax: 9350 2570
Ethics Approval No. 99/90

ST. GEORGE HOSPITAL, THE UNIVERSITY OF NEW SOUTH WALES
AND THE UNITED DENTAL HOSPITAL, UNIVERSITY OF SYDNEY

Subject Information Statement and Consent Form

EFFECT OF MANDIBULAR ADVANCEMENT SPLINT DESIGN ON TREATMENT OUTCOME IN OBTURATIVE SLEEP APNOEA

• You are invited to participate in a study of an orthodontic treatment for obstructive sleep apnoea, a common condition associated with snoring and collapse of the throat during sleep. The most commonly used treatment for sleep apnoea is continuous positive airway pressure (CPAP), whereby pressurised air is pumped into the throat passage via the nose, and prevents the throat from collapsing. Some patients with sleep apnoea prefer using Mandibular Advancement Splints (MAS), specially designed dental plates that hold the lower jaw forward during sleep. This is a more simple form of treatment, but is not always effective. In this study we aim to assess the effectiveness of two specially designed splints:
  • MAS 1: will keep your jaw relatively closed
  • MAS 2: will keep your jaw relatively open

You were selected as a possible participant because you have obstructive sleep apnoea. If you decide to participate:
(a) You will have already undergone a number of investigations as part of your routine clinical workup for sleep apnoea, including a sleep study.

(b) You will be required to use a plastic device to help you get used to the splint before your orthodontic examination. You must bring this device to your first appointment at the United Dental Hospital (UDH) as it will be used as a record required for the construction of your splint.

(c) You will be required to undergo an orthodontic examination at the United Dental Hospital (Level 8, 2 Chalmers Street, Surry Hills 2010) at which time dental impressions will be taken so that the appliance can be constructed. Two standard orthodontic x-rays will also be taken.

(d) You will then have the splint issued to you at the UDH. You will also undergo a standard orthodontic x-ray with each of the 2 splints.

(e) You will then have a period to get used to the splint (approximately 4-6 weeks), during which any adjustment to fit will be made at the United Dental Hospital.

(f) Once you are used to the splint, you will be randomly assigned to one of two groups, I or II.

**Group I:** After 1 week of NOT wearing a splint, you will be required to wear MAS 1 for 2 weeks, at the end of which you will undergo testing, as outlined below. This is followed by a week of NO MAS, and subsequently 2 weeks of MAS 2, again ending with tests. **Group II:** This is identical to Group I except that MAS 2 is used for the first 2 week treatment period, and MAS 1 for the second.

(g) You will be required to keep a diary of MAS use during sleep (hours worn each night) for each of the two 2-week treatment periods.

---

Signature of subject: ............................................... Date: ........................

(Print name)

Signature of witness: ................................................ Date: ........................

(Print name)

Signature of investigator: ........................................ Date: ........................

(Print name)
Appendices

Ethics Approval No. 99/90

ST. GEORGE HOSPITAL, THE UNIVERSITY OF NEW SOUTH WALES
AND THE UNITED DENTAL HOSPITAL, UNIVERSITY OF SYDNEY

Subject Information Statement and Consent Form (Cont’d)

EFFECT OF MANDIBULAR ADVANCEMENT SPLINT DESIGN ON
TREATMENT OUTCOME IN OBSTUCTIVE SLEEP APNOEA

The tests performed at the end of each 2-week treatment period, regardless of whether you are in group I or II, are as follows:
1) A questionnaire to assess your response to the splint.
2) An overnight sleep study with the MAS that you have been wearing during the particular treatment period to determine whether it effectively treats your snoring and sleep apnoea. This is identical to the sleep study you previously had to diagnose sleep apnoea.

It is important that you understand that part or all of the appliance will be given to you or taken away from you at specific times during the study to ensure strict adherence to the study protocol. All these procedures are safe and carry minimal risk to you. The research study involves exposure to a very small amount of radiation. As part of everyday living, everyone is exposed to naturally occurring background radiation and receives a dose of about 2 to 3 millisieverts (mSv) each year. The effective dose from this study is about 0.05 mSv. At this dose level, no harmful effects of radiation have been demonstrated and the risk is minimal.

The MAS appliance: This consists of custom-made upper and lower plastic plates, which fit over the teeth. There are grooves in the plates to hold the lower jaw forward. They are similar to small upper and lower mouth guards, and are relatively comfortable. The appliance is worn only during sleep. Patients commonly report excessive salivation and discomfort for a brief time after awakening when they start using these appliances. However, with regular use and adjustment of fit, these symptoms usually subside. Pain in the temporomandibular joint (the jaw joint located just in front of the ear) is relatively uncommon with short term use and usually subsides upon discontinuation of the appliance.
Cost: You will be required to pay a deposit of $400 for the cost price of the splint charged to us by the dental laboratory. A cheque brought to the United Dental Hospital will be necessary before the orthodontic examination can commence on that day. This deposit is fully refundable to you at the completion of the study and by the return of the mandibular advancement splints. However, if you would like to continue using the device to treat your sleep apnoea, you are able to purchase it at cost price by leaving us with the original deposit. This will be entirely your decision, and will not affect your relationship with us. Please note that any future splint repair and/or replacement will be your own responsibility.

It is important that you receive regular dental check-ups while using the appliance for continual monitoring of the splint and the health of your teeth, gums and jaw joints. Should any sleep apnoea symptoms return, please consult with your sleep specialist.

Your decision whether or not to participate will not affect your future relationship with St. George Hospital or United Dental Hospital. If you do decide to participate, you are free to withdraw your consent and to discontinue participation at any time without prejudice. If you have any questions at a later time, Dr. Andrew Pitsis, Orthodontic Registrar, United Dental Hospital (Ph. 9293 3388) will be happy to answer them. Any person who has any concerns or complaints about the conduct of this research can contact the Ethics Secretariat on (02) 9350 2986.

You are making a decision whether or not to participate in this study. Your signature indicates that you have decided to participate, having read the information provided.

Signature of subject: .......................................................... Date: ..............
(Print name)

Signature of witness: .......................................................... Date: ..............
(Print name)

Signature of investigator: .................................................... Date: ..............
(Print name)
APPENDIX 4. LETTER OF REQUEST

Faculty of Dentistry
The University of Sydney

Dr. Andrew J. Pitsis  B.D.S. Hons.(Syd.)
Orthodontic Registrar

1st December, 2000

Dr. S. Buchanan
Director of Dental Services
United Dental Hospital
2 Chalmers Street
SURRY HILLS NSW 2010

Dear Dr. Buchanan,

Re: Thesis MDSc (Orthodontics): Effect of MAS design in OSA

I am requesting that .......................................................... be admitted as a patient to the UDH as a professorial patient involved in the above mentioned study.

Yours sincerely,

Dr. Andrew J. Pitsis
APPENDIX 5. ORTHODONTIC HISTORY AND EXAMINATION

Date : ____________  Reason for referral : ____________
Name : ____________  Weight : ____________
Date of Birth : ____________  Height : ____________
Patient Number : ____________  BMI : ____________

Medical History

Asthma :
Medication :

Respiratory Mode : Mouth □  Nose □

Previous / Current OSA Tx :

---

Dental History

Any previous dental device Tx before : No □  Yes □
If yes, then has it failed : No □  Yes □
Jaw Surgery : No □  Yes □
Bruxism : No □  Yes □
Last Dental Visit :

Extra-Oral Examination

FRONTAL

Symmetry and shape :
Vertical thirds :
Lips :
Nose :

PROFILE

Skeletal base :
Vertical thirds :
Lips :
Nose :
Appendices

Intra-Oral Hygiene
Oral Hygiene: Teeth Present: 87654321 / 12345678
CPITN: Caries: 87654321 / 12345678

Intra-Oral Examination (cont’d)
Soft tissue abnormalities: Restorations:
Periodontium: RHS LHS
Pocketing: Molars:
Overbite: Canines:
Crossbites: Overjet:
Intercanine width: Interpremolar / Intermolar width:

Functional
Evaluation
Jaw function / TMJ complaint now: No ☐ Yes ☐
If yes, specify:
History of pain: No ☐ Yes ☐
If yes, duration:
History of joint sounds: No ☐ Yes ☐
TM Joint tenderness to palpation: No ☐ Yes ☐
If yes, which joint: Right ☐ Left ☐
Muscle tenderness to palpation: No ☐ Yes ☐
If yes, where:

### Appendices

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Range of motion: Maximum opening</td>
<td>__________ mm</td>
</tr>
<tr>
<td>Right excursion</td>
<td>__________ mm</td>
</tr>
<tr>
<td>Left excursion</td>
<td>__________ mm</td>
</tr>
<tr>
<td>Protrusion</td>
<td>__________ mm</td>
</tr>
<tr>
<td>CR/CO discrepancy</td>
<td>:</td>
</tr>
<tr>
<td>Exaggerated GAG reflex</td>
<td>Yes ☐ No ☐</td>
</tr>
<tr>
<td>Final Advancement</td>
<td>__________ mm</td>
</tr>
</tbody>
</table>
APPENDIX 6. SLEEP QUESTIONNAIRES

SLEEP QUESTIONNAIRE: 1

Name:

Age:

Patient Number:

Date:

1. Do you snore?
   □ Yes
   □ No (please proceed to question 4.)

2. On average, how many days/night during the last month have you snored or been told that you snore? (Tick one only).
   □ Rarely (once a week)
   □ Sometimes (1-2 times per week)
   □ Frequently (3-4 times per week)
   □ Almost always (5-7 times per week)
   □ Do not know

3. Please describe your snoring over the last month (Tick one only):
   □ Only slightly louder than heavy breathing
   □ As loud as mumbling or talking
   □ Louder than talking
   □ So loud that it can be heard through a closed door
   □ Do not know
4. Who has provided information on questions 1, 2 and 3?

☐ You
☐ Your partner
☐ Both

5. Please pick a number from the scale below to show the extent of your daytime sleepiness / fatigue in the last month, when undertaking each of the activities listed below. Mark your selection in the space to the right of each item.

Scale
1 = Would never doze
2 = Slight chance of dozing
3 = Moderate chance of dozing
4 = High chance of dozing

Sitting and reading
Watching TV
Sitting, inactive in a public pace (e.g. theatre, meetings)
A passenger in a car for an hour without a break
Lying down to rest in the afternoon when circumstances permit
Sitting and talking to someone
Sitting quietly after lunch without alcohol
In a car while stopped for a few minutes in the traffic
6. How would you describe the quality of your sleep (tick one only)?

☐ Refreshing
☐ Slightly unrefreshing
☐ Moderately unrefreshing
☐ Very unrefreshing

7. How tired are you when waking?

☐ Not tired
☐ Slightly tired
☐ Moderately tired
☐ Very tired

8. Do you live with a partner?

☐ Yes (please proceed to question 9)
☐ No

9. If you live with a partner do you:

☐ share the same bedroom
☐ sleep in different rooms because of the snoring
☐ sleep in different rooms for reasons other than snoring

Any further comments:

________________________________________________________________________
________________________________________________________________________
________________________________________________________________________

Thank you for your cooperation
SLEEP QUESTIONNAIRE: 2

This questionnaire pertains to the period of Appliance Use

Name: ___________________________________________

Age: ___________________________________________

Patient Number: __________________________________

Date: ___________________________________________

1. How often did you use your oral appliance in the last 2 weeks? (Tick one only)
   □ Regularly: everyday of the week
   □ Occasionally: 3-4 times per week
   □ Rarely: 1-2 times per week
   □ Not at all

2. Did you snore while wearing the appliance:
   □ Yes
   □ No (please proceed to question 5)

3. On average, how many days / nights during the last 2 weeks have you snored or been
told that you snored? (Tick one only)
   □ Never
   □ Rarely: once a week
   □ Sometimes: 1-2 times per week
   □ Frequently: 3-4 times per week
   □ Almost always: 5-7 times per week
   □ Do not know
4. Please describe your snoring over the last 2 weeks (Tick one only):
   - [ ] Only slightly louder than heavy breathing
   - [ ] As loud as mumbling or talking
   - [ ] Louder than talking
   - [ ] So loud that it can be heard through a closed door
   - [ ] Do not know

5. How much has your snoring improved since using the Oral Appliance? (Tick one only)
   - [ ] Snoring cured
   - [ ] Snoring greatly improved
   - [ ] Snoring improved
   - [ ] Snoring slightly improved
   - [ ] No improvement

6. Did you involuntarily remove the Oral Appliance on any night:
   - [ ] Yes
   - [ ] No

   If yes, why?

7. Did the Oral Appliance loosen with time?
   - [ ] Yes
   - [ ] No

8. Did you stop using the Oral Appliance over the last 2 weeks?
   - [ ] Yes (please answer below and proceed to question 9)
   - [ ] No

   If yes, why?
9. When did you stop using the Oral Appliance?

☐ After 1-3 days
☐ After 4-6 days
☐ After 7-9 days
☐ After 10-13 days

10. Please pick a number from the scale below to show the extent of your daytime sleepiness / fatigue in the last month (whilst using the Oral Appliance at night), when undertaking each of the activities listed below. Mark your selection in the space to the right of each item.

Scale

1 = Would never doze
2 = Slight chance of dozing
3 = Moderate chance of dozing
4 = High chance of dozing

Sitting and reading

Watching TV

Sitting, inactive in a public pace (e.g. theatre, meetings)

A passenger in a car for an hour without a break

Lying down to rest in the afternoon when circumstances permit

Sitting and talking to someone

Sitting quietly after lunch without alcohol

In a car while stopped for a few minutes in the traffic
How has the Oral Appliance affected the degree of your daytime sleepiness/fatigue:

☐ Cured
☐ Improved
☐ Same
☐ Unsure

11. How would you rate the quality of your sleep with the appliance?

☐ Refreshing
☐ Slightly unrefreshing
☐ Moderately unrefreshing
☐ Very unrefreshing

12. How has the Oral Appliance improved the quality of your sleep?

☐ Huge improvement
☐ Improvement
☐ Same
☐ Unsure

13. How tired were you when waking whilst using the Oral Appliance in the last 2 weeks?

☐ Not tired
☐ Slightly tired
☐ Moderately tired
☐ Very tired
14. How has the Oral Appliance affected your level of tiredness when waking?

☐ Huge improvement

☐ Improvement

☐ Same

☐ Unsure

15. Since obtaining the Oral Appliance has your sleeping habit changed?

☐ Yes. Now sleep in the same room as partner.

☐ No change. Sleep in different rooms because of snoring.

☐ No change. Sleep in different rooms for reasons other than snoring.

☐ No change. Sleep in the same room as partner.

16. Have you encountered difficulties with the appliance?

☐ Yes (please proceed to question 18)

☐ No (please proceed to question 21)
17. Which of the following side effects did you experience with the Oral Appliance? Please mark your selections below.

<table>
<thead>
<tr>
<th>SIDE EFFECT</th>
<th>SEVERITY</th>
<th>FREQUENCY</th>
<th>DURATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. Jaw Discomfort</td>
<td>If yes, specify severity</td>
<td>If yes, specify frequency</td>
<td>If yes, specify duration</td>
</tr>
<tr>
<td>□ Yes</td>
<td>□ Mild</td>
<td>□ Rarely</td>
<td>□ &lt; 1 week</td>
</tr>
<tr>
<td>□ No</td>
<td>□ Moderate</td>
<td>□ Sometimes</td>
<td>□ 1 week</td>
</tr>
<tr>
<td></td>
<td>□ Severe</td>
<td>□ Often</td>
<td>□ 2 weeks</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>□ 3 weeks</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>□ &gt; 3 weeks</td>
</tr>
</tbody>
</table>

(If No, go to B)

<table>
<thead>
<tr>
<th>B. Excess Salivation</th>
<th>If yes, specify severity</th>
<th>If yes, specify frequency</th>
<th>If yes, specify duration</th>
</tr>
</thead>
<tbody>
<tr>
<td>□ Yes</td>
<td>□ Mild</td>
<td>□ Rarely</td>
<td>□ &lt; 1 week</td>
</tr>
<tr>
<td>□ No</td>
<td>□ Moderate</td>
<td>□ Sometimes</td>
<td>□ 1 week</td>
</tr>
<tr>
<td></td>
<td>□ Severe</td>
<td>□ Often</td>
<td>□ 2 weeks</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>□ 3 weeks</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>□ &gt; 3 weeks</td>
</tr>
</tbody>
</table>

(If No, go to C)

<table>
<thead>
<tr>
<th>C. Dry mouth</th>
<th>If yes, specify severity</th>
<th>If yes, specify frequency</th>
<th>If yes, specify duration</th>
</tr>
</thead>
<tbody>
<tr>
<td>□ Yes</td>
<td>□ Mild</td>
<td>□ Rarely</td>
<td>□ &lt; 1 week</td>
</tr>
<tr>
<td>□ No</td>
<td>□ Moderate</td>
<td>□ Sometimes</td>
<td>□ 1 week</td>
</tr>
<tr>
<td></td>
<td>□ Severe</td>
<td>□ Often</td>
<td>□ 2 weeks</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>□ 3 weeks</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>□ &gt; 3 weeks</td>
</tr>
</tbody>
</table>

(If No go to D)

<table>
<thead>
<tr>
<th>D. Grinding of Teeth at night</th>
<th>If yes, specify severity</th>
<th>If yes, specify frequency</th>
<th>If yes, specify duration</th>
</tr>
</thead>
<tbody>
<tr>
<td>□ Yes</td>
<td>□ Mild</td>
<td>□ Rarely</td>
<td>□ &lt; 1 week</td>
</tr>
<tr>
<td>□ No</td>
<td>□ Moderate</td>
<td>□ Sometimes</td>
<td>□ 1 week</td>
</tr>
<tr>
<td>(If No, go to E)</td>
<td>□ Severe</td>
<td>□ Often</td>
<td>□ 2 weeks</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>□ 3 weeks</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>□ &gt; 3 weeks</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>E. Gum Irritation</th>
<th>If yes, specify severity</th>
<th>If yes, specify frequency</th>
<th>If yes, specify duration</th>
</tr>
</thead>
<tbody>
<tr>
<td>□ Yes</td>
<td>□ Mild</td>
<td>□ Rarely</td>
<td>□ &lt; 1 week</td>
</tr>
<tr>
<td>□ No</td>
<td>□ Moderate</td>
<td>□ Sometimes</td>
<td>□ 1 week</td>
</tr>
<tr>
<td>(If No go to Q. 19)</td>
<td>□ Severe</td>
<td>□ Often</td>
<td>□ 2 weeks</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>□ 3 weeks</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>□ &gt; 3 weeks</td>
</tr>
</tbody>
</table>
18. Please list any other side effects (if any) not mentioned above:

________________________________________________________________________

19. Did the side effects prevent you from using the Oral Appliance

☐ Yes
☐ No

20. How would you rate your satisfaction with the appliance?

☐ Very satisfied
☐ Satisfied
☐ Dissatisfied
☐ Very dissatisfied

21. Would you like to continue using the Oral Appliance?

☐ Yes
☐ No

*Any further comments:*

________________________________________________________________________

________________________________________________________________________

________________________________________________________________________

________________________________________________________________________

Thank you for your cooperation
SLEEP QUESTIONNAIRE: 3

This questionnaire pertains to the comparison of the appliances.

Name:

Age:

Patient Number:

Date:

1. How often did you use your oral appliance in the last 2 weeks? (Tick one only)
   - Regularly: everyday of the week
   - Occasionally: 3-4 times per week
   - Rarely: 1-2 times per week
   - Not at all

2. Did you snore while wearing the appliance:
   - Yes
   - No (please proceed to question 5)

3. On average, how many days / nights during the last 2 weeks have you snored or been told that you snored? (Tick one only)
   - Never
   - Rarely: once a week
   - Sometimes: 1-2 times per week
   - Frequently: 3-4 times per week
   - Almost always: 5-7 times per week
   - Do not know
4. Please describe your snoring over the last 2 weeks (Tick one only):

☐ Only slightly louder than heavy breathing
☐ As loud as mumbling or talking
☐ Louder than talking
☐ So loud that it can be heard through a closed door
☐ Do not know

5. How much has your snoring improved since using the Oral Appliance? (Tick one only)

☐ Snoring cured
☐ Snoring greatly improved
☐ Snoring improved
☐ Snoring slightly improved
☐ No improvement

6. Did you involuntarily remove the Oral Appliance on any night:

☐ Yes
☐ No

If yes, why?

7. Did the Oral Appliance loosen with time?

☐ Yes
☐ No

8. Did you stop using the Oral Appliance over the last 2 weeks?

☐ Yes (please answer below and proceed to question 9)
☐ No

If yes, why?
9. When did you stop using the Oral Appliance?

☐ After 1-3 days
☐ After 4-6 days
☐ After 7-9 days
☐ After 10-13 days

10. Please pick a number from the scale below to show the extent of your daytime sleepiness / fatigue in the last month (whilst using the Oral Appliance at night), when undertaking each of the activities listed below. Mark your selection in the space to the right of each item.

 Scale

1 = Would never doze
2 = Slight chance of dozing
3 = Moderate chance of dozing
4 = High chance of dozing

Sitting and reading __________
Watching TV __________
Sitting, inactive in a public place (e.g. theatre, meetings) __________
A passenger in a car for an hour without a break __________
Lying down to rest in the afternoon when circumstances permit __________
Sitting and talking to someone __________
Sitting quietly after lunch without alcohol __________
In a car while stopped for a few minutes in the traffic __________
11. How has the Oral Appliance affected the degree of your daytime sleepiness/fatigue:

☐ Cured
☐ Improved
☐ Same
☐ Unsure

12. How would you rate the quality of your sleep with the appliance?

☐ Refreshing
☐ Slightly unrefreshing
☐ Moderately unrefreshing
☐ Very unrefreshing

13. How has the Oral Appliance improved the quality of your sleep?

☐ Huge improvement
☐ Improvement
☐ Same
☐ Unsure

14. How tired were you when waking whilst using the Oral Appliance in the last 2 weeks?

☐ Not tired
☐ Slightly tired
☐ Moderately tired
☐ Very tired
15. How has the Oral Appliance affected your level of tiredness when waking?

☐ Huge improvement
☐ Improvement
☐ Same
☐ Unsure

16. Since obtaining the Oral Appliance has your sleeping habit changed?

☐ Yes. Now sleep in the same room as partner.
☐ No change. Sleep in different rooms because of snoring.
☐ No change. Sleep in different rooms for reasons other than snoring.
☐ No change. Sleep in the same room as partner.

17. Have you encountered difficulties with the appliance?

☐ Yes (please proceed to question 18)
☐ No (please proceed to question 21)
18. Which of the following side effects did you experience with the Oral Appliance?

Please mark your selections below.

<table>
<thead>
<tr>
<th>SIDE EFFECT</th>
<th>SEVERITY</th>
<th>FREQUENCY</th>
<th>DURATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. Jaw Discomfort</td>
<td>If yes, specify severity</td>
<td>If yes, specify frequency</td>
<td>If yes, specify duration</td>
</tr>
<tr>
<td>□ Yes</td>
<td>□ Mild</td>
<td>□ Rarely</td>
<td>□ &lt; 1 week</td>
</tr>
<tr>
<td>□ No</td>
<td>□ Moderate</td>
<td>□ Sometimes</td>
<td>□ 1 week</td>
</tr>
<tr>
<td>(If No, go to B)</td>
<td>□ Severe</td>
<td>□ Often</td>
<td>□ 2 weeks</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>□ 3 weeks</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>□ &gt; 3 weeks</td>
</tr>
<tr>
<td>B. Excess Salivation</td>
<td>If yes, specify severity</td>
<td>If yes, specify frequency</td>
<td>If yes, specify duration</td>
</tr>
<tr>
<td>□ Yes</td>
<td>□ Mild</td>
<td>□ Rarely</td>
<td>□ &lt; 1 week</td>
</tr>
<tr>
<td>□ No</td>
<td>□ Moderate</td>
<td>□ Sometimes</td>
<td>□ 1 week</td>
</tr>
<tr>
<td>(If No, go to C)</td>
<td>□ Severe</td>
<td>□ Often</td>
<td>□ 2 weeks</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>□ 3 weeks</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>□ &gt; 3 weeks</td>
</tr>
<tr>
<td>C. Dry mouth</td>
<td>If yes, specify severity</td>
<td>If yes, specify frequency</td>
<td>If yes, specify duration</td>
</tr>
<tr>
<td>□ Yes</td>
<td>□ Mild</td>
<td>□ Rarely</td>
<td>□ &lt; 1 week</td>
</tr>
<tr>
<td>□ No</td>
<td>□ Moderate</td>
<td>□ Sometimes</td>
<td>□ 1 week</td>
</tr>
<tr>
<td>(If No go to D)</td>
<td>□ Severe</td>
<td>□ Often</td>
<td>□ 2 weeks</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>□ 3 weeks</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>□ &gt; 3 weeks</td>
</tr>
<tr>
<td>D. Grinding of Teeth at night</td>
<td>If yes, specify severity</td>
<td>If yes, specify frequency</td>
<td>If yes, specify duration</td>
</tr>
<tr>
<td>□ Yes</td>
<td>□ Mild</td>
<td>□ Rarely</td>
<td>□ &lt; 1 week</td>
</tr>
<tr>
<td>□ No</td>
<td>□ Moderate</td>
<td>□ Sometimes</td>
<td>□ 1 week</td>
</tr>
<tr>
<td>(If No, go to E)</td>
<td>□ Severe</td>
<td>□ Often</td>
<td>□ 2 weeks</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>□ 3 weeks</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>□ &gt; 3 weeks</td>
</tr>
<tr>
<td>E. Gum Irritation</td>
<td>If yes, specify severity</td>
<td>If yes, specify frequency</td>
<td>If yes, specify duration</td>
</tr>
<tr>
<td>□ Yes</td>
<td>□ Mild</td>
<td>□ Rarely</td>
<td>□ &lt; 1 week</td>
</tr>
<tr>
<td>□ No</td>
<td>□ Moderate</td>
<td>□ Sometimes</td>
<td>□ 1 week</td>
</tr>
<tr>
<td>(If No go to Q. 19)</td>
<td>□ Severe</td>
<td>□ Often</td>
<td>□ 2 weeks</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>□ 3 weeks</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>□ &gt; 3 weeks</td>
</tr>
</tbody>
</table>
19. Please list any other side effects (if any) not mentioned above:


20. Did the side effects prevent you from using the Oral Appliance

☐ Yes
☐ No

21. How would you rate your satisfaction with the appliance?

☐ Very satisfied
☐ Satisfied
☐ Dissatisfied
☐ Very dissatisfied

22. Would you like to continue using the Oral Appliance?

☐ Yes
☐ No

23. Which appliance was more comfortable?

☐ MAS 1 (which keeps your jaw relatively closed)
☐ MAS 2 (which keeps your jaw relatively open)

Why?
24. Which appliance do you prefer?

☐ MAS 1 (which keeps your jaw relatively closed)

☐ MAS 2 (which keeps your jaw relatively open)

Why?

______________________________________________________________

______________________________________________________________

Any further comments:

______________________________________________________________

______________________________________________________________

______________________________________________________________

Thank you for your cooperation
APPENDIX 7. INDIVIDUAL PATIENT CHARACTERISTIC DATA

<table>
<thead>
<tr>
<th>Subject No.</th>
<th>Diagnosis Group</th>
<th>Sex</th>
<th>Age (yr)</th>
<th>Height (cm)</th>
<th>Weight (kg)</th>
<th>BMI (kg/m²)</th>
<th>SAE (mmHg)</th>
<th>BHI (mmHg)</th>
<th>AHI (events/hr)</th>
<th>ESS (per 20)</th>
<th>AHI Index (per hr)</th>
<th>ESS Index (per hr)</th>
<th>LogLungA</th>
<th>LogLungB</th>
<th>LogMNS-Q5</th>
<th>LogMNS-Q5</th>
<th>LogMNS-Q5A</th>
<th>LogMNS-Q5B</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>2</td>
<td>60</td>
<td>84.72</td>
<td>1.64</td>
<td>31.5</td>
<td>18.5</td>
<td>10.2</td>
<td>9.2</td>
<td>21.1</td>
<td>25.8</td>
<td>22.9</td>
<td>80</td>
<td>22</td>
<td>24</td>
<td>84</td>
<td>92</td>
<td>92</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>1</td>
<td>50</td>
<td>88.9</td>
<td>1.7</td>
<td>30.76</td>
<td>19.8</td>
<td>1.3</td>
<td>1</td>
<td>32.2</td>
<td>13</td>
<td>45</td>
<td>48</td>
<td>0</td>
<td>0</td>
<td>87</td>
<td>91</td>
<td>93</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>1</td>
<td>54</td>
<td>71.5</td>
<td>1.82</td>
<td>21.59</td>
<td>15.2</td>
<td>9.8</td>
<td>2.5</td>
<td>27.8</td>
<td>13</td>
<td>45</td>
<td>54</td>
<td>0</td>
<td>0</td>
<td>87</td>
<td>91</td>
<td>93</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>1</td>
<td>63</td>
<td>85.6</td>
<td>1.63</td>
<td>32.22</td>
<td>30.3</td>
<td>25.8</td>
<td>19.7</td>
<td>49.7</td>
<td>41</td>
<td>22</td>
<td>32.4</td>
<td>23</td>
<td>5</td>
<td>85</td>
<td>87</td>
<td>87</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>1</td>
<td>53</td>
<td>92</td>
<td>1.7</td>
<td>31.83</td>
<td>35.1</td>
<td>10.9</td>
<td>13.6</td>
<td>45.4</td>
<td>31</td>
<td>21.3</td>
<td>37.3</td>
<td>30</td>
<td>0</td>
<td>84</td>
<td>86</td>
<td>81</td>
</tr>
<tr>
<td>6</td>
<td>2</td>
<td>1</td>
<td>63</td>
<td>85.6</td>
<td>1.63</td>
<td>32.22</td>
<td>30.3</td>
<td>25.8</td>
<td>19.7</td>
<td>49.7</td>
<td>41</td>
<td>22</td>
<td>32.4</td>
<td>23</td>
<td>5</td>
<td>85</td>
<td>87</td>
<td>87</td>
</tr>
<tr>
<td>7</td>
<td>2</td>
<td>1</td>
<td>54</td>
<td>90.7</td>
<td>1.7</td>
<td>30.66</td>
<td>25.6</td>
<td>10</td>
<td>17.3</td>
<td>22.9</td>
<td>17.7</td>
<td>10.5</td>
<td>22</td>
<td>12</td>
<td>2</td>
<td>87</td>
<td>88</td>
<td>88</td>
</tr>
<tr>
<td>8</td>
<td>1</td>
<td>1</td>
<td>52</td>
<td>99</td>
<td>1.77</td>
<td>31.6</td>
<td>29.9</td>
<td>18.7</td>
<td>19.7</td>
<td>90.5</td>
<td>53</td>
<td>50.1</td>
<td>43</td>
<td>28</td>
<td>2</td>
<td>85</td>
<td>87</td>
<td>87</td>
</tr>
<tr>
<td>9</td>
<td>2</td>
<td>1</td>
<td>58</td>
<td>91</td>
<td>1.77</td>
<td>30.12</td>
<td>10.7</td>
<td>2.8</td>
<td>13</td>
<td>20.2</td>
<td>14</td>
<td>10.9</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>84</td>
<td>90</td>
<td>84</td>
</tr>
<tr>
<td>10</td>
<td>1</td>
<td>1</td>
<td>64</td>
<td>95</td>
<td>1.79</td>
<td>30.9</td>
<td>13.6</td>
<td>3.6</td>
<td>1.9</td>
<td>21</td>
<td>13</td>
<td>10.8</td>
<td>0</td>
<td>30</td>
<td>1</td>
<td>94</td>
<td>93</td>
<td>94</td>
</tr>
<tr>
<td>11</td>
<td>2</td>
<td>1</td>
<td>43</td>
<td>73.6</td>
<td>1.66</td>
<td>26.71</td>
<td>7.6</td>
<td>3.1</td>
<td>2.3</td>
<td>27.8</td>
<td>20.5</td>
<td>13.9</td>
<td>45</td>
<td>20</td>
<td>2</td>
<td>91</td>
<td>93</td>
<td>94</td>
</tr>
<tr>
<td>12</td>
<td>1</td>
<td>1</td>
<td>52</td>
<td>89</td>
<td>1.65</td>
<td>32.2</td>
<td>10.7</td>
<td>2.8</td>
<td>13</td>
<td>20.2</td>
<td>14</td>
<td>10.9</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>86</td>
<td>90</td>
<td>84</td>
</tr>
<tr>
<td>13</td>
<td>1</td>
<td>1</td>
<td>64</td>
<td>99</td>
<td>1.77</td>
<td>31.6</td>
<td>29.9</td>
<td>18.7</td>
<td>19.7</td>
<td>90.5</td>
<td>53</td>
<td>50.1</td>
<td>43</td>
<td>28</td>
<td>2</td>
<td>85</td>
<td>87</td>
<td>87</td>
</tr>
<tr>
<td>14</td>
<td>1</td>
<td>1</td>
<td>53</td>
<td>92</td>
<td>1.81</td>
<td>29.91</td>
<td>13.6</td>
<td>3.6</td>
<td>1.9</td>
<td>21</td>
<td>13</td>
<td>10.8</td>
<td>0</td>
<td>30</td>
<td>1</td>
<td>94</td>
<td>93</td>
<td>94</td>
</tr>
<tr>
<td>15</td>
<td>2</td>
<td>1</td>
<td>52</td>
<td>79</td>
<td>1.7</td>
<td>25.96</td>
<td>10.7</td>
<td>2.8</td>
<td>6.8</td>
<td>17.9</td>
<td>17.2</td>
<td>17.2</td>
<td>34</td>
<td>34</td>
<td>1</td>
<td>94</td>
<td>93</td>
<td>94</td>
</tr>
<tr>
<td>16</td>
<td>1</td>
<td>1</td>
<td>43</td>
<td>110.3</td>
<td>1.76</td>
<td>35.61</td>
<td>9.8</td>
<td>3.5</td>
<td>3.5</td>
<td>30.9</td>
<td>27</td>
<td>21.1</td>
<td>31.5</td>
<td>24</td>
<td>2</td>
<td>92</td>
<td>92</td>
<td>92</td>
</tr>
<tr>
<td>17</td>
<td>1</td>
<td>1</td>
<td>46</td>
<td>130</td>
<td>1.73</td>
<td>43.44</td>
<td>6.4</td>
<td>0.2</td>
<td>1.5</td>
<td>23.8</td>
<td>34.4</td>
<td>28.8</td>
<td>19</td>
<td>0</td>
<td>0</td>
<td>93</td>
<td>94</td>
<td>93</td>
</tr>
<tr>
<td>18</td>
<td>2</td>
<td>1</td>
<td>62</td>
<td>100</td>
<td>1.77</td>
<td>31.92</td>
<td>19.9</td>
<td>3.9</td>
<td>14.6</td>
<td>36</td>
<td>27.2</td>
<td>27.9</td>
<td>19</td>
<td>0</td>
<td>0</td>
<td>84</td>
<td>79</td>
<td>73</td>
</tr>
<tr>
<td>19</td>
<td>1</td>
<td>1</td>
<td>45</td>
<td>114.4</td>
<td>1.84</td>
<td>33.79</td>
<td>47.2</td>
<td>17.2</td>
<td>17.6</td>
<td>38</td>
<td>14.5</td>
<td>30.2</td>
<td>65</td>
<td>37</td>
<td>5</td>
<td>94</td>
<td>87</td>
<td>87</td>
</tr>
<tr>
<td>20</td>
<td>1</td>
<td>1</td>
<td>47</td>
<td>96.4</td>
<td>1.74</td>
<td>31.84</td>
<td>17.5</td>
<td>4.5</td>
<td>5.8</td>
<td>35.4</td>
<td>32.8</td>
<td>28.8</td>
<td>23.3</td>
<td>0</td>
<td>0</td>
<td>82</td>
<td>92</td>
<td>88</td>
</tr>
<tr>
<td>21</td>
<td>1</td>
<td>1</td>
<td>64</td>
<td>93.6</td>
<td>1.81</td>
<td>28.57</td>
<td>29.1</td>
<td>11.6</td>
<td>12.7</td>
<td>29.8</td>
<td>20.2</td>
<td>24.2</td>
<td>62</td>
<td>33</td>
<td>0</td>
<td>85</td>
<td>90</td>
<td>83</td>
</tr>
<tr>
<td>22</td>
<td>1</td>
<td>1</td>
<td>29</td>
<td>127.4</td>
<td>1.73</td>
<td>42.57</td>
<td>32.8</td>
<td>2.5</td>
<td>3.5</td>
<td>49.5</td>
<td>15.8</td>
<td>12.4</td>
<td>12</td>
<td>0</td>
<td>0</td>
<td>86</td>
<td>91</td>
<td>91</td>
</tr>
<tr>
<td>23</td>
<td>2</td>
<td>1</td>
<td>43</td>
<td>72</td>
<td>1.76</td>
<td>23.24</td>
<td>21.2</td>
<td>2.2</td>
<td>0.6</td>
<td>42.6</td>
<td>12</td>
<td>13</td>
<td>29</td>
<td>0</td>
<td>0</td>
<td>88</td>
<td>92</td>
<td>95</td>
</tr>
</tbody>
</table>
## APPENDIX 8. INDIVIDUAL PATIENT CEPHALOMETRIC MEASUREMENTS

| Patient | PNS | PNSO | PSO | PSOB | PSOC | PSOD | PNAS | PNASO | PAS | PASO | PBAS | PBASO | MPA | MPAO | PFA | PFAO | STT | STTO | NBB | SNB | SNA | SNAO | ANB | ANBO | SNB | SNBO | ANB | ANBO | SNB | SNBO | ANB | ANBO | SNB | SNBO | ANB | ANBO |
|---------|-----|------|-----|------|------|------|------|-------|-----|------|------|-------|-----|------|-----|------|-----|------|-----|------|-----|------|-----|------|-----|------|-----|------|-----|------|-----|------|-----|------|-----|------|-----|------|
| 1       | 15  | 12   | 16  | 7    | 11   | 11   | 45   | 47    | 44  | 7    | 9    | 9    | 9    | 9    | 71   | 9    | 9    | 91   | 71   | 65   | 4    | 7    | 8    | 78   | 78   | 75   | 4    | 4    | 7    |
| 2       | 11  | 10   | 14  | 8    | 15   | 14   | 39   | 46    | 47  | 13   | 13   | 11   | 11   | 11   | 89   | 86   | 87   | 6    | 7    | 6    | 77   | 77   | 73   | 4    | 4    | 6    |
| 3       | 7   | 8    | 14  | 15   | 15   | 50   | 45   | 45    | 12   | 11   | 9    | 79   | 72   | 73   | 4    | 3    | 5    | 78   | 79   | 77   | 3    | 1    | 4    |
| 4       | 10  | 8    | 7   | 9    | 7    | 51   | 42   | 47    | 10   | 9    | 11   | 85   | 74   | 74   | 4    | 3    | 4    | 70   | 71   | 69   | 1    | 0    | 2    |
| 5       | 10  | 10   | 11  | 3    | 5    | 7    | 32   | 40    | 39  | 9    | 9    | 8    | 69   | 66   | 6    | 3    | 4    | 6    | 69   | 70   | 67   | 5    | 4    | 6    |
| 6       | 13  | 13   | 12  | 8    | 8    | 12   | 35   | 36    | 38  | 11   | 11   | 11   | 82   | 76   | 71   | 4    | 4    | 4    | 80   | 81   | 77   | 2    | 1    | 4    |
| 7       | 8   | 10   | 11  | 10   | 10   | 10   | 41   | 36    | 41  | 12   | 12   | 10   | 89   | 83   | 78   | 4    | 6    | 6    | 77   | 80   | 76   | 1    | 0    | 1    |
| 8       | 9   | 9    | 9   | 10   | 8    | 43   | 41   | 43    | 9    | 9    | 83   | 85   | 79   | 5    | 6    | 5    | 80   | 86   | 82   | -1   | -4   | -2   |
| 9       | 13  | 12   | 14  | 9    | 9    | 6    | 44   | 41    | 42  | 11   | 11   | 85   | 80   | 84   | 6    | 7    | 6    | 80   | 81   | 78   | 1    | -4   | -2   |
| 10      | 8   | 9    | 9   | 8    | 7    | 8    | 41   | 40    | 40  | 10   | 10   | 62   | 71   | 67   | 3    | 3    | 4    | 80   | 83   | 78   | 5    | 4    | 7    |
| 11      | 9   | 12   | 15  | 9    | 10   | 8    | 48   | 46    | 40  | 14   | 12   | 82   | 78   | 79   | 4    | 5    | 5    | 77   | 79   | 83   | 4    | 1    | 3    |
| 12      | 24  | 18   | 20  | 19   | 20   | 18   | 37   | 40    | 49  | 9    | 11   | 9    | 86   | 77   | 73   | 19   | 15   | 13   | 78   | 78   | 75   | 0    | -2   | 4    |
| 13      | 10  | 12   | 8   | 8    | 11   | 9    | 46   | 44    | 51  | 10   | 10   | 10   | 75   | 72   | 67   | 7    | 8    | 4    | 71   | 81   | 76   | 4    | 5    | 10   |
| 14      | 14  | 13   | 14  | 9    | 11   | 12   | 40   | 38    | 36  | 7    | 10   | 10   | 87   | 86   | 78   | 8    | 8    | 6    | 80   | 82   | 81   | 5    | 3    | 4    |
| 15      | 13  | 15   | 14  | 16   | 15   | 12   | 44   | 44    | 44  | 10   | 10   | 86   | 76   | 80   | 10   | 13   | 11   | 88   | 89   | 87   | -3   | -6   | -2   |
| 16      | 6   | 11   | 8   | 12   | 12   | 12   | 47   | 43    | 45  | 15   | 12   | 13   | 90   | 78   | 74   | 3    | 6    | 4    | 85   | 87   | 82   | 0    | -2   | 2    |
| 17      | 14  | 13   | 7   | 7    | 9    | 56   | 55   | 53    | 10   | 10   | 9    | 88   | 92   | 92   | 4    | 6    | 6    | 80   | 83   | 79   | 3    | 2    | 3    |
| 18      | 5   | 8    | 5   | 7    | 8    | 50   | 49   | 49    | 13   | 13   | 14   | 91   | 88   | 82   | 1    | 5    | 2    | 81   | 87   | 84   | 3    | 3    | -1   |
| 19      | 9   | 13   | 12  | 3    | 4    | 3    | 61   | 57    | 56  | 11   | 9    | 10   | 80   | 87   | 80   | 3    | 3    | 3    | 74   | 77   | 75   | -1   | -4   | 0    |
| 20      | 13  | 17   | 13  | 14   | 19   | 46   | 49   | 49    | 11   | 9    | 12   | 84   | 88   | 74   | 9    | 10   | 12   | 82   | 84   | 88   | 3    | -1   | -4   |
| 21      | 6   | 7    | 7   | 9    | 54   | 47   | 54   | 14    | 12   | 12   | 87   | 78   | 77   | 3    | 2    | 2    | 80   | 82   | 80   | 3    | 1    | 4    |
| 22      | 12  | 13   | 11  | 14   | 13   | 46   | 46   | 46    | 15   | 11   | 12   | 83   | 88   | 83   | 6    | 8    | 7    | 90   | 92   | 90   | -3   | -4   | -2   |
| 23      | 7   | 10   | 13  | 9    | 11   | 9    | 46   | 41    | 44  | 12   | 12   | 10   | 81   | 79   | 80   | 5    | 10   | 8    | 76   | 77   | 75   | 1    | -3   | 2    |
# APPENDICES

## 8. INDIVIDUAL PATIENT CEPhALOMETRIC MEASUREMENTS

<p>| | | | | | | | | | | | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>128</td>
<td>148</td>
<td>72</td>
<td>84</td>
<td>94</td>
<td>3</td>
<td>-9</td>
<td>1</td>
<td>-1</td>
<td>1</td>
<td>-4</td>
<td>-1</td>
<td>103</td>
<td>130</td>
<td>33</td>
<td>33</td>
<td>38</td>
</tr>
<tr>
<td>2</td>
<td>127</td>
<td>148</td>
<td>78</td>
<td>88</td>
<td>98</td>
<td>4</td>
<td>-8</td>
<td>1</td>
<td>-1</td>
<td>3</td>
<td>1</td>
<td>104</td>
<td>123</td>
<td>24</td>
<td>25</td>
<td>34</td>
<td>34</td>
</tr>
<tr>
<td>3</td>
<td>131</td>
<td>142</td>
<td>151</td>
<td>74</td>
<td>85</td>
<td>94</td>
<td>0</td>
<td>-11</td>
<td>-21</td>
<td>0</td>
<td>2</td>
<td>102</td>
<td>126</td>
<td>23</td>
<td>28</td>
<td>35</td>
<td>35</td>
</tr>
<tr>
<td>4</td>
<td>134</td>
<td>142</td>
<td>156</td>
<td>79</td>
<td>86</td>
<td>99</td>
<td>2</td>
<td>-8</td>
<td>-18</td>
<td>3</td>
<td>-6</td>
<td>110</td>
<td>110</td>
<td>59</td>
<td>65</td>
<td>65</td>
<td>65</td>
</tr>
<tr>
<td>5</td>
<td>149</td>
<td>157</td>
<td>159</td>
<td>81</td>
<td>91</td>
<td>100</td>
<td>0</td>
<td>-8</td>
<td>-18</td>
<td>1</td>
<td>-4</td>
<td>-3</td>
<td>95</td>
<td>123</td>
<td>25</td>
<td>28</td>
<td>38</td>
</tr>
<tr>
<td>6</td>
<td>150</td>
<td>157</td>
<td>159</td>
<td>86</td>
<td>93</td>
<td>102</td>
<td>0</td>
<td>-9</td>
<td>-19</td>
<td>3</td>
<td>-4</td>
<td>104</td>
<td>126</td>
<td>23</td>
<td>25</td>
<td>32</td>
<td>32</td>
</tr>
<tr>
<td>7</td>
<td>122</td>
<td>134</td>
<td>145</td>
<td>75</td>
<td>84</td>
<td>91</td>
<td>0</td>
<td>-9</td>
<td>-15</td>
<td>3</td>
<td>-6</td>
<td>118</td>
<td>118</td>
<td>25</td>
<td>25</td>
<td>32</td>
<td>32</td>
</tr>
<tr>
<td>8</td>
<td>109</td>
<td>117</td>
<td>126</td>
<td>62</td>
<td>66</td>
<td>81</td>
<td>2</td>
<td>8</td>
<td>-9</td>
<td>1</td>
<td>-2</td>
<td>110</td>
<td>120</td>
<td>24</td>
<td>28</td>
<td>33</td>
<td>33</td>
</tr>
<tr>
<td>9</td>
<td>114</td>
<td>125</td>
<td>132</td>
<td>70</td>
<td>79</td>
<td>86</td>
<td>102</td>
<td>102</td>
<td>102</td>
<td>15</td>
<td>3</td>
<td>-5</td>
<td>107</td>
<td>134</td>
<td>134</td>
<td>24</td>
<td>29</td>
</tr>
<tr>
<td>10</td>
<td>124</td>
<td>134</td>
<td>136</td>
<td>84</td>
<td>91</td>
<td>100</td>
<td>2</td>
<td>7</td>
<td>-17</td>
<td>2</td>
<td>-8</td>
<td>115</td>
<td>127</td>
<td>31</td>
<td>33</td>
<td>33</td>
<td>33</td>
</tr>
<tr>
<td>11</td>
<td>144</td>
<td>154</td>
<td>154</td>
<td>80</td>
<td>90</td>
<td>100</td>
<td>2</td>
<td>7</td>
<td>-17</td>
<td>2</td>
<td>-8</td>
<td>113</td>
<td>154</td>
<td>34</td>
<td>34</td>
<td>39</td>
<td>39</td>
</tr>
<tr>
<td>12</td>
<td>134</td>
<td>145</td>
<td>154</td>
<td>80</td>
<td>90</td>
<td>100</td>
<td>2</td>
<td>7</td>
<td>-17</td>
<td>2</td>
<td>-8</td>
<td>113</td>
<td>154</td>
<td>34</td>
<td>34</td>
<td>39</td>
<td>39</td>
</tr>
<tr>
<td>13</td>
<td>130</td>
<td>130</td>
<td>157</td>
<td>73</td>
<td>94</td>
<td>94</td>
<td>0</td>
<td>2</td>
<td>9</td>
<td>1</td>
<td>-6</td>
<td>112</td>
<td>116</td>
<td>24</td>
<td>29</td>
<td>29</td>
<td>29</td>
</tr>
<tr>
<td>14</td>
<td>133</td>
<td>144</td>
<td>153</td>
<td>74</td>
<td>86</td>
<td>95</td>
<td>2</td>
<td>8</td>
<td>-18</td>
<td>4</td>
<td>-5</td>
<td>107</td>
<td>119</td>
<td>27</td>
<td>33</td>
<td>33</td>
<td>33</td>
</tr>
<tr>
<td>15</td>
<td>127</td>
<td>139</td>
<td>147</td>
<td>71</td>
<td>81</td>
<td>92</td>
<td>2</td>
<td>-9</td>
<td>-19</td>
<td>1</td>
<td>-6</td>
<td>112</td>
<td>116</td>
<td>24</td>
<td>29</td>
<td>29</td>
<td>29</td>
</tr>
<tr>
<td>16</td>
<td>126</td>
<td>137</td>
<td>146</td>
<td>75</td>
<td>89</td>
<td>97</td>
<td>5</td>
<td>-5</td>
<td>-15</td>
<td>2</td>
<td>-4</td>
<td>111</td>
<td>136</td>
<td>31</td>
<td>34</td>
<td>34</td>
<td>34</td>
</tr>
<tr>
<td>17</td>
<td>137</td>
<td>146</td>
<td>154</td>
<td>80</td>
<td>97</td>
<td>97</td>
<td>2</td>
<td>8</td>
<td>-18</td>
<td>4</td>
<td>-5</td>
<td>107</td>
<td>119</td>
<td>27</td>
<td>33</td>
<td>33</td>
<td>33</td>
</tr>
<tr>
<td>18</td>
<td>132</td>
<td>142</td>
<td>150</td>
<td>71</td>
<td>80</td>
<td>90</td>
<td>0</td>
<td>3</td>
<td>-6</td>
<td>-5</td>
<td>112</td>
<td>120</td>
<td>22</td>
<td>25</td>
<td>25</td>
<td>25</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>153</td>
<td>144</td>
<td>154</td>
<td>71</td>
<td>80</td>
<td>90</td>
<td>0</td>
<td>3</td>
<td>-6</td>
<td>-5</td>
<td>112</td>
<td>120</td>
<td>22</td>
<td>25</td>
<td>25</td>
<td>25</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>156</td>
<td>156</td>
<td>155</td>
<td>78</td>
<td>87</td>
<td>90</td>
<td>5</td>
<td>-5</td>
<td>10</td>
<td>2</td>
<td>-4</td>
<td>105</td>
<td>120</td>
<td>22</td>
<td>25</td>
<td>25</td>
<td>25</td>
</tr>
<tr>
<td>21</td>
<td>156</td>
<td>156</td>
<td>155</td>
<td>78</td>
<td>87</td>
<td>90</td>
<td>5</td>
<td>-5</td>
<td>10</td>
<td>2</td>
<td>-4</td>
<td>105</td>
<td>120</td>
<td>22</td>
<td>25</td>
<td>25</td>
<td>25</td>
</tr>
<tr>
<td>22</td>
<td>132</td>
<td>139</td>
<td>148</td>
<td>80</td>
<td>86</td>
<td>92</td>
<td>0</td>
<td>-8</td>
<td>-18</td>
<td>0</td>
<td>-6</td>
<td>101</td>
<td>120</td>
<td>20</td>
<td>25</td>
<td>25</td>
<td>25</td>
</tr>
<tr>
<td>23</td>
<td>147</td>
<td>157</td>
<td>167</td>
<td>86</td>
<td>94</td>
<td>105</td>
<td>0</td>
<td>-9</td>
<td>-22</td>
<td>2</td>
<td>-10</td>
<td>108</td>
<td>121</td>
<td>39</td>
<td>43</td>
<td>43</td>
<td>43</td>
</tr>
</tbody>
</table>