CHAPTER 9 THE ROLE OF OEDEMA IN HEALING.

OUTLINE.

9.1 INTRODUCTION. 390

9.2 THE EFFECTS OF OEDEMA FORMATION. 391

9.2.1 The Nature and Tissue Effects of the Inflammatory
Exudate. 391

9.2.2 Other Effects. 393

9.3 INFLAMMATION: A DEFENCE MECHANISM OR DISEASE STATE. 394

9.4 CONCLUSION. 398
9.1 INTRODUCTION.

At the conclusion of this presentation of the aetiology of post-surgical oedema, the clinician is faced with the question of management. Several methods of controlling oedema have been identified (as outlined in Chapter 8). Some appear to be successful (though never entirely); others are of equivocal benefit. However, the question arises, physiologically and clinically, as to whether this control is necessary or appropriate, since oedema results from processes which ultimately lead to repair of the surgical injury. Further, for the "average" oral surgical procedure, the resulting post-surgical oedema is only moderate.

Furthermore, within four days, it has significantly reduced, and has probably fully resolved after 7-10 days without any intervention. The question, "Is intervention required?" must therefore be asked, especially since the most effective method of control so far described (corticosteroid therapy) is potentially fraught with hazards, not least of which is the disruption of healing.

There are certainly some situations where the limitation of oedema is critical. The excess fluid may compromise the surgical repair of soft tissue reconstructive procedures (ZAWORSKI & NORIEGA 1978). In facial and neck surgery, it may cause respiratory embarrassment, and following neurosurgical procedures, it may raise intracranial pressure to critical levels (HONE 1977). In these and other similar circumstances, there is no question that the formation of oedema must be effectively controlled.

Furthermore, although the transudation of fluid into the injured tissues is accompanied by beneficial effects, this fluid itself may
compromise repair, even when in moderation.

Discussion of the role of inflammation and its consequent oedema is therefore the basis of this chapter. Should the clinician be concerned by the fluid accumulation? How is the patient best managed? In this context, the composition and effects of such accumulation on the injured tissues form a beginning point.

9.2 THE EFFECTS OF OEDEMA FORMATION.

As has been shown, oedema, both clinical and microscopic, is a natural consequence of tissue injury. The inflammatory exudate is chiefly composed of protein, lipids, lipoproteins, microorganisms and cellular debris and various enzymes (FLOREY 1970b; SMITH et al 1970; GLASSER & BARTH 1982). Various nutrients (such as glucose), immunoglobulins and mediators of inflammation (in active or inactive forms) are also present (SMITH et al 1970; WILLIAMS 1979). (See 4.6).

As this fluid accumulates, interstitial tissue hydrostatic pressure increases causing limitation of blood flow in an area which is already severely compromised by local vessel division and fibrin deposition. Fluid accumulation also increases intercapillary distance, thereby increasing the distance which oxygen and other vital nutrients must diffuse (CASLEY-SMITH 1973; AMIN et al 1983). (See also 6.2.1.4). It is possible that these factors contribute to local tissue ischaemia, which, through failure of the adenosine triphosphate-dependent sodium/potassium pump, may cause further swelling (COLEN et al 1979).

In post-surgical inflammation, where frank haemorrhage has occurred, numerous erythrocytes are also contained within the
interstitium. Similarly, the level of fibrin is high. The significance of the red cells lies chiefly in that they soon become effete and they must be removed by phagocytosis. Their presence therefore places additional load upon macrophages.

Fibrin is significant for similar reasons and also since its polymerisation within the interstitium dramatically reduces tissue permeability, thereby preventing dissipation of the accumulated fluid.

The development of haematoma within the wound, as a result of continued or recurrent vessel leakage, contributes to both of these aspects. It also increases the wound dead space, thereby further compromising nutrient supply and increasing the size of the ultimate scar (6.3.5).

The presence of extravascular fibrin and erythrocytes thus increases the cellular infiltrate (and hence the inflammatory response), and it delays the deposition of collagen and proteoglycans.

The combined effects of fluid accumulation and decreased tissue permeability lead to the formation of a stagnant, protein- and nutrient-rich fluid throughout the interstitium. This fluid retards tissue metabolism and may allow the proliferation of contaminating microorganisms (KAPLAN & WEINSTOCK 1967). It is therefore reported by some clinicians to delay healing (LIE et al 1967; SALISBURY & HUNTER 1972). It is unlikely however that this fluid is completely static and the presence of some flow within it may limit these effects.

On the other side of the discussion, the formation and collection of such a fluid has some advantages. Firstly, it assists with the entry and movement of leucocytes into and through the tissues (WILLIAMS 1979). Secondly, while lymphatic flow is still occurring, it
flushes the damaged tissues with plasma, diluting toxins and wastes (CATCHPOLE 1973). Thirdly, the reduced tissue permeability may aid in limiting the spread of contaminating organisms and of the inflammatory process (SILBERBERG 1979). Fourthly, it provides the reparative cells within the wound with a supply of nutrients such as glucose, amino acids (from protein lysis) and vitamins. These nutrients both supply the immediate needs of these cells and provide biological "building-blocks" for cell synthesis in the proliferative phase of repair.

These advantages are obviously outweighed if the intercapillary distance is so increased that ischaemia develops. However, some oedema does not appear to be detrimental to healing unless tissue vitality is compromised by other factors such as rough handling and tight suturing.

9.2.2 Other Effects.

In surgery around the face, two other factors complicate the development of oedema. Firstly, because of the relatively thin soft tissue layer covering the face, swelling alters the individual physiognomy (POLLMANN & HILDEBRADT 1982). In addition to physical effects, such as talking and eating, this alteration also has psychological effects both for the patient and his/her family (SHINADI 1972). Secondly, swelling of maxillary soft tissues may involve the eyelids (thereby restricting vision) (HABAL & POWELL 1978) or the tissues of the neck (tending to compromise the airway).

The impact of the former can usually be minimised if the patient is prepared for these changes pre-operatively. However, restriction of vision may be severely incapacitating, though this is rare unless the surgery directly involves the orbits, or unless other complications, such as cellulitis, develop. Similarly, while the surgeon must take all
precautions regarding airway embarrassment, it is rare for a patient who has undergone elective surgery to have major problems with airway obstruction.

9.3 INFLAMMATION: DEFENCE MECHANISM OR DISEASE STATE.

Based on the observation that in some inflammatory reactions (for example, the Arthus reaction) the damage caused by the reaction itself far exceeds that of the inflammatory stimulus, some authors claim that the inflammatory processes are disease states, not defence mechanisms (THOMAS 1971; 1973). This opinion chiefly refers to the activation of host leucocytes, particularly neutrophils. That there is some basis to these remarks is echoed in comments relating to the amount of tissue damage/ extravascular clot/ microbiological contamination which is present in a wound. Most recommend that these factors should be reduced so as to minimize neutrophil infiltration and lysosomal release, and hence added tissue lysis. (See Chapter 6).

The literature generally expresses the view that some inflammation is part of the normal response of an organism to surgical trauma, and that its consequences (including oedema) are "not entirely undesirable" (QUINN 1964). This statement is almost always qualified by remarks such as "however, in certain unpredictable cases, we encounter a massive, yet localised type of oedema which tends to accentuate post-operative pain and prolong the healing period" (YOUNG 1979). (See also QUINN 1964; MAGNES 1966; MARLETTE & AMEN 1970).

Why "massive...oedema" should occur in some cases has not been established. From a review of the aetiological factors involved, it is obvious that many such factors (for example, the degree of bacterial contamination or of PMN infiltration) cannot be assessed clinically. It
is likely that the massive inflammatory response which develops in some individuals may relate to factors such as these.

Also likely to be important is the connective tissue configuration of the individual in the area of surgery. This may govern how the oedema is expressed, firstly in different individuals, and secondly in different sites in the same individual since the response to identical inflammatory stimuli injected into different sites is reportedly quite different. (The sensitivity of different sites on humans is unknown, VINEGAR 1983). These factors obviously are not apparent clinically, but they may explain the unpredictable nature of oedema in some circumstances.

It is certainly clear that the early inflammatory response is inextricably linked to coagulation and to the subsequent rate and character of repair (DUNPHY 1969; HUNT & HALLIDAY 1980) since:

i) inflammation cannot commence until haemorrhage has ceased.

ii) factors activated by the coagulation sequence stimulate inflammatory cells and initiate the activation of inflammatory mediators (1.3.4).

iii) inflammatory cells remove damaged tissue and toxins within the wound (1.4.2).

iv) these cells (particularly macrophages) release factors which are thought to stimulate reparative cells (1.5.1.1).

The effect of this linkage is seen, for example, in patients on long-term corticosteroid therapy (QUINN 1964). Steroids act primarily on inflammatory cells, inhibiting their infiltration into injured tissues and suppressing their release of inflammatory substances. The steroid-induced suppression of these cells is followed by delayed proliferation and synthesis of fibroblasts and endothelium.
Some have proposed the concept of an "ideal inflammatory response" (DUNPHY 1969). Although this has not been defined, such a response would presumably achieve the required functions of inflammation (lysis and phagocytosis of devitalised tissue cells and microorganisms) without causing additional tissue damage. Such an ideal response would depend on limiting the initiating injury, but it is also apparent that components of the inflammatory response are capable of a severe reaction which is out of proportion with the injury. Recent investigations suggest that the reactive intermediates of arachidonic acid metabolism (including oxygen radicals) (VINEGAR 1983) and those radicals generated by the "respiratory burst" of "professional phagocytes (polymorphs, monocytes, macrophages)" (ZABUCCHI et al 1980) may be the major substances responsible for the detrimental effects of inflammation.

These substances are believed to participate in oxygen-dependent microbiocidal and cytocidal activities of phagocytes either inside or outside the cell. In these activities they are generally considered beneficial. However, they can also cause significant damage both from within a cell (to the phagosome or plasma membrane) or to the surrounding tissue. They may also boost the inflammatory response by promoting further increases in microvascular permeability, generating chemotactic factors and stimulating lymphocytes (BJORK et al 1980; ZABUCCHI et al 1980). Other lysosomal constituents, particularly the neutral proteases and similar trypsin-like enzymes, are also capable of widespread tissue destruction. (See 3.3.2.3).

The release of these substances appears to relate to the level of cell (particulary PMN) activation. Where bacterial contamination is significant (perhaps particular microorganisms more than others),
neutrophil activation is high with massive release of oxygen radicals, hydrolytic enzymes and so on. Local tissue destruction in such areas is severe (ARPORS 1983). This picture is confused by observations that massive neutrophil activation may also occur in response to insignificant stimuli (VINEGAR 1983). This is perhaps a form of hypersensitivity to cell/microorganism fragments.

Despite this apparently uncontrolled behaviour, several autoregulatory mechanisms are evident throughout the processes of inflammation:

1) The chief proposed mediators of inflammation (kinins, acidic lipids, complement by-products) are rapidly converted to inactive metabolites (see 3.3.1.2); inflammation therefore is dependent upon the continued activation of these substances, not on their long-term action.

2) The metabolism of membrane fatty acids contains several inter-linking negative feedback mechanisms such that the generation of metabolites serves to limit further synthesis (see 3.3.2.2).

3) Several enzyme inhibitors of various inflammatory sequences are present in the plasma, for example, Cl esterase inhibitor (3.3).

4) The cyclic nucleotides (cAMP/cGMP) appear to exist in a dynamic intracellular balance; the degree of activity of the cell depends upon which is dominant (3.3.2.5). Therefore biochemical variations in the local environment (particularly changes in concentration or concentration gradients) are significant in modifying cell function, and perhaps in altering the effect of individual substances such as hormones, mediators (3.4).

5) The "2 series" acidic lipids (those chiefly involved in inflammation) are suggested to be controlled through negative feedback mechanisms by the "1 series" (HORROBIN 1980).
6) Through its release of lysozyme, neutrophil phagocytosis may limit further accumulation and phagocytosis (3.4).

7) Hormones with non-specific action (such as corticosteroids and insulin) may modify the overall response (suppress or boost respectively) depending upon whole body needs/conditions (GARCIA-LEME 1981b).

Further, in view of the oral environment and therefore the significant presence of contaminating microorganisms in the surgical wound, some inflammatory response involving PMNs must be considered appropriate. WILLOUGHBY (1977) made a similar observation on the role of inflammation in the mouth, suggesting that mouth ulcers occurring as side-effects of the newer anti-rheumatoid drugs may signify excessive suppression of such normal oral defence mechanisms.

9.4 CONCLUSION.

It must therefore be concluded that an inflammatory response is essential to healing. However, healing may be delayed or impaired by either an insufficient or an excessive response. This gives rise, in theory, to the difficult concept of an "ideal inflammatory response". Certainly, features of inflammation have been identified as detrimental (especially the various oxygen radicals derived during PG synthesis and by the phagocyte "respiratory burst") (see above); however, even these have beneficial effects, and so far, no inflammatory models have been identified in which an "ideal response" occurs.

The picture concerning oedema is similarly complex. Although its formation has benefit through its provision of nutrients to the wound space and through its assistance of leucocyte movement through the injured tissue, the collection of fluid may cause tissue ischaemia, it
potentially provides an excellent medium for the proliferation of microorganisms and it causes lowered tissue permeability following fibrin polymerisation. Nevertheless, in the absence of additional anatomical considerations such as airway maintenance, moderate oedema generally appears to cause little biological harm, although bacterial proliferation is an important area of concern in large areas of oedematous tissue.

From the patient's viewpoint, pain is to some extent related to the relative size of the oedema, with greater distension causing more discomfort (MACGREOR & HART 1969; TEN BOSCH & VAN GOOL 1977). There is a similar correlation with functions such as talking and eating. The psychological effects of the altered physiognomy are also significant to a person following surgery; the size of the swelling, the patient's preparation for the changes and his/her ability to cope with stress determine how relevant this factor is.

The surgeon is therefore faced with the situation where, on the one hand, inflammation and its consequent oedema are normal responses which are generally appropriate and essential to wound repair, and on the other, the patient experiences pain and limitation of some functions as a result of the surgery and oedema. The "simple" solution to the management of a patient following oral surgery might therefore be merely to provide adequate control of pain. The addition of appropriate antibiotics as prophylaxis against the proliferation of contaminating microorganisms within the accumulated fluid might also be advantageous, though studies showing that the incidence of post-operative infection is not altered whether or not antibiotics are used (8.3.2.2) would deny this. The whole question of antibiotic therapy following oral surgery requires further investigation.
However, the occasional patient who develops "massive" oedema presents a problem since most agents reportedly capable of limiting oedema must be present at the initiation of the inflammatory response or earlier. The literature points to several clinical factors which are most likely to cause such increased oedema. These are ranked in some order of significance. (It is important to note however that situations where oedema is "massive" may indicate the presence of additional factors, for example the development of infection).

1. Reflection of the periosteum: increasing the size of the mucoperiosteal flap increases the oedema, particularly if muscle lateral to the external oblique ridge is elevated. (This statement must be correlated with #2.) (6.3.1).

2. Surgical trauma: increasing trauma produces increased oedema (6.3.6).

3. Operating time: increasing the length of surgery produces increased oedema (perhaps in association with #2.) (6.3.4).

4. Haemorrhage/haematoma: prolonged haemorrhage (either proceeding from the wound or developing into a haematoma) is accompanied by markedly increased oedema (6.3.5).

5. Suturing: excessive suturing to achieve full primary closure appears to retain fluid within the tissues, thereby increasing oedema (6.3.7; 6.3.8).

6. Bacterial contamination: increasing the contamination leads to increased oedema. Debridement however, reduces the number of contaminating organisms to low levels (6.2.3).

7. The patient's age: increased age is associated with a mild increase in oedema (5.2.1).

8. The patient's sex: females tend to have greater oedematous responses than males, more so at times when oestrogen levels peak
(puberty, ovulation, the last trimester of pregnancy) (5.2.3).

Unfortunately, this list is not yet complete, nor is it fully confirmed, even though many of the comments appear obvious. However, on the basis of the present information, its assumptions appear reasonable. In the presence of these factors, the oedema is likely to be aggravated. Appropriate control measures may therefore be instituted.

However, there is still the problem of being unable to assess key microscopic factors which may also dramatically modify the oedematous response. Not least of these factors is the microscopic extent of the injury itself. Despite these difficulties in predicting which patients will develop a severe inflammatory response to surgery, it seems unreasonable that anti-oedematous agents should be prescribed routinely. The implications of these questions are considered in the concluding chapter.
Following surgical incision, some degree of tissue damage occurs - a "wound" is formed. Whilst it is the body, not the surgeon, which achieves the repair through a sequential series of processes (some occurring simultaneously), the surgeon must always aim to provide circumstances which are the most conducive to prompt, uncomplicated healing with minimal functional disturbance. He therefore must be fully cognisant of the cellular and biochemical processes involved. Central to this understanding is that reparative tissue functions to some extent as an organ in its own right. This intimate, ecological co-operative of new blood vessels, macrophages, granulocytes and fibroblasts which forms is designated as the "wound module" (1.1).

A significant aspect in this response of an organism to injury is its characteristic stereotyped pattern which is collectively termed "inflammation". This pattern depends more upon the species or the individual than upon the nature of the damaging agent. Physical, chemical or biological stimuli of sufficient intensity will all evoke a similar response. Structural features peculiar to the tissue or organ involved may mould its form, but the pattern is essentially the same (GARCIA-LEME 1981b).

In considering the aetiology and management of post-surgical oedema, a review of this response as a whole was considered vital. Not disputing the stereotype, it was found that inflammation subsequent to surgery involved complexities not described by the major experimental models used to investigate this field. These complexities arise principally from the direct effect of the surgery itself.
Vessels - both blood and lymphatic - are sectioned, torn and stretched: an area of hypoxia is created; pathways of fluid drainage are disrupted. The tissue framework is crushed and distended by retraction and surgical manipulation; some tissue is devitalised and some destroyed. The vessel injury is plugged through the mechanisms of haemostasis: the fibrin clot further impedes flow and may enlarge wound space, further compromising tissue vitality. In addition, its removal occupies reparative cells, and time is required before new tissue can be laid down. Further, the incision breeches the mucosal barrier, admitting microorganisms deep into the tissues.

Since the reaction seen in acute inflammation is chiefly vascular, the damage to blood and lymphatic vessels is particularly significant in creating and exacerbating the fluid/protein exudation, and in thwarting its removal by the lymphatics. Such severe direct injury precipitates a very particular pattern of leakage from all damaged blood vessels. Such leakage commences immediately, rapidly reaches a plateau, and then continues until damaged vessels are repaired or plugged (3.2.1.3). Peripheral to this area of severe injury, tissue damage is more moderate; the inflammatory reaction here more closely resembles the stereotype, with immediate and delayed leakage responses (3.2.1.3; 3.2.1.5).

A fundamental consideration in the understanding of the tissue response to injury, and the subsequent gross leakage of protein and fluid is the microvascular framework of the tissue operated on and its normal physiological function. An examination of this area reveals that there is normally a finely-tuned dynamic balance between osmotic and hydrostatic pressures across the capillary (Starling's forces) which allows fluid to leave the arterial capillary and mostly be reabsorbed.
at the venous end of the microcirculation. The small but significant amount of plasma protein which also forms part of the outflow from the arterial capillary is removed with the remainder of the fluid by the lymphatics and by tissue proteolysis. Remarkably, this system is able to rapidly adapt to gross alterations of one or more components of this balance so as to maintain the hydration of the interstitium at a fairly static level (2.3.3; 4.2).

Also important in this balance is the configuration of the connective tissue matrix. This matrix consists of two phases. The first, a fixed system composed essentially of a network of interconnecting fibres to which various complex proteoglycans are attached (the "colloid-rich"/"water-poor" phase). The other is a labile, diffusible system which is essentially an aqueous solution of salts, metabolites and polymers filling the interstitium. This phase also forms a fluctuating network of aqueous channels which facilitate protein, cell and fluid movement through the interstitium (2.4; 4.3).

With the fixed network tending to resist expansion from the resting state and contributing to definition of tissue compliance (4.2.2.1), and the fluid partition between the colloid-rich and colloid-poor phases providing an osmotic buffer limiting excessive fluid movement between the phases and into the interstitium, tissues generally have a fairly high degree of resistance to fluid accumulation. The physiological balance of forces governing fluid movement also resists its accumulation. This resistance varies directly with tissue density (4.4).

Notwithstanding this resistance, the circumstances which develop as part of the post-surgical inflammatory response, in addition to the injury itself, produce plasma exudation of such dimensions that the
dynamic equilibrium provided in normal function is grossly overwhelmed. It is also noted that this resistance itself is lessened by the activation of various proteolytic enzymes as a consequence of inflammatory sequences. There is therefore a considerable shift of fluid, and, more importantly, plasma protein into the interstitium.

Although both the lymphatic and tissue proteolytic systems increase their activity several fold, these mechanisms are unable to cope, particularly because of the direct damage they themselves sustain at surgery. The function of the lymphatics is further impaired by the formation of fibrin thrombi within the inflammatory exudate and within their lumen. Such thrombi superimpose acute lymphoedema upon the oedema developing as a result of the wound (4.7; 4.8).

A continuing feature of surgical wounds is the gradual degeneration of surgically damaged cells. The degree to which this degeneration progresses is determined by the severity and duration of the injury, by the nutrient supply and by the particular vulnerability of different cell types (WRIGHT 1955; BOYD 1970). Some cells, for example, those in the line of the incision (VAN LANCKER 1977) are destroyed immediately; others will later develop degenerative changes which ultimately progress to cell necrosis. Some cells will show degenerative changes up to a point, and then these will reverse, and the cell recover (see 3.2.1.3).

Those cells which die subsequently undergo autolysis due to the disorganisation of intracellular enzyme systems and their indiscriminate action (WRIGHT 1955; HESLOP 1981). Ultimately, the cell disintegrates, and the enzymes are released into the environment where they may act on other tissue (WRIGHT 1955), although plasma inhibitors may limit this in the sites closest to a functioning circulation (BOYD
Within the centre of the wound these changes are likely to contribute to further cell necrosis, thereby potentiating the oedema. This will occur particularly when it is endothelial cells which are degenerating, causing gaping of the intercellular junctions. In well vascularised tissues such as those of the oral mucosa (especially supraperiosteally), there is likely to be a significant incidence of prolonged vessel leakage as a result of such endothelial damage. The discharge of polymorph lysosomal enzymes is also likely to contribute to endothelial and connective tissue cell damage.

An important question therefore concerning post-surgical inflammation is the role of these cells (PMNs). It is known that they are chiefly responsible for the elimination of contaminating organisms and in this their role is clear. However, they are also able to readily inflict severe tissue damage through release of activated cytoplasmic constituents, particularly oxygen radicals. It is not yet clear what factors initiate neutrophils to adopt the more aggressive, damaging role, apparently releasing these bacteriocidal agents indiscriminately. Bacteria or bacterial products may be involved (3.4; 9.3). The extent of this activation in surgical wounds has not been determined.

The surgical wound thus contains two sources of oedema. In addition to the effects of cell degeneration and necrosis as a direct result of surgery (described above), it is likely that plasma and cellular chemical mediators are also active in increasing vessel permeability (see 3.3; 3.4). The quantitative effect of each has not been described, though it would seem that the surgical effects predominate because of the prolonged nature of the oedematous response. It is likely however, that there is some degree of continuous
activation or renewed activation of mediators as the reaction progresses, and particularly as cells degenerate, releasing intracellular enzymes.

Some attempt has been made to draw together all these factors in **TABLE 10.1**, thereby providing some description of the post-surgical oedematous response against a very approximate time scale based on the observation (described earlier, 5.1) of maximum post-surgical oedema occurring at 24-36 hours. Presentation of such an outline is based upon the similar concept of VINEGAR et al (1982). It is complicated by the fact that the surgical insult is not a single injury, but a series of injuries proceeding until the surgery is complete. It must be admitted that major deficiencies are present in this schema, and much is conjecture, particularly aspects of the time scale. These problems could be corrected by careful experimental investigation. Nevertheless, it was felt that presenting such an outline at least provided some definition of the post-surgical response and clearly summarised the major factors involved in its aetiology.

TABLE 10.1 SCHEME REPRESENTING THE ONSET, DEVELOPMENT AND DECAY OF POST-SURGICAL OEDEMA.
(The removal of the mandibular third molar tooth).

<table>
<thead>
<tr>
<th>Onset.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1. Surgical injury (?leading to altered tissue protein)</td>
</tr>
<tr>
<td>- vessels divided - frank haemorrhage</td>
</tr>
<tr>
<td>- tissues compressed and stretched</td>
</tr>
<tr>
<td>- cells devitalised</td>
</tr>
<tr>
<td>- histamine released from mast cells</td>
</tr>
<tr>
<td>- entry of microorganisms (3.2.1.3; 3.3.2.1)</td>
</tr>
<tr>
<td>Step 2. Haemostasis - begins the moment of incision, but although normally complete within minutes, the continued surgical insult disrupts early attempts and creates additional injury. (1.3)</td>
</tr>
<tr>
<td>Step 3. Activation of Hageman Factor and dependent systems. (3.3.1.4)</td>
</tr>
<tr>
<td>Step 4. Kinin and plasmin released. (3.3.1.1; 3.3.1.2)</td>
</tr>
<tr>
<td>? activation of complement. (3.3.1.3)</td>
</tr>
</tbody>
</table>

407
Step 5. Increased blood flow and vessel permeability. (3.2.1.5)

Step 7. Leucocyte chemotaxis (particularly PMNs) and adherence to vessels at inflammatory site. (3.2.2.1; 3.2.2.4)

Step 8. PMN diapedesis into the injured interstitium. (3.2.2.2)

Step 9. Biosynthesis of prostaglandins and activation of leucocyte lysosomal contents. (3.3.2.2; 3.3.2.3)

Step 10. (Limited) release of vasoactive prostaglandins, oxygen radicals and active lysosomal contents.

Step 12. Phagocytosis of bacteria and necrotic cells/cell fragments.

Step 13. Some leucocytes damaged/destroyed during encounter with microorganisms.

Step 14. Some "leakage" of active lysosomal enzymes into the interstitium during phagocytosis and following leucocyte injury. (3.2.2.6)

Step 15. Enzyme-induced tissue damage causing:
- tissue devitalisation
- membrane perturbations — PG synthesis.

Step 16. Major phase of prolonged vasodilatation commences. (3.2.1.5)

Step 17. Vascular permeability further increased.

Step 18. Efferent lymphatics obstructed by fibrin deposition. (4.8)

Development.

Step 20. Death of tissue and inflammatory cells at centre of wound due to hypoxia and surgical injury (?time). (3.2.1.3)

Step 21. Release of an agent chemotactic for monocytes from injured and phagocytosing PMNs. (3.2.2.5)

Step 22. Emigration of monocytes into the injured site. (3.2.2.3)

Step 23. Monocyte-neutrophil interaction.

Step 24. Cytoplasmic injury from activated enzymes in cytoplasm and lysosomes of damaged PMNs. (3.3.2.4)
Step 25. Enzymatic injury to PMN plasma membrane.

Step 27. Further enzyme-induced tissue damage and lysis.

Step 28. Autolysis of damaged/hypoxic tissue cells (including endothelial cells).

Step 29. Further release of intracellular enzymes.

Step 30. Enzyme-induced increase in vessel permeability.

Step 31. Loss of endothelial cells causing additional increased permeability.

12th hr Step 32. Early phagocytosis of neutrophils by monocytes. (3.2.2.5)

15th to Step 33. Reduction in the rate of exudate formation.

18th hrs

Decay.

18th to Step 34. Continued monocyte phagocytosis as monocyte infiltration peaks. (3.2.3)

24th hrs Step 35. Migration of endothelium to replace lost cells. (1.5.1.1)

24-36 hrs Step 36. Cessation of exudate formation. (5.1)

Step 38. Proliferation of reparative tissue. (1.5)

3 to Step 40. Restitution of flow in non-sectioned lymphatics.

5 days Step 41. Epithelial migration. (1.5.1.2)

Step 42. Collagen deposition. (1.5.2)

7-10 days Step 42. Complete resolution of oedema.

Importantly, it should be noted that this schematized postsurgical oedematous response may be significantly altered by various physiological effects and pathological states. Whilst these are too varied to reiterate here, some general principles are evident.
Firstly, it is the hypothesis of this author that any circumstances which delay the deposition of collagen and proteoglycans in the wound also lead to a prolonged and perhaps enhanced inflammatory response. This is because the oral wound cannot be fully immobilised, and early movement across the wound will shear the newly formed vessels, renewing increased vessel permeability, and possibly reinstituting wound haemorrhage, (6.2.5.5). Such conditions may occur in nutrient deficiency states (for example, zinc, vitamin A and C, protein and carbohydrate deficiencies), though these deficiencies would normally have to be chronic and fairly severe for such effects to be clinically evident (6.2.1). The ultimate effect of the continued operation of shear forces in the weakened wound is wound dehiscence.

Secondly, similar effects may result where the inflammatory response itself is heightened or prolonged since significant deposition of collagen does not normally occur until resolution of the inflammatory phase is well under way. This effect may be seen where the pathosis increases tissue hypoxia, as in obesity (5.3.6), some anaemias (5.3.2.2) and cardiovascular disease (5.3.3). Enhanced inflammatory responses are probably also seen during the female sexual cycle when hormone levels peak (5.2.3.1), and in association with chronic skin disease (5.3.5).

Conditions seen in diabetes may also contribute to tissue hypoxia through vessel disease. This plus the other factors associated with diabetes (including defective insulin levels or responses) may produce severe depression of all aspects of healing in the uncontrolled diabetic (5.3.1). Leucocyte disorders in which cell function is depressed also lead to prolonged inflammatory responses, in addition to reducing body resistance to contaminating microorganisms. This commonly
leads to wound sepsis in severe cases (5.3.2.1).

Thirdly, disorders in which haemostasis is depressed (for example, thrombocytopenia) may lead to persistence of haemorrhagic oozing, particularly at wound edges. This noticeably delays the institution of an effective inflammatory response, and therefore delays subsequent healing (5.3.2.3). Persistent oozing may also lead to the development of a haematoma within the wound, or between adjacent tissue planes. This further increases the inflammatory response, both through the continued activation of plasma mediators and the liberation of vasoactive substances by cells, and also because of the large mass of fibrin which must later be phagocytosed (6.3.5). Of course, in the presence of severe disorders of haemostasis, haemorrhage itself is the more significant clinical concern.

Underlying all these and other factors, it is likely that the connective tissue framework and genetically-determined constitution exert a significant influence over the expression of oedema. This would account for differences seen between different tissues, and is likely to be significant in explaining why different individuals develop different responses to similar surgery (5.2.6). The vascularity of the particular area and hence the extent of vessel damage is also significant (see 2.7). Microbial (6.2.3) and salivary factors (6.2.4) are important, specifically oral components of the inflammatory response.

Unfortunately, many aspects of inflammation as it pertains to oral surgical wounds remain unclear. Much information has to be extrapolated from skin wounds, and while this is a commencing point, many areas would be well served by research which is particularly directed to the intraoral wound. Nevertheless, on the basis of
comparisons of vascular supply, tissue structure and so on (2.7.4), it appears that there are many similarities with skin healing, and therefore that it is reasonable to base discussion upon such wound healing research. Important differences occur in the plane and rate of epithelial migration and the rate of connective tissue healing; mucosal wounds generally heal more rapidly (TEN CATE 1966; SCIUBBA et al 1978; BOTTOMLEY 1979).

Interestingly, the small pilot study using ultrasonography to examine the internal topography of the oedematous tissues suggested that oedema resulting from the removal of mandibular third molars was primarily within masseteric fascia. The factors which direct such collection have not been fully clarified though these findings would suggest that the chief surgical injury is closely related to this region.

Having discovered that post-surgical inflammation and oedema is chiefly the response to surgical injury, the clinician must arrive at the question of its biological significance. It must be agreed that not all of the inflammatory response is beneficial; some components in fact cause significant tissue injury. While quantitative studies have not been undertaken, it is likely that some of these components (for example, activated PMN lysosomal contents) are active in post-surgical inflammation. However, it would seem that the accumulated fluid in moderation is generally advantageous or at least not harmful, biologically speaking (9.2.1).

The patient however may not agree, both because of the discomfort (some of which is attributable to the fluid distension), and because of their altered countenance and limitation of functions such as talking and eating. Importantly however, the major cause of these
problems is probably more closely linked to the surgical wound itself, the associated neural excitation and so on, rather than more peripheral events such as fluid collection in surrounding tissues. In any case, some early limitation of function is beneficial to wound repair. The prescription of effective analgesics and rest may be all that is required. This approach of course assumes that oedema is not so excessive as to limit vital functions or structures such as the airway. It also assumes that the accumulated fluid is not pooled to such an extent that the supply of nutrients such as oxygen falls below critical levels (6.2.1.4).

Whilst such assumptions are in most cases accurate, there is always the exception. As raised in 9.3, the patient whose inflammatory response is excessive becomes a difficult management problem since all agents and therapies which assist in limiting the formation of oedema must be present immediately after surgery or earlier. It is certainly not reasonable that all patients should receive treatment to reduce the development of oedema. More so since no therapies or agents so far discovered completely prevent oedema formation (though the synthetic corticosteroids come closest). This observation would be expected from an understanding of the aetiology of the post-surgical response, since the major portion of the oedema is a direct result of the surgical injury, with the remainder being mediated by a wide variety of inflammatory substances including kinins, prostaglandins and complement. It is likely that anti-inflammatory agents only modify the release and activation of these substances, although the membrane stabilisation attributed to steroids may serve to protect damaged cells from degeneration (Chapter 8).
The relative merit of the various agents in the post-surgical situation is discussed in 8.4. In summary, antibiotics may improve flap vitality but do not appear to significantly alter the oedematous response (8.3.2.2). Plant and animal enzymes (8.3.2.3) and antihistamines (8.3.2.1) are generally considered ineffective against oedema though they may ameliorate the discomfort. The non-steroidal anti-inflammatory drugs appear to provide some limitation of inflammation and oedema, probably through suppression of the cyclooxygenase pathway of prostaglandin synthesis; this mode of action also appears to frequently lead to the development of side-effects (8.3.2.4). The corticosteroids are undoubtedly the most widely used and most clinically and experimentally effective anti-oedema agents. However, the wide base of their action leads to significant suppression or modification of many tissue functions. Not least of these is suppression of leucocyte function, which must increase the susceptibility to infection (particularly in oral wounds) and suppression of healing overall. While it may be that the side-effects of their short-term usage are of minimal clinical significance, this has not been confirmed in wound healing studies. Until this has been done, their usage must remain potentially hazardous (8.3.2.5).

One of the newer anti-oedema agents is the group of drugs known as the benzo-pyrones. The few studies so far performed on their action suggests that they are effective, though perhaps more in obtaining earlier resolution of oedema than in restricting its maximal development. A positive aspect to their use is that they appear to act by accelerating normal physiological mechanisms. Further, side-effects are almost non-existent. While additional investigation is required to confirm their clinical and experimental efficacy, these drugs appear to offer a useful addition to the future surgeon's armamentarium for
dealing with this difficult area (8.3.2.6).

Since no agent or therapy has full clinical and experimental acceptance in reducing oedema formation, the problem remains as to how post-surgical oedema following oral surgical procedures should be managed? The initial answer to this question must be an assessment of the major clinical factors postulated to be involved with the aetiology of this oedema (9.3). Foremost in this must be the degree of surgical trauma. With this as the baseline, it is uncommon for the patient who has undergone minor oral surgery (normally including the surgical removal of impacted teeth), to encounter severe problems with facial oedema (excluding haemorrhage and infection, by definition), particularly if the outline described in the previous chapter is carefully attended to. There would therefore appear to be no need to be concerned with oedema in such circumstances, except that the patient should be warned about it and its consequences.

In the case of major oral and maxillofacial surgery, respiratory obstruction is a significant risk. While the use of corticosteroids is considered justified by many surgeons in such circumstances, this author does not accept that the safety of their use has been adequately documented, particularly with regard to their suppression of healing and increased susceptibility to infection. Some of the older techniques of oedema control (such as drainage) may be preferable until research has clarified the picture concerning steroids or other, less damaging agents have been found. Such drains should preferably be closed suction systems exiting from a separate stab incision so as to avoid problems with retrograde infection (8.3.1.3).
This management protocol does not deny that oedema may be associated with complications, particularly when there is an extreme response. However, it would appear that these situations are mostly associated with either the formation of a large haematoma or the early development of cellulitis. The difficulty in assessing these factors, particularly the latter, is determining whether the oedema-induced tissue changes promoted the development or spread of the causal organisms, or whether it merely represents the concurrent presentation of two separate conditions. The answer is probably a little of both, since it is likely that massive oedema will to some extent compromise tissue function, thereby allowing microorganisms to proliferate more readily. It would therefore seem advisable that appropriate antibiotics be prescribed in situations where the inflammatory reaction is likely to be severe.

With the obvious presence of numerous unsolved issues throughout this presentation, there are many areas towards which future investigations could be directed.

For the oral surgeon, many gaps remain in the understanding of the ultrastructure and physiology of oral tissues and in their response to trauma. This information is important not only to describe the oral response to injury; it also may shed light on a number of other pathological processes which are expressed intraorally. Actual definition of the biological, cellular damage caused by surgery is vital. It is continually stated that damage occurs and that it is repaired by a particular series of events. However, the damage itself is poorly defined. The clinician is therefore making judgements about surgical techniques and various aspects of management without the benefit of information regarding the microscopic changes involved. This
kind of information may allow increased control of the extent of the cellular injury.

On a similar line, the function of PMN leucocytes in the oral surgical wound and the level of their activation need to be more closely described. Understanding here in the future may allow the surgeon some degree of control of the action of these cells, thereby limiting the extent of their destruction of viable tissue. Associated with this question is more data on the level of bacterial contamination in the surgical wound, the effect of the debridement on this level, and how the contaminating organisms affect the inflammatory response. Consideration of particular organisms would also be important here.

Concerning the therapeutic control of oedema, it would seem that two groups require further investigation and development. Firstly, the synthetic steroids: research into their mode of action is continuing and this is important in defining their effects. However, there are relatively few studies of their biological effects, particularly those detrimental to healing. The continued development of new agents may enable the synthesis of agents with more specific anti-inflammatory action and therefore less side-effects. However, it would seem that their high level of efficacy is at least partly due to their widespread basis of action.

Secondly, the benzopyrones: little information is yet available as to their use in situations of acute inflammation; further clinical and experimental investigation of their action and effectiveness will aid in clarifying their place.

Following on from the small experimental component of this thesis, the use of ultrasonography in the assessment of facial, and
possibly lingual, swelling deserves further investigation. The initial difficulty is the definition of the normal sonographic appearance of these tissues, however, the technique has proved beneficial in examining this region, and may be useful in the assessment and diagnosis of facial swelling of various types.

In summary, this thesis has examined the biological basis of the surgical insult and its repair, particularly as it relates to the intraoral wound. This basis has then provided the context for a detailed examination of the aetiology of the oedema which is subsequent to this injury. The aim in providing this profile of post-surgical oedema has been:

i) to clarify both clinical and microscopic factors in its aetiology and to set these out in a sequential schema,

ii) to set post-surgical oedema in its perspective and therefore divest it of some of the empirical assessment with which it has been regarded,

iii) to suggest an appropriate management protocol.

It is hoped that this may allow a more rational approach for clinicians to this common phenomenon.
BIBLIOGRAPHY

Anonymous.
Wound suction. Better drainage with fewer problems.

Adams, D.
The mucus barrier and absorption through the oral mucosa.

Addicks, K., Weigelt, H., Hauck, G., Lubbers, D.W., Knoche, H.
Light and electron microscopic studies with regard to the role of
intraendothelial structures under normal and inflammatory conditions.

Ahonen, J., Jiborn, J., Zederfeldt, B.
Hormone influences on wound healing.
"Wound Healing and Wound Infection". T.K. Hunt (Ed.)

Akerstedt, T.
Altered sleep/wake patterns and circadian rhythms.

Alvarez, O.M., Gilbreath, R.L.
Thiamine influence on collagen during the granulation of skin wounds.

Amin, M.M., Engel, M.B., Laskin, D.M.
Effect of indomethacin on postsurgical oedema in rats.

Amler, M.H.
Pathogenesis of disturbed extraction wounds.

Anderson, J.R.
Minimizing haemorrhage and oedema in rhinoplasty.

Andreassen, T.T., Fogdestam, I., Rundgren, A.
A biomechanical study of healing of skin incisions in rats during
pregnancy.

Appenzeller, O., McAndrews, E.J.
The influence of the central nervous system on the triple response of
LEWIS.

Archer, W.H.
"Oral and Maxillofacial Surgery". 5th Edition W.B. Saunders (Publ.)
pp 131-3, 444-6, 1975.

Arfors, K.E.
Radicals and the microcirculation.

B.1
Arfors, K.E., Rutili, G., Svenajo, E.
Microvascular transport of macromolecules in normal and inflammatory conditions.

Ariyan, S., Marfuggi, R.A., Harder, G., Goodie, M.M.
An experimental model to determine the effects of adjuvant therapy on the incidence of post-operative wound infection. I. Evaluating pre-operative radiation therapy.

Aronofsky, D.H.
Reduction of dental post-surgical symptoms using non-thermal pulsed high-peak-power electromagnetic energy.

Artigue, R., Bruley, D., von Rosenberg, D., Mochizuki, M.
The effect of the red blood cell deoxygenation rate on oxygen delivery to tissues.

Arturson, G.
Microvasculature permeability to macromolecules in thermal injury.

Aschheim, E.
Passage of substances across the walls of blood vessels: kinetics and mechanism.

Aursnes, I.
Increased permeability of capillaries to protein during thrombocytopenia. An experimental study in the rabbit.

Austen, K.F.
Chemical mediators of the acute inflammatory response in man.

Baez, S.
Microcirculation.

Baez, S.
Microvascular terminology.

Bailey, A.J.
Platelets, coagulation and collagen. Developmental changes in normal dermis and wound healing.

Bambara, L.M., Cebalbano, R., Corrocher, R., De Sande, G.
The local inflammatory response in leucocyte disorders.

B.2
Baqai, R., Hafiz, A.
Salivary yeast flora in healthy adults and its relation to pH.

Baqai, R., Hafiz, A.
Bacteriological study on the saliva of healthy adults.

Baqai, R., Zuberi, S.J., Siddiqui, P.M.A.
Bacteriological study of human fasting and non-fasting saliva.

Barclay, J.K.
Complications of minor oral surgery.

Barnhart, M.I., Baechler, C.A.
Endothelial cell physiology, perturbations and responses.

Barnhart, M.I., Sulisz, L., Bluhm, G.B.
Role for fibrinogen and its derivatives in acute inflammation.
"Immunopathology of Inflammation". B.K. Forscher & J.C. Houck (Eds.)

Bartlet, J.G., Gorbach, S.L.
Anaerobic infections of the head and neck.

Bekemeier, H., Freywald, B., Giessler, A.J., Schmidt, H.-W.
Simultaneous and continuous measurement of swelling and skin
temperature as well as discrete measurements of the pain threshold in
paw oedemas of restrained rats.

Bentley, J.P.
Mucopolysaccharide synthesis in healing wounds.

Bentley, J.P.
Proteoglycans of the connective tissue ground substance.
"Wound Healing and Wound Infection". T.K. Hunt (Ed)

Bergenholtz, A., Gustafsson, G.T., Hansrom, L.
The effect of antifibrinolytic agents on wound healing in vitro.

Berlinger, N.T.
Wound healing.

Bernick, S.
Age changes in the blood supply to human teeth.
Bertolami, C.N., Cohen, C.H., Chrzanowski, R.R.
Quantitation of experimental post-surgical oedema.

Bertsch, S., Marks, F.
A comparative study on wound healing in nonatal and adult mouse epidermis in vivo.

Bhangoo, K.S., Quinlivan, J.K., Connelly, J.R.
Elastin fibres in scar tissue.

Bishop, J.G., Dorman, H.L.
Control of blood circulation in oral tissues.

Bjork, J., Del Maestro, R.F., Arfors, K.E.
Evidence for participation of hydroxyl radical in increased microvascular permeability.

Blechman, H., (moderator)
Is inflammation a defense mechanism? A debate.

Boers, W., van Gool, J., Zwart, N.A.
Effect of human cord and post-operative serum in experimental inflammation in the rat.

Bohm, G.M.
Vascular events in inflammation.

Bondareff, W.
Submicroscopic morphology of connective tissue ground substance with particular regard to fibrillogenesis and ageing.
Gerontologia 1: 222-33, 1957.

Bonnet, J., Loiseau, A.M., Oroven, M., Bessin, P.
Platelet-activating factor acether involvement in acute inflammatory and pain processes.

Bonta, I.L., Adolfs, M.J.P., Parnham, M.J.
Prostaglandins E2 evaluation of cyclic-AMP in granuloma macrophages at various stages of inflammation: relevance to anti-inflammatory and immunomodulatory functions.

Bornstein, P.
The cross-linking of collagen and elastin.
Bottomley, W.K.
Physiology of oral mucosa.

Bourke, J.B., Balfour, T.W., Hardcastle, J.D., Wilkins, J.L.
A comparison between suction and corrugated drainage after simple
mastectomy: a report of a controlled trial.

Bourne, H.R., Lichtenstein, L.M., Melmon, K.L., Henney, C.S.,
Weinstein, Y., Shearer, G.M.
Modulation of inflammation and immunity by cyclic AMP.

Bourne, M.S.
The effect on healing of analgesic and anti-inflammatory therapy.

Bowen, W.H.
Defense mechanisms in the mouth and their possible role in the
prevention of dental caries: a review.

Boyd, W.
"Textbook of Pathology". H. Kimpton (publ.) Lond. 8th Edition pp

Bradley, J.C.
Age changes in the vascular supply of the mandible.

Bradley, J.C.
The clinical significance of age changes in the vascular supply of
the mandible.

Breytenbach, H.S.
Effects of tanderil (oxyzphenbutazon), chymoral (proteolytic enzymes)
and placebo in the control of swelling, trismus and pain after the
removal of impacted wisdom teeth.

Breytenbach, H.S.
Objective measurement of post-operative swelling.

Brote, L., Stendahl, O.
The function of polymorphonuclear leucocytes after surgical trauma.

Brown, J.H., Kissel, J.W., Lish, P.M.
Studies on the acute inflammatory response. 1. Involvement of the
Central Nervous System in certain models of inflammation.

Brown, L.R., Merrill, S.S., Allen, R.A.
Microbiological study of intraoral wounds.
Brune, K., Rainsford, K.D., Peskar, B.A.
Prostaglandin release from macrophages: modulation by anti-inflammatory drugs.

Bruns, R.R., Palade, G.E.
Studies on blood capillaries. I. General organization of blood capillaries in muscle.

Bruns, R.R., Palade, G.E.
Studies on blood capillaries. II. Transport of ferritin molecules across the wall of muscle capillaries.

Budd, D.C., Cochrane, R.C., Fouty, W.J.
Cholecystectomy with and without drainage. A randomised, prospective study of 300 patients.

Buddemeyer, E.U.
The physics of diagnostic ultrasound.

Buerk, C.A., Chandy, G., Pearson, E., MacAulay, A., Soroff, H.S.
Zinc deficiency: effect on healing and metabolism in man.

Bullough, W.S.
Mitotic and functional homeostasis.

Bullough, W.S.
Epithelial repair.

Bullough, W.S.
The action of the chalones.

Bullough, W.S., Laurence, E.B.
Stress and adrenalin in relation to the diurnal cycle of epidermal mitotic activity in adult male mice.

Bullough, W.S., Laurence, E.B.
Mitotic control by internal secretion: the role of the chalone-adrenalin complex.

Bullough, W.S., Laurence, E.B.
The role of glucocorticoid hormones in the control of epidermal mitosis.
Bundgaard, M.
Transport pathways in capillaries: in search of pores.

Bundgaard, M., Frokjaer-Jensen, J., Crone, C.
Endothelial vesicles as part of a tubular system communicating with
the cell surface.

Burgess, E.M.
Wound healing.

Burke, J.F., Morris, P. J., Bondoc, C.C.
The effect of bacterial inflammation on wound healing.
"Repair and regeneration. The scientific basis for surgical

Burrows, M.E.
Pharmacology of arterioles.

Bystedt, H.
Clinical and haematological investigation of Rheumapax in surgical
removal of impacted wisdom teeth from the mandible.

Bystedt, H., Dahlback, A., Dornbusch, K., Nord, C.E.
Concentrations of azidocillin, erythromycin, doxycycline and
clindamycin in human mandibular bone.

Bystedt, H., Nord, C.E.
Effect of antibiotic treatment on post-operative infections after
surgical removal of mandibular third molars.

Bystedt, H., Nord, C.E., Nordenram, A.
Effect of azidocillin, erythromycin, clindamycin on post-operative
complications after surgical removal of impacted mandibulae third
molars.

Bystedt, H., von Konow, L., Nord, C.E.
Effect of trimethoprim on post-operative complications after surgical
removal of impacted third molars.

Caci, F., Gluck, G.M.
Double-blind study of prednisolone and papase as inhibitors of
complications after oral surgery.

Caffrey, B.B., Jonsson, H.T.
Role of essential fatty acids in cutaneous wound healing in rats.

B.7
Callender, R.M.
Observation of the capillary structure of the human gingiva.

Cameron, I.W.
An investigation into some of the factors concerned with the surgical
removal of the impacted lower wisdom tooth, including double blind
trial of chymoral.

Campbell, M.J.A.
The effect of age and the duration of diabetes mellitus on the width
of the basement membrane of small vessels.

Cappell, D.F., Anderson, J.R.
"Muir's Textbook of Pathology". E. Arnold (Lond.) 9th Edition pp
2-14, 1972.

Carl, W., Schaaf, N.G., Sako, K.
Oral surgery and the patient who has had radiation therapy for head
and neck cancer.

Carpenter, N.H., Gates, D.J., Williams, H.T.G.
Normal processes and restraints in wound healing.

Casley-Smith, J.R.
The lymphatic system in inflammation.
"The Inflammation Process". B.W. Zweifach et al. (Eds) 2nd Edition

Casley-Smith, J.R.
The functioning and interrelationships of blood capillaries and
lymphatics.

Casley-Smith, J.R.
Calculations relating to the passage of fluid in protein out of
arterial-limb fenestrae through basement membranes and connective
tissue channels and into venous limb fenestrae and lymphatics.

Casley-Smith, J.R.
The actions of the benzo-pyrones on the blood-tissue-lymph-system.

Casley-Smith, J.R.
Channels through the interstitial tissue.

Casley-Smith, J.R.
Colloidal osmotic pressure as a force in the formation of lymph.
Casley-Smith, J.R.
Lymph and lymphatics.

Casley-Smith, J.R.
The fine structure of the microvasculature in inflammation.

Casley-Smith, J.R.
Are there vesicular thoroughfare channels in endothelium?.

Casley-Smith, J.R.
Pharmacology of lymphatics and tissue proteolysis.

Casley-Smith, J.R.
Human trials of the benzo-pyrone in high-oedemas.

Casley-Smith, J.R.
The structure and functioning of the blood vessels, interstitial tissues and lymphatics.

Casley-Smith, J.R.
Injury and the lymphatic system.

Casley-Smith, J.R., Carter, D.B.
The passage of macromolecules across inflamed capillary endothelium via large vacuoles.

Casley-Smith, J.R., Gaffney, R.M.
Excess plasma proteins as a cause of chronic inflammation and lymphoedema: quantitative electron microscopy.

Casley-Smith, J.R., Vincent, A.H.
The qualitative morphology of interstitial channels in some tissues of the rat and rabbit.

Catchpole, H.R.
Effects of hormones on connective tissue.

Catchpole, H.R.
Capillary permeability. III. Connective tissue.
Catellani, J.E.
Review of factors contributing to dry socket through enhanced fibrinolysis.

Chambers, R., Zweifach, B.W.
Capillary endothelial cement in relation to permeability.

Chue, P.W.Y.
Acute angioneurotic oedema of lips and tongue due to emotional stress.

Chvapil, M.
Zinc and other factors of the pharmacology of wound healing.
"Wound Healing and Wound Infection". T.K. Hunt (Ed)

Chvapil, M., Hameroff, S.R., O'Dea, K., Peacock, E.E.
Local anaesthetics and wound healing.

Chvapil, M., Koopman, C.F.
Age and other factors regulating wound healing.

Cimasoni, G.
The crevicular fluid.
"Monographs in Oral Science". Vol 3 H.M. Myers (Ed), S. Karger (Publ)

Civetta, J.M.
A new look at the Starling equation.

Role of macrophages in wound healing.

Clough, G., Michel, C.C.
Effects of low temperature (4-7 degrees celsius) on the labelling of endothelial cell vesicles with ferritin.

Clough, G.
The dependence of vesicular transport on various physiological parameters.

Cochrane, C.G., Revak, S.D., Wuepper, K.D.
Activation of Hageman factor in solid and fluid phases. A critical role of Kallikrein.
Cochrane, C.G., Revak, S.D., Wuepper, K.D., Johnston, A., Morrison, D.C., Ulevitch, R.
Soluble mediators of injury of the microvasculature: Hageman factor and the kinin forming, intrinsic clotting and fibrinolytic systems.

Cockle, S.M., Harkness, R.A.
Changes in salivary peroxidase and polymorphonuclear neutrophil leucocyte enzyme activities during the menstrual cycle.

Wound healing: a brief review.

Cohen, I.
Stress and wound healing.

Cohnheim, J.

Colen, L.B., Crawley, W.A., Buncke, H.J.
Effect of parenteral steroids on oedema in replanted rat legs.

Cooper, Z.K.
Mitotic rhythm in human epidermis. Introduction and review of literature.

Corboy, J.M.
Corticosteroid therapy for the reduction of post-operative inflammation after cataract extraction.

Cotran, R.S.
The delayed and prolonged vascular leakage. II An electron microscopic study of the vascular response after thermal injury.

Cotran, R.S.
Delayed and prolonged vascular leakage in inflammation. III Immediate and delayed vascular reactions in skeletal muscle.

Cotran, R.S., Majno, G.
A light and electron microscopic analysis of vascular injury.

Cottier, H., Dreher, R., Keller, H.V., Roos, B., Hess, M.W.
Cytokinetic aspects of wound healing.
Cranin, A.N., Cranin, S.L.
A study of the effects of an antihistamine on oral surgical post-operative sequelae.

Crocker, E.F.
Grey scale ultrasound. Its impact on clinical practice.

Crocker, E.F., Jellins, J.
Grey scale ultrasonic examination of the thyroid gland.

Crocker, E.F., Walker, A.J.
Clinical applications of high resolution real time sector scanning.

Crone, C.
Capillary permeability. II. Physiological conditions.

Crone, C.
The Zwiefach International Award 1979. Ariadne's thread - an autobiographical essay on capillary permeability.

Crone, C.
Summary of discussion (Hammersen, Frokjoer-Jensen, Clough).

Curran, J.B., Kennett, S., Young, A.R.
An assessment of the use of prophylactic antibiotics in third molar surgery.

Curry, F.R.E.
Is the transport of hydrophilic substances across the capillary wall determined by a network fibrous molecules?.

Debrowski, R., Maslinski, C.
The role of histamine in wound healing. II. The effect of antagonists and agonists of histamine receptors (H1 and H2) on collagen levels in granulation tissue.

Dale, D.C., Wolff, S.M.
Skin window studies of the acute inflammatory responses of neutropenic patients.

Dannenberg, A.M.
The anti-inflammatory effects of glucocorticosteroids. A brief review of the literature.
De Marco, T.J., Kluth, E.V.
The use of Cleocin in post-surgical periodontal patients.

De N'Yeurt, A.
The use of 'Chymoral' in vasectomy.

Di Rosa, M.
Inhibition of cell migration in vivo and granuloma formation.
"Anti-Inflammatory Drugs". J.R. Vane & S.H. Ferreira, (Eds)

Di Rosa, M., Giroud, J.P., Willoughby, D.A.
Studies of the mediators of the acute inflammatory response induced
in rats in different sites by carrageen and turpentine.

Diana, J.N., Fleming, B.P.
Some current problems in microvascular research.

Dieckmann, J.
Clinical tests about the influence of a coumarin-rutin combination in
edemprophylaxis and in edemotherapy in oral and maxillo-facial surgery.

Dieligelmann, R.F., Cohen, I.K., Kaplan, A.M.
The role of macrophages in wound repair: a review.

Dimitrievitch, G.S., Fischer-Dzoga, K., Hpyman, L., Griem, M.L.
Radiosensitivity of the microvascular: early effects on capillaries
and vascular components.

Dintenfass, L., Davis, E.
Blood viscosity factors and capillary abnormalities in diabetes.

Ditzel, J.
Functional microangiopathy in diabetes mellitus.

Ditzel, J.
Oxygen transport impairment in diabetes as related to the development
of retinopathy.

Dodge, P.W., Brodie, D.A., Mitchell, B.D.
Evaluation of the toxicity of anti-inflammatory drugs.
"Anti-Inflammatory Drugs". J.R. Vane & S.H. Ferreira, (Eds)

Donati, L.
The control of mitoses in wound healing.
"The Ultrastructure of Collagen". J.J. Longacre (Ed.) C.C. Thomas
(Publ.) Springfield pp 275-84; 1976.

B.13
Dornbusch, K.
Antibiotic susceptibility in oral bacteria.

Doula, S.
Saliva: its anti-infectious properties.

Drenckhahn, D.
Cell motility and cytoplasmic filaments in vascular endothelium.
Prog. Appl. Microcirc. Vol 1, K. Messmer & F. Hammersen (Eds.),

Drescher, C.
Rhythms and surgery.

Dubois, D.D., Pizer, M.E., Chinnis, R.J.
Comparison of primary and secondary closure techniques after removal of impacted mandibular third molars.

Dumont, A.E.
Fibroplasia: a sequel to lymphocyte exudation.
"The Inflammation Process". B.W. Zweifach et al. (Eds) (2nd Edition)

Dunphy, J.E.
Practical accomplishments and future prospects.

Dunphy, J.E., Jackson, D.S.
Practical applications of experimental studies in the care of the primarily closed wound.

Dvořákov, L., Figar, S.
Capillary filtration in diabetes.

Ebert, R.H., Grant, L.
The experimental approach to the study of inflammation.
"The Inflammation Process". B.W. Zweifach et al. (Eds) (2nd Edition)

Elhany, S., Casley-Smith, J.R.
Mathematical model of the initial lymphatics.

Engel, B.D., Erlick, N.E., Davis, R.H.
Diabetes mellitus. Impaired wound healing from zinc deficiency.

Erickson, E., Zarem, H.A.
Growth and differentiation of blood vessels.
Ericson, Th., Pruitt, K., Wedel, H.
The reaction of salivary substances with bacteria.

Eriksson, A., Albrektsson, T., Grane, B., McQueen, D.
Thermal injury to bone. A vital microscopic description of heat effects.

Fagrell, B., Intaglietta, M.
The dynamics of skin microcirculation as a tool for the study of systemic diseases.

Fahmy, J.A., Moller, S., Bentzon; M.W.
Bacterial flora in relation to cataract extraction. IV. Post-operative inflammation. The role of conjunctival bacteria and certain surgical factors.

Fantone, J.C., Ward, P.A.
Role of oxygen-derived free radicals and metabolites in leucocyte dependent inflammatory reactions.

Farha, G.J., Chang, F.C., Matthews, E.H.
Drainage in elective cholecystectomy.

Farriss, R.S., Hays, L.V.
Controlled trial of the effectiveness of randomized wound closures.

Fauci, A.S., (moderator)
Glucocorticosteroid therapy: mechanisms of action and clinical considerations.

Ferreira, S.H., Vane, J.R.
Mode of action of anti-inflammatory agents which are prostaglandin synthetase inhibitors.

Fine, A.S., Egnor, R., Scopp, I.W., Stahl, S.S.
Methylprednisolone effects upon cytochrome oxidase activity during gingival wound healing in rats.

Fischer, C.W.
Epithelisation.

Fleming, B.P., Diana, J.N.
Interaction between fluid movement and solute exchange in the isolated dog hindlimb.
Flechaus, P.T.
Effect of hyaluronidase on swelling and trismus after removal of impacted wisdom teeth.

Flint, M.H.
The biological basis of Langer's lines.

Florey, H.W.
Inflammation.

Florey, H.W.
Inflammation.

Flynn, T.R., Hoekstra, C.W., Lawrence, F.R.
The use of drains in oral and maxillofacial surgery: a review and a new approach.

Foldi, M., Casley-Smith, J.R.
The roles of the lymphatics and the cells in high-protein oedemas.

Ford-Hutchinson, A.W., Doig, M.V.
Prostaglandins and macrophages.

Forsman, G.H.
A radiographic method of assessing post-operative swelling.

Forrester, J. C., Zederfeldt, B.H., Hayes, T.L., Hunt, T.K.
Mechanical, biochemical and architectural features of repair.

Forrester, J.C.
Mechanical, biochemical and architectural features of surgical repair.

Forrester, J.C.
Surgical wound biology.

Forrester, J.C.
Sutures and repair.
Forrester, J.C.

Fraki, J.E.

Franklin, J.D., Lynch, J.B.

Frantzis, T.G., Reeve, C.M., Brown, A.L.

Fraser, I., Everson, N.W., Nash, J.R.

Friederici, H.H., Tucker, W.R., Schwartz, T.B.

Frogge, M.H.

Frokjaer-Jensen, J.

Frokjaer-Jensen, J.

Frykberg, R., Erben, J.K.

Fung, Y-C.
Fung, Y-C.
Rheology of blood in microvessels.

Fung, Y-C.
Introduction to biophysical aspects of microcirculation.

Gabbiani, G., Majno, G.
Fine structure of endothelium.

Gabor, M.
Anti-inflammatory substance of plant origin.

Gaffney, R.M., Casley-Smith, J.R.
Excess plasma proteins as a cause of chronic inflammation and lymphoedema: biochemical estimations.

Galloway, C.R., Hinds, E.C., Reid, R.
Clinical and laboratory evaluation of streptokinase-streptodornase in oral surgery.

Garcia-Leme, J.
Role of lymphocytes in non-immune experimental inflammation.

Garcia-Leme, J.
Regulatory mechanisms in inflammation: new aspects of autopharmacology.

Garcia-Leme, J., Bechara, G.H., dos Santos, R. R.
A pro-inflammatory factor in lymphocytes. Its role in the development of acute, non-immunological inflammatory reactions.

Garcia-Leme, J., Bechara, G.H., Sudo, L.S.
The pro-inflammatory function of lymphocytes in non-immune inflammation effect of steroidal and non-steroidal anti-inflammatory agents.

Garcia-Leme, J., Hamamura, L., Migliorini, R.H., Leite, M.P.
Influence of diabetes upon the inflammatory response of the rat: A pharmacological analysis.

Garcia-Valdecasas, J.C., Garcia-Valdecasas, F., Pera, C.
Pharmacological reactivity of granulation tissue.

B.18
Gerber, L.E., Erdman, J.W.
Effect of dietary retinyl acetate, beta carotene, and retinoic acid on wound healing in rats.

Gordin, B., Saldeen, T.
Effect of fibrin degranulation products on microvascular permeability.

Germaine, G.R.
Antimicrobial constituents of human saliva.

Germaine, G.R., Tellefson, L.M.
Effect of human saliva on glucose uptake by streptococcus mutans and other oral microorganisms.

Gersch, I., Catchpole, H.R.
The nature of ground substance of connective tissue.

Gersel-Pedersen, N.
Inhibitors of fibrinolysis in saliva after oral surgery measured by enzymic and immunological methods.

Gersel-Pedersen, N.
Fibrinolytic activity of blood and saliva before and after oral surgery.

Giacometti, L., Montagna, W.
Healing of skin wounds in primates.

Gibson, T., Kenedi, R.M.
Factors affecting the mechanical characteristics of human skin.

Gillman, T., Penn, J.
Studies on the repair of cutaneous wounds.

Gilmore, N.J.
Mediators of inflammation and the modes of action of anti-inflammatory agents.

Glasser, J., Barth, A.
Diabetic wound healing and the case for supplemented treatment with topical insulin.
Glenn, E.M., Sekham, N.C.
Clotting processes and inflammation: their probable interrelationships in vivo and in vitro.
"Immunopathology of Inflammation". B.K. Forscher & J.C. Houck (Eds)

Goetzl, E.J.
Oxygenation products of arachidonic acid as mediators of hypersensitivity and inflammation.

Goforth, P., Gudas, C.J.
The effects of steroids on wound healing: a review of the literature.

Golan, J., Mitelman, S., Baruchin, A., Ben-Hur, N.
Vitamin A and corticosteroid interaction in wound healing in rats.

Goldberg, N.D., Haddox, M.K., Zeilig, C.E., Nicol, S.E., Acott, T.S.,
Glass, D.B.
Cyclic GMP, Cyclic AMP, and the Yin Yang hypothesis of biological regulation.

Goldstein, B.H.
Acute dissecting haematoma: a complication of oral and maxillofacial surgery.

Goldstein, I.M.
Lysosomal hydrolases and inflammation: mechanics of enzyme release from polymorphonuclear leucocytes.

Golovsky, D., Conolly, W.B.
Observations on wound drainage with a review of the literature.

Wound oxygen tension of large versus small wounds in man.

Goodson, W.H., Hunt, T.K.
Wound healing and the diabetic patient.

Goodson, W.H., Hunt, T.K.
Wound healing and ageing.

Goodson, W.H., Hunt, T.K.
Deficient collagen formation by obese mice in a standard model.
Goodson, W.H., Radolf, J., Hunt, T.K.
Wound healing and diabetes.
"Wound Healing and Wound Infection". T.K. Hunt (Ed)

Goonatilake, P.C.L.
Post-operative wound infection: application of multiple regression
analysis to patient parameters.

Gordon, H.A., Rovin, S., Bruckner, G.
Blood flow, collagen components of oral tissue and salivary
Kallikrein in young to senescent, germ free and conventional rats. A
study on the aetiologic factors of periodontal disease.

Gordon, J.L., Pearson, J.D.
The interaction of vascular cells and blood cells.

Gordon, L.I., Douglas, S.D., Kay, K.E., Yamada, O., Osserman, E.F.,
Jacob, H.S.
Modulation of neutrophil function by lysozyme. Potential negative
feedback system of inflammation.

Graff-Radford, S.B., Gadeley, M.A., Lubowski, W.M., Pincus, S.I.,
Sacks, J., Sher, C.R.
The effect of tromasin S.A. on facial swelling.
Diastema 7-8: 31-4, 1979-80.

Green, J.P.
Steroid therapy and wound healing in surgical patients.

Greenfield, W., Caruso, W.
Systematic use of steroids following office oral surgery.

Grega, G.T.
Haemodynamic aspects of oedema formation and its inhibition by
anti-inflammatory drugs.

Griffin, D.J.
The effect of power instrumentation on bone healing.

Grills, H.C., McLennan, J.E., Wolford, F.G.
Activity and properties of collagenase from healing wounds in mammals.
"Repair and regeneration. The scientific basis for surgical practice". J.E. Dunphy & W. van Winkle (Eds). McGraw-Hill (Blakiston
Grobstein, C.
Epithelio-mesenchymal interactions in relation to reparative processes.

Groszek, D.M.
Promoting wound healing in the obese patient.

Grotte, G.
Passage of dextran molecules across the blood-lymph barrier.

Grotte, G.
The discovery of the lymphatic circulation.

Gryglewski, R.J.
Screening and assessment of the potency of anti-inflammatory drugs in vitro.

Gryglewski, R.J.
Molecular mechanisms of inflammation.

Gupta, S., Rauscher, G., Stillman, R., Fitzgerald, J., Powers, J.C.
The rational use of drains after cholecystectomy.

Guyton, A.C., Granger, H.J., Taylor, A.E.
Interstitial fluid pressure.

Gylling, U., Rintala, A., Taipale, S., Tammisto, T.
Effect of a proteolytic enzyme combine (Bromelain) on post-operative oedema by oral application: a clinical and experimental study.

Habal, M.B., Powell, R.D.
Experimental facial oedema: treatment with Methylprednisolone.

Hadding, U.
Possible contribution of the complement system to the inflammatory state.

Haddy, F.J., Scott, J.B., Grega, G.J.
Peripheral circulation: fluid transfer across the microvascular membrane.
Hagberg, .., Pallin, B.; Ahonen, J., Penttinen, R., Zederfeldt, B.
Collagen synthesis in granulation tissue formed in rats treated with
female sex hormones.

Hallbook, T., Hedelin, H.
Zinc metabolism and surgical trauma.

Hamilton, A.I., Blackwood, H.J.J.
Cell renewal of oral mucosal epithelium of the rat.

Hammersen F.
Endothelial contractility: an undecided problem in vascular research.

Hammersen F., Hammersen, E., Osterkamp-Baust, U.
Structure and function of the endothelial cell. An introduction.

Hardy, J.I., (Ed.)
"Rhoed's textbook of Surgery, Principles & Practice". Vol 2 J.B.

Harlan, J.M., Harker, L.A.
Haemostasis, thrombosis and thromboembolic disorders. The role of
arachidonic acid metabolites in platelet-vessel wall interactions.

Harris, D.R.
Healing of the surgical wound. I. Basic considerations.

Harris, D.R.
Healing of the surgical wound. II. Factors influencing repair and
regeneration.

Harris, H.
Chemotaxis of granulocytes.

Harris, H.
Role of chemotaxis in inflammation.

Harvo-Noponen, M., Seppala, M.
Double-blind study of oral chymotrypsin in patients with episiotomy.

Hauck, G.
Physiology of the microvascular system.
Hauck, G.
Permeability of the microvascular system.

Hauck, G.
Introduction.

Haury, B., Rodeheaver, G., Vensko, J., Edgerton, M.T., Edlich, R.F.
Debridement: an essential component of wound care.
"Wound Healing and Wound Infection". T.K. Hunt (Ed)

Hazarika, E.Z., Knight, M.T.N., Frazer-Moodie, A.
The effect of intermittent pneumatic compression on the hand after
fasciectomy.

Hellem, S., Nordenram, A.
Prevention of post-operative symptoms by general antibiotic treatment
and local bandage in removal of mandibular third molars.

Heslop, B.F.
Cell injury, cell adaptation and related phenomena.
"Clinical Science for Surgeons". W. Burnett (Ed.), Butterworths,
Sydney pp 55-60, 1981.

Higgs, G.A., Eakins, K.E., Moncada, S., Vane, J.R.
Arachidonic acid metabolism in inflammation and the mode of action of
anti-inflammatory drugs.

Hirata, Y., Orth, D.N.
Concentrations of epidermal growth factor, nerve growth factor and
submandibular gland renin in male and female mouse tissue and fluids.

Hock, J.
Vascular morphology in non-inflamed healed gingiva of dogs.

Hohn, D.C., McKay, R.D., Halliday, B., Hunt, T.K.
Effect of oxygen tension on microbicidal function of leucocytes in
wounds and in vitro.

Holt, P.J.L.
A critical comparison of the evaluation of anti-inflammatory therapy
in animal models and man.
"Anti-Inflammatory Drugs". J.R. Vane & S.H. Ferreira, (Eds)

Holund, B., Junker, P., Christoffersen, P., Lyon, H., Lorenzen, I.B.
The effect of D-penicillamine and methylprednisolone on the
morphology of experimental granulation tissue in rats.

B.24
Hooley, J.R., Francis, F.H.
Betamethasone in traumatic oral surgery.

Hooley, J.R., Hohl, T.H.
Use of steroids in the prevention of some complications after oral surgery.

Horn, Y., Sela, M.N., Shlomi, B., Ulmansky, M., Sela, J.
Effect of irradiation timing on the initial socket healing in rats.

Horrobin, D.F.
The regulation of prostaglandin biosynthesis: negative feedback mechanisms and the selective control of formation of 1 and 2 series prostaglandins: relevance to inflammation and immunity.

Houck, J.C.
A general summary of inflammation.

Howe, C.W.
Bacterial flora of clean wounds and its relation to subsequent sepsis.

Howe, J.R.

Howes, R.M., Hoopes, J.E.
Current concepts of wound healing.

Hruza, Z.
Connective tissue.

Huffman, G.G.
Use of methylprednisolone sodium succinate to reduce post-operative oedema after the removal of impacted third molars.

Hugoson, A.
Gingival inflammation and female sex hormones.

Humphries, S.V.
The use of trypsin in the treatment of inflammatory oedema.

Humphries, S.V.
Inflammatory and traumatic oedema.
Hunt, T.K.
Diagnosis and treatment of wound failure.

Hunt, T.K.
Distribution of oxygen and its significance in healing tissue.
"The Ultrastructure of Collagen". J.J. Longacre (Ed.), C.C. Thomas
(Publ.), Springfield pp 177-87, 1976a.

Hunt, T.K.
Control of wound healing with cortisone and vitamin A.
"The Ultrastructure of Collagen". J.J. Longacre (Ed.), C.C. Thomas

Hunt, T.K.
Disorders of wound healing.

Hunt, T.K., Conolly, W.B., Aronson, S.B., Goldstein, P.
Anaerobic metabolism and wound healing: an hypothesis for the
initiation and cessation of collagen synthesis in wounds.

Hunt, T.K., Halliday, B.
Inflammation in wounds: from "laudible pus" to primary repair and
beyond.
"Wound Healing and Wound Infection". T.K. Hunt (Ed.)

Normal repair.

Hunt, T.K., Zederfeldt, B.
Nutritional and environmental aspects of wound healing.
"Repair and regeneration. The scientific basis for surgical

Hunt, T.K., Zederfeldt, B., Goldstick, T.K.
Oxygen and healing.

Hunt, T.K., (Ed)
Proposal for the use of preventive antibiotics in surgery.
"Wound Healing and Wound Infection". T.K. Hunt (Ed) Appleton-

Huntsinger, L.A., Lebherz, T.B.
Double-blind study of the use of oral chymotrypsain in episiotomy.

Hurley, J.V.
"Acute inflammation". Churchill and Livingstone (Publ.) Lond. pp 1
ff, 1972.
Hurley, J.V.
Inflammation.
"Clinical Science for Surgeons". W. Burnett (Ed), Butterworths, Sydney pp 87-102, 1981.

Hurley, J.V.
Personal communication.
1983.

Hutchinson, D., Witt, S., Fairpo, C.G.
Pulsed electromagnetic energy therapy in third molar surgery.

Hutson, J.M., Niall, M., Evans, D., Flower, R.
Effect of salivary glands on wound contraction in mice.

Hyman, W.A., Grounds, D.J., Newell, P.H.
Oxygen tension in a capillary-tissue system subject to periodic occlusion.

Intaglietta, M.
Transcapillary exchange of fluid in single microvessels.

Intaglietta, M.
Effects of vasomotion on fluid balance, tissue pressure and fluid motion.

Irwin, J.W., Wey, B.A.
Inflammation.

Issekutz, A.C.
Vascular responses during acute neutrophilic inflammation. Their relationship to in vivo neutrophil emigration.

Issekutz, A.C., Movat, H.Z.
The effect of vasodilator prostaglandins on polymorphonuclear leucocyte infiltration and vascular injury.

James, A.E., Goddard, J., Price, R.R., Jones, T., Powis, R.
Advances in instrument design and image recording.

Jasani, M.K.
Anti-inflammatory steroids: mode of action in rheumatoid arthritis and homograft reaction.
Johnson, J.T., Cummings, C.W.
Haematoma after head and neck surgery. A major complication?.

Johnston, M.G., Hay, J.B., Movat, H.Z.
The role of prostaglandine in inflammation.

Johnston, R.B.Jr., Lehmeyer, J.
Elaboration of toxic oxygen by-products by neutrophils in a model of
immune complex disease.

Jolly, M.
A vitaminosis and oral mucosal wound healing.

Jolly, M.
Oral premalignancy.

Joris, I., Braunstein, P.W., Pechet, L., Majno, G.
Effect of thrombocytopenia on wound healing. A study in the rat.

Joyner, W.L., Svensjo, E., Arfors, K.E.
Simultaneous measurements of macromolecular leakage and arteriolar
blood flow as altered by PGE, and Beta 2 - receptor stimulant in the
hamster cheek pouch.

Juniper, R.P.
Penicillin: the duration of its activity in blood clots.

Kalin, H., Brune, K.
Effects of colchicine on the microvascular endothelium in response to
acute inflammation.

Kanta, J., Kocner, L., Panacek, V., Voseckova, A., Bartos, F.
Granulation tissue formation in ageing rats.

Kaplan, A.P., Silverberg, M., Dunn, J.T., Ghebrehiwet, B.
Interaction of the clotting, kinin-forming, complement and
fibrinolytic pathways in inflammation.

Kaplan, E.G., Weinstock, R.E.
Clinical evaluation of a proteolytic enzyme as ancillary therapy in
surgery of the foot.
Karaasik, M., Wozniak, L., Pawlikowski, M., Grott-Swiezawska, E., Fijalkowski, W., Armaty, A.
Ultrastructure of the capillaries in the mucous membrane of the vaginal vestibule in diabetic patients treated with insulin.

Karnovsky, M.J.
The ultrastructural basis of capillary permeability studied with peroxidase as a tracer.

Kaspar, D.W., Laskin, D.M.
The effect of porcine skin and autogenous epithelial grafts on the contraction of experimental oral wounds.

Katz, M.A.
Changes in transcapillary protein flux by permeative and connective mechanisms as functions of increasing transcapillary water flux.

Keene, J.J.
Arteriosclerotic changes within the diabetic oral vasculature.

Keithley, J.K.
Wound healing in malnourished patients.

Kessler, M., Hoper, J., Krumme, B.
Influence of local ion activities in tissue on microcirculation.

Keyeux, A.J.M.L.
Functional changes in blood flow after irradiation.

Khosla, V.M., Gough, J.E.
Evaluation of three techniques for the management of postextraction third molar sockets.

Kitchens, C.S., Wiess, L.
Ultrastructural changes of endothelium associated with thrombocytopenia.

Klitzman, B.
Capillary red cell distribution and its effect on oxygen transport.

Knighton, D.R., Silver, I.A., Hunt, T.K.
Regulation of wound healing angiogenesis: effect of oxygen gradients and inspired oxygen concentration.
Koopman, C.F., Coulthard, S.W.
The oral cavity and ageing.

Korbel, A.B.

Kottra, C.J.
Wound healing in the immunosuppressed host.

Kozakiewicz, J., Wrzolkowa, T.
Vascular changes of chronic lupus erythematosus.

Kozam, G.
Strength of capillaries in oral mucous membranes.

Kozniewska, E., Jung, L., Skolasinska, K., Baraniewski, H., Borkowski, M., Wasiutynski, A., Kwiatkowski, J.
Changes in blood flow and permeability of vessels to protein preceding the development of cutaneous ulcers in the hind limb of the rabbit.

Kuehl, F.A., Egan, R.W.
Prostaglandins, arachidonic acid and inflammation.

Kushner, I.
The phenomenon of the acute response.

Ladegaard-Pedersen, H.J.
Inulin distribution volume, plasma volume and colloid osmotic pressure before and after major surgery.

Lagutina, N.Y., Chizhova, A.I., Kochemasov, V.V., Rozanova, N.S., Frinovskaya, I.V.
Examination of permeability of the vascular wall in hypoplastic anaemia.

Landis, E.M., Pappenheimer, J.R.
Exchange of substances through the capillary walls.

Lange, G.D., Folke, L.E.A.
The influence of dental plaques on the microvasculature of the oral mucous membrane.
Langebaek, J., Bay, L.
The effect of chlorhexidine mouth rinse on healing after gingivectomy.

Lymphatics of the upper and lower lip.

Lymphatics of the mouth and neck.

Lasjaunias, P., Berenstein, A., Doyon, D.
Normal functional anatomy of the facial artery.

Laurent, T.C., Hallen, A., Pearce, R.H.
The interaction of plasma proteins with extracellular material in connective tissue.

Lawson, W.
Management of soft tissue injuries of the face.

Leak, L.V.
Studies on the permeability of lymphatic capillaries.

Leak, L.V., Burke, J.F.
Early events of tissue injury and the role of the lymphatic system in early inflammation.

Leibovich, S.J., Ross, R.
The role of the macrophage in wound repair. A study with hydrocortisone and anti-macrophage serum.

Leibovich, S.J., Ross, R.
A macrophage-dependent factor that stimulates the proliferation of fibroblasts in vitro.

Leo, F.P., Rao, G.U.V.
The technology of diagnostic ultrasound.

Leopold, J.R.
Ultrasonography of superficially located structures.
Lerman, M.I., Abakumova, O.Y., Kucenko, N.G., Kobrina, E.M.
Stimulation of growth of connective tissue by low-molecular-weight
constituents from rapidly growing tissues.

Levenson, S.M.
Some challenging wound healing problems for clinicians and basic
scientists.
"Repair and regeneration. The scientific basis for surgical

Levin, M.P., Grower, M.F.
The effects of length of surgery on healing of full and partial
thickness flaps.

Lewis, G.P.
A lymphatic approach to tissue injury.

Lewis, G.P.
Introduction to prostaglandine and inflammation.

Lewis, T.
Observations on some normal and injurious effects of cold upon skin
and underlying tissues.

Lewis, W.H.
Pinocytosis.

Li, A.K.C., Koroly, M.J.
Mechanical and humoral factors in wound healing.

Li, A.K.C., Koroly, M.J., Schattenkerk, M.E., Matt, R.A., Young, M.
Nerve growth factor: acceleration of the rate of wound healing in
mice.

Lie, K.K., Larsen, R.D., Posch, J.L.
Evaluation of an oral proteolytic enzyme in operations upon the hand.

Lievens, P., Leduc, A.
Lymphatic regeneration during wound healing.

Liljemark, W.F., Bloomquist, C.G., Oftedahge, J.C.
Aggregation and adherence of streptococcus sanguis: role of human
salivary immunoglobulin A.

B.32
Lin, J.H., Duffy, J.L., Roginsky, M.S.
Microcirculation in diabetes mellitus. A study of gingival biopsies.
Hum Pathol. 6(1): 77-96, 1975.

Lindhe, J., Socransky, S.S.
Chemotaxis and vascular permeability produced by human periodontopathic bacteria.

Linghe, J., Bjorn, A-L.
Influence of hormonal contraceptives on the gingiva of women.

Lipowski, H.H.
In vivo studies on the role of blood rheology in microvascular function.

Listgarten, M.A.; F.H. Ricker Jr., Laster, L.
Vascular basement lamina thickness in the normal and inflamed gingiva of diabetics and non-diabetics.

Llorach, M.A.S., Bohm, G.M., Garcia-Leme, J.
Decreased vascular reactions to permeability factors in experimental diabetes.

Lokken, P., Olsen, L., Brusset, I., Norman-Pedersen, K.
Bilateral surgical removal of impacted lower third molar teeth as a model for drug evaluation: a test with Ibuprofen.

Lokken, P., Skjelbied, P.
Aspirin or paracetamol? (letter).

Lubbers, D.W., Hauck, G., Weigelt, H., Addicks, K.
Contractile properties of frog capillaries tested by electrical stimulation.

Luce, G.C.
Rhythms of symptoms and cells.

Ludbrook, J.
The circulatory system.

Luft, J.H.
Fine structures of capillary and endocapillary layer as revealed by ruthenium red.
Luft, J.H.

Lund-Andersen, H., Lassen, N.A.

Lyons, A.S., Petrucelli, R.J.

MacFarlane, R.G.

MacGregor, A.J., Addy, A.

MacGregor, A.J., Hart, P.

MacGregor, A.J., Hutchinson, D.

Macheret, H.

MacLean, L.D.

Macon, W.L., Pories, W.J.

Magnes, G.D.

Mahajan, K.K., Marya, R.K., Mann, B.K.

Maher, W.P., Swindle, P.F.
Maisin, J.R., Reyners, H., Granfelici de Reyners, E.
Changes in the ultrastructure and the permeability of the capillaries after irradiation.

Majno, G., Palade, G.E.
Studies on inflammation. I. The effect of histamine and serotonin on vascular permeability. An electron microscopic study.

Majno, G., Shea, S.M., Leventhal, M.
Endothelial contraction induced by histamine-type mediators. An electron microscopic study.

Manhold, J.H.
Extension of a hypothesis: psychosomatic factors in wound healing.

Mann, M., Bedner, B.
Influence of age and different drugs on the healing process in human skin wounds.

Mantell, P.A.
The circadian rhythm of mitotic activity in the incisor pulp and the cornea of RATTUS NORVEGICUS.

Marchesi, V.T.
Ultrastructural aspects of acute inflammation.

Margolis, J.
The interrelationship of coagulation of plasma and the release of peptides.

Maricq, H.R., Gordon, C., Leroy, E.C.
Studies in patients with connective tissue disorders.

Maricq, H.R., Leroy, E.C.
Microvascular changes in connective tissue diseases.

Marks, J., Shuster, S.
Disorders of capillary permeability.

Marks, R.
The role of lymphocytes in epidermal homeostasis.

Marlette, R.H., Amen, C.R.
An evaluation of two proteolytic enzymes and critique of the clinical study.
Martin, G., Brendel, R., Beiler, J.
Effect of parenterally administered trypsin and phosphorylated hesperidin.

Maruyama, T., Simoosa, T., Oijima, H.
Morphology of gingival capillaries adjacent to complete crowns.

Mayhall, C.W.
The physiological roles of saliva.

McCue, F.C., Webster, T.M., Gieck, J.

McGuire, M.F.
Studies of the excisional wound: I. Biochemical effects of undermining and wound orientation on closing tension and work.

McKenzie, R.E., Szmyd, L., Hartman, B.O.
A study of selected personality factors in Oral Surgery patients.

McMaster, P.D.
The pressure and interstitial resistance prevailing in the normal oedematous skin of animals and man.

McMullen, J.A., Legg, M., Gottsegen, R., Camorini-Davalos, R.
Microangiopathy within the gingival tissues of diabetic subjects with special reference to the pre-diabetic state.

Metcalf, E.
Lectures on the comparative pathology of inflammation.

Meyer, F.A., Silberberg, A.
The extravascular space: function of the main structural elements.

Michel, C.C.
The investigation of capillary permeability in single vessels.

Miles, A.
The kinin system. A history and review of the kinin system.

Millikan, L.E.
Skin anatomy in wound healing.
Ear Nose Throat J. 60(1): 4-11, 1981.
Milsom, I., Gustafsson, A.
An evaluation of a post-operative vacuum drainage system.

Minta, J.O., Movat, H.Z.
The complement system and inflammation.

Mittelman, J.S., Doberneck, R.S.
Drains and antibiotics perioperatively for selective cholecystectomy.

Moncada, S., Ferreira, S.H., Vane, J.R.
Prostaglandine, aspirin-like drugs and the oedema of inflammation.

Moody, G.H.
The source of plasminogen activator in human saliva.

Moody, G.H.
Plasminogen in human saliva.

Moore, F.D.
Homeostasis: bodily changes in trauma and surgery.

Moore, J.W., Upton, L.G., Frederickson, G.C.
Intraoral suction drain for reduction of post-operative oedema.

Moore, P.K., Houlton, J.R.S., Berry, C.N.
Novel actions of anti-inflammatory steroids on the prostaglandin system.

Moore, W.S.
Skin blood flow and healing.

Mormann, W., Meier, C., Firestone, A.
Gingival blood circulation after experimental wounds in man.

Morrell, R.M.
Neuroendocrine mechanisms in inflammation.

Morris, T., Appleby, R.
Retardation of wound healing by procaine.

Morris, T., Tracey, J.
Lignocaine: its effects on wound healing.

B.37
Mosely, L.H., Finseth, F.
Cigarette smoking: impairment of digital blood flow and wound healing in the hand.

Motegi, K., Matsuo, T., Azumi, Y., Ueno, T.
Cleavage lines in the oral mucosa and oral scars.

Movat, H.Z.
The kinin system and its relation to other systems.

Movat, H.Z., Fernando, N.V.P.
Acute Inflammation. The earliest fine structural changes at the blood-tissue barrier.

Murphy, R.A., Pantazis, N.J., Papastarros, M.
Epidermal growth factor and nerve growth factor in mouse saliva: a comparative study.

Nachman, R.L., Polley, M.
The platelet as an inflammatory cell.

Nagy, S., Redei, A., Karady, S.
Studies on granulation tissue production in alloxan-diabetic rats.

Naidorf, I.J.
Correlation of the inflammatory response with immunological and clinical events.

Nalbandian, R.M., Henry, R.L.
Platelet-endothelial cell interactions.

Nasjletti, A., Malik, K.U.
Interrelationships among prostaglandins and vasoactive substances.

Navia, J.M., Menaker, L.
Nutritional implications in wound healing.

Newcombe, J.F.
Wound Healing.

Niall, M., Ryan, G.B., O'Brien, B. Mcc.
The effect of epidermal growth factor on wound healing in mice.
Nichols, R.L.
Techniques known to prevent post-operative wound infection.

Niinikoski, J.
Oxygen and wound healing.

Niinikoski, J.
The effect of blood and oxygen supply on the biochemistry of repair.
"Wound Healing and Wound Infection". T.K. Hunt (Ed.)

Niinikoski, J.
Cellular and nutritional interactions in healing wounds.

Noer, I., Lassen, N.A.
Evidence of active transport (filtration) of plasma proteins across
the capillary walls in muscle and subcutis.

Nora, P.F., Bransfield, J.J.
Prophylactic abdominal drains.

Norman, J.N., Rahmat, A., Smith, G.
Effect of supplements of zinc salts on the healing of incised wounds
in the rat and guinea pig.

Northover, A.M., Yoffe, J.R., Northover, B.J.
Some aspects of the pharmacology of vascular endothelial cells.

Notelovitz, M.
Capillary permeability in pregnant diabetics and non-diabetics.

Nowak, J.
Prostaglandins in the cardiovascular system in man. A biochemical and
physiological study.

Odland, G.F.
Progression of events of epidermal differentiation in wound healing.
"Biochemistry of Cutaneous Epidermal Differentiation". M. Seiji &

Omer, G.F., Brobeck, A.G.
An evaluation of ice application with post-operative dressings.

Ordman, L.J., Gillman, T.
Studies in healing of cutaneous wounds. I. The healing of incisions
through the skin of pigs.
Ordman, L.J., Gillman, T.
Studies in the healing of cutaneous wounds. II. The healing of epidermal, appendageal, and dermal injuries inflicted by suture needles and by the suture material in the skin of pigs.

Ordman, L.J., Gillman, T.
Studies in the healing of cutaneous wounds. III. A critical comparison in the pig of the healing of surgical incisions closed with sutures or adhesive tape based on tensile strength and clinical and histological criteria.

Osborne, D.B.
Post-operative complications following dentoalveolar surgery.

Owen, D.A.A., Woadward, D.F.
Histamine and histamine H1- and H2- receptor antagonists in acute inflammation.

Palade, G.E.
Fine structure of blood capillaries.

Palade, G.E., Simionescu, M., Simionescu, N.
Structural aspects of the permeability of the microvascular endothelium.

Papangalou, L.
Steroid therapy in post-surgical periodontal patients.

Pappenheimer, J.R., Renkin, E.M., Borrero, L.M.
Filtration, diffusion and molecular sieving through peripheral capillary membranes. A contribution to the pore theory of capillary permeability.

Parving, H.-H.
The effect of hypoxia and carbon monoxide exposure on plasma volume and capillary permeability to albumin.

Parving, H.-H.
Microvascular permeability to plasma proteins in hypertension and diabetes mellitus in man: on the pathogenesis of hypertensive and diabetic microangiopathy.

Parving, H.-H.
Microvascular permeability of albumin in untreated and treated essential hypertension and during acute induced hypertension.
Parving, H.-H., Gyntelberg, F.
Transcapillary escape rate of albumin and plasma volume in essential hypertension.

The effect of metabolic regulation on microvascular permeability to small and large molecules in short-term juvenile diabetes.

Paterson, J.A., Cardo, V.A., Stratigos, G.T.
An examination of antibiotic prophylaxis in oral and maxillofacial surgery.

Peacock, E.E., (Jr)
Wound healing and wound care.

Peacock, E.E., (Jr)
Healing and control of healing: introduction.

Peacock, E.E., (Jr)
Control of wound healing and scar formation in surgical patients.

Peacock, E.E., (Jr), van Winkle, W., (Jr)

Pearson, J.D.
Endothelial cell metabolism.

Peck, G.L., Elias, P.M., Wetzel, B.
Influence of vitamin A on differentiating epithelia.

Peeples, E., Boswick, J.A., Scott, F.A.
Wounds of the hand contaminated by human or animal saliva.

Pence, H.L., Evans, R., Guernsey, L.H., Gerhard, R.C.
Prophylactic use of epsilon aminocaproic acid for oral surgery in a patient with hereditary angioneurotic oedema.

Penn, R.G.
Perl, W.
Convection and permeation of albumin between plasma and interstitium.

Peskar, B.A., Brune, K.
Prostaglandin D2: the prevailing prostaglandin in an acute inflammation.

Petersen, J.K.
Anti-inflammatory and analgesic effects of indomethacin following removal of impacted mandibular third molars.

Piller, N.B.
A comparison of the effectiveness of some anti-inflammatory drugs on thermal oedema.

Piller, N.B.

Polk, H.C.
Postoperative wound infection: prediction of some responsible organisms.

Polk, H.R.
Diminished surgical infection by systemic antibiotic administration in potentially contaminated operations.

Polk, J.C., Lopez-Mayor, J.F.
Post-operative wound infection: a prospective study of determinant factors and prevention.

Pollack, P.J.

Pollack, S.V.
Wound healing: a review. I. The biology of wound healing.

Pollack, S.V.
Wound healing: a review. II. Environmental factors affecting wound healing.

Pollack, S.V.
Wound healing: a review. III. Nutritional factors affecting wound healing.
Pollmann, L.
Circadian changes in the duration of local anaesthesia.

Pollmann, L., Hildebrandt, G.
Circadian variations of potency of placebos on the pain threshold in healthy teeth.

Pollmann, L., Hildebrandt, G.
Long term control of swelling after maxillo-facial surgery: a study of circaseptan reactive periodicity.

Postlethwait, R.W.
Tissue reaction to surgical sutures.

Price, R.R., Jones, T.B., Goddard, J., James, A.E.
Basic concepts of ultrasonic tissue characterization.

Pulaski, E.J.
Antibiotics in surgical cases.

Pullinger, B.D., Florey, H.W.
Some observations on the structure and function of lymphatics: their behaviour in local oedema.

Quinn, J.H.
Therapeutic drugs in office oral surgery.

Ranstrom, G.
Fibrinolytic activity in the saliva of patients with coagulation disorders.

Ratnoff, O.D.
The biology and pathology of the initial stages of blood coagulation.

Ratnoff, O.D.
Some relationships among haemostasis, fibrinolytic phenomena, immunity and the inflammatory response.

Ratnoff, O.D.
A tangled web. The interdependence of mechanisms of blood clotting, fibrinolysis, immunity and inflammation.
Rebuck, J.W., Le Sher, D.A., Perkins, M.J., Leal, F.
Leucocytic response as a monitor of immunosuppression in man.
"Immunopathology of Inflammation". B.K. Forscher & J.C. Houck (Eds.)

Reed, W.P.
The immunologic substrate: role of local and systemic immunity in the
head and neck.

Reeve, D.R.E.
A study of mitotic activity and the diurnal variation of the
epithelial cells in wounded rectal mucous membrane.

Reeve, D.R.E.
Some observations on the diurnal variation of mitosis in the
stratified squamous epithelium of wounded tympanic membrane.

Reinhold, H.S.
Late vascular damage and its importance for radiotherapy.

Reneman, R.S., Arts, T.
Tissue pressure.

Renkin, E.M.
Relation of capillary morphology to transport of fluid and large
molecules: a review.

Rennie, J.S., MacDonald, D.G., Dagg, J.H.
Quantitative analysis of human buccal epithelium in iron-deficiency
anaemia.

Fibronectin involvement in granulation tissue and wound healing in
rabbits.

Rhodin, J.A.G.
The ultrastructure of mammalian arterioles and pre-capillary
sphincters.

Rhodin, J.A.G.
The ultrastructure of mammalian venous capillaries, venules and small
collecting veins.

Rhodin, J.G., Sue, S.M.
Combined intravital microscopy and electron microscopy of the blind
beginnings of the mesenteric lymphatic capillaries of the rat
mesentery.
Riley, W.B.
Wound healing.

Ringsdorf, W.M., Cheraskin, E.
Vitamin C and human wound healing.

Rodman, N.F.
Thrombosis.

Roselli, R.J., Harris, T.R.
A four phase model of capillary tracer exchange.

Rosenbloom, J., Procakop, D.J.
Biochemical aspects of collagen biosynthesis.

Rosenfield, A.J., Taylor, K.J.W., Jaffe, C.C.
Clinical applications of ultrasound tissue characterization.

Ross, R.
Wound healing: recent progress; future directions.

Ross, R.
Inflammation, cell proliferation and connective tissue formation in wound repair.

Ross, R., Benditt, E.P.
Wound healing and collagen formation. 1. Sequential changes in components of guinea pig skin wounds observed in the electron microscope.

Ross, R., Odland, G.
Fine structure observations of human skin wounds and fibrinogenasis.

Rosing, N., Parving, H.-H., Korsgaard, O.
Metabolism and transcappillary escape rate of albumin in acromegaly.

Rosing, N., Parving, H.-H., Lassen, N.A.
Albumin transcappillary escape rate as an approach to microvascular physiology in health and disease.
Roth, G.S., Harman, S.M., Lamberg, S.I.
Altered ovarian regulation of wound healing during ageing.

Roztocil, K., Prerovsky, I., Oliva, I.
Assessment of capillary functions in man.

Rud, J.
Removal of impacted lower third molars with acute pericoronitis and
necrotising gingivitis.

Rud, J., Baggesen, H., Moller, J.F.
Effect of sulfa cones and suturing on the incidence of pain after
removal of impacted third molars.

Russell, B.G.
Gingival changes in diabetes mellitus. 1. Vascular changes.

Russell, C., Melville, T.H.
A review. Bacteria in human mouth.

Rutherford, R.B., Ross, R.
Platelet factors stimulate fibroblasts and smooth muscle cells
quiescent in plasma serum to proliferate.

Ryan, G.B.
Personal communication.
1983.

Ryan, G.B., Majno, G.
Acute inflammation: a review.

Ryan, T.
Heterology of the blood supply of the skin.

Ryan, T.J.
Microcirculation in Psoriasis.

Ryan, U.
Inflammatory mediators, contraction and endothelial cells.

Sabiston, D.C., (Ed.)
Principles of operative surgery: antisepsis, technique, sutures and
drains.
"Textbook of Surgery". D.C. Sabiston (Ed) 11th Edition W.B. Saunders
Saetren, H.
The diurnal variation of the first mitotic wave released among rat kidney tubule cells by partial nephrectomy.

Salisbury, R.E., Hunter, J.M.
Evaluation of oral trypsin-chymotrypsin for prevention of swelling after hand surgery.

Salmela, K.
Comparison of the effects of methylprednisolone and hydrocortisone on granulation tissue development.

Salmela, K.
The effect of methylprednisolone and vitamin A on wound healing. II.

Salmela, K., Ahonen, J.
The effect of methylprednisolone and vitamin A on wound healing. I.

Salmela, K., Lautenschlager, I., Roberts, P.J., Ahonen, J.
The effect of local methylprednisolone on granulation tissue formation. I. Effect on the various granulation tissue components.

Salmela, K., Roberts, P.J., Lautenschlager, I., Ahonen, J.
The effect of local methylprednisolone on granulation tissue formation. II. Mechanisms of action.

Samuelsson, B.
Leukotrienes: mediators of allergic reactions and inflammation.

Santoro, S., Pickard, L.R., Wilson, S., Olson, J., Haller, A.
The biologic response to standard suture materials in the skin of foetal rabbits.

Sato, H., Hashimoto, M., Sugio, K., Ohuchi, K., Tsurufuji, S.
Comparative study between steroidal and non-steroidal anti-inflammatory drugs on the mode of their actions on vascular permeability in rat carrageenin air-pouch inflammation.

Schell, H., Hornstein, O.P., Egdmann, W., Schwartz, W.
Evidence of diurnal variation of human epidermal cell proliferation. II. Duration of epidermal D.N.A. synthesis.

Schell, H., Schwarz, W., Hornstein, O.P., Bernlochner, W., Weghorn, C.
Evidence of diurnal variation of human epidermal cell proliferation. I. Epidermal tritium-labelling index and serum cortisol rhythm.
Scherbel, A.L., Wilke, W.S.
The new non-steroidal anti-inflammatory drugs.

Schiller, R., De Silva, J.A.
Post-operative steroid injection: the first 72 hours of bone healing.
A review of the literature.

Schilling, J.A.
Surgical applications of new knowledge of repair mechanisms.

Schilling, J.A.
Wound healing and the inflammatory response in the aged.

Schilling, J.A.
Wound healing.

Schlagel, C.A.
Penetration and action of glucocorticoids.

Schmid-Schonbein, H., Klitzman, B., Johnson, P.J.
Vasomotion and blood rheology: maintenance of blood fluidity in the microvessels by rhythmic vasomotion.

Schmid-Schonbein, H., Wells, R.E.
Rheological properties of human erythrocytes and their influence upon the "anomalous" viscosity of blood.

Schmidt-Schonbein, H., Valger, E., Klose, H.J.
Microrheology and light transmission of blood. II. The photometric quantification of red cell aggregate formation and dispersion of flow.

Schofield, I.D.F., Warren, B.A.
The clinical presentation and pathology of the dry socket syndrome.

Schrock, T., (Moderator)
Wounds and wound healing. Symposium.

Schumann, D.
Pre-operative measures to promote wound healing.

Schumann, D.
The nature of wound healing.
A fine structural comparison of the healing of incisional wounds of mucosa and skin.

Scrugg, M.A., Johnson, M.W.

Sefer, M., Boanchis, A.
Microbiological and immunological studies on post-extraction alveolitis. A preliminary report.

Seltzer, S., Bender, I.B.
The blood supply and lymphatics of the pulp.

Sena, L., Torrielli, M.V., Franzone, J., Curzio, M., Cirillo, R.
J. Pathol. 135: 9-17, 1981.

Shamberger, R.C., Devereux, D.F., Brennan, M.F.
The effect of chemotherapeutic agents on wound healing.

Shamberger, R.C., Thistlewaite, P.A., Thibault, L.E., Talbot, T.L., Brennan, M.F.
The effect of testosterone propionate on wound healing in normal and castrate rats.

Shapiro, L., Ruben, M.P.
Visualisation of lymphatic microcirculation of oral tissues. I. development, structure and physiology of the lymphatic complex.

Shehadi, S.I.
Reducing the eyelid oedema and ecchymosis that occur after corrective rhinoplasty.

Shen, T.Y.
Prostaglandin synthetase inhibitors.

Sherwood, R.C., Smith, M.
Effect of stress on wound healing.
Shiga, T.
Biochemical effects on erythrocyte deformability as related to the microcirculation.

Shindo, K., Kosaki, G.
Effects of chronic renal failure on wound healing in rats. I. Biomechanical study.

Shindo, K., Kosaki, G.
Effects of chronic renal failure on wound healing in rats. II. Microscopic study and hydroxyproline assay.

Shoshan, S.
Wound healing.

Shuler, R.L.
Effect of cigarette smoking on the circulation of the oral mucosa.

Shuttee, T.S.
Hyaluronidase in relief of post-operative trismus, swelling and pain.

Silberberg, A.
Microcirculation and the extravascular space.

Silver, I.A.
The mechanics of wound healing.

Silver, I.A.
The Physiology of Wound Healing.

Silver, I.A.
Basic physiology of wound healing in the horse.

Simionescu, M., Simionescu, N., Palade, G.E.
Segmental differentiations of cell junctions in the vascular endothelium: the microvasculature.

Simionescu, N., Simionescu, M., Palade, G.
Permeability of muscle capillaries to small hemi-peptides. Evidence for the existence of patent transendothelial channels.

Simionescu, N., Simionescu, M., Palade, G.E.
Structural basis of permeability in sequential segments of the microvasculature.
Simon, G.T.
Ultrastructure of acute inflammation.

Simpson, W.R.
Physiological principles of therapy in head and neck cutaneous wounds.

Smales, R.J.
The effects of systemic cortisone on the healing of tooth sockets in rats.

Smith, J.B., Pedersen, N.C., Morris, B.
The role of the lymphatic system in inflammatory responses.

Smith, M.J.H.
Prostaglandins and the polymorphonuclear leucocyte.

Smith, M.J.H., Bolam, J.P.
Anti-inflammatory effects of blood platelets in the rat.

Smith, M.J.H., Ford-Hutchinson, A.W.
Anti-inflammatory agents of animal origin.
"Anti-Inflammatory Drugs". J.R. Vane & S.H. Ferreira (Eds),

Smith, T.E.
Surgical anatomy of the face.

Sobin, S.S., Tremer, H.M.
Three-dimensional organisation of microvascular beds as related to function.
"Microcirculation". G. Kaley & B.M. Altura (Eds), Univ. Park Press,

Sowray, J.H.
An assessment of the value of lyophilised chymotrypsin in the reduction of post-operative swelling following the removal of impacted wisdom teeth.

Spector, W.G.
Inflammation.

Speer, D.P.
The influence of suture technique on early wound healing.
Spisani, S., Vicenzi, E., Traniello, S.
Interaction between neutrophils and mediators of inflammation.

Lateral osteotomy drainage tubes in rhinoplasty.

Squier, C.A., Kremenak, C.R.
Myofibroblasts in healing palatal wounds of the beagle dog.

Staindl, O.
The healing of wounds and scar formation under the influence of a
tissue adhesion system with fibrinogen, thrombin and coagulation
factor XIII.

Stallard, R.E.
Periodontal microcirculation and the gingival crevicular fluid.

Starkey, R.H., Orth, D.N.
Radioimmunoassay of human epidermal growth factor (urogastrone).

Starling, E.H.
On the absorption of fluids from the connective tissue spaces.
J. Physiol. (Lond.) 19: 312-26, 1896.

Stromberg, D.D., Wiederhielm, C.A.
Intravascular and tissue space oncotic and hydrostatic pressures.
"Microcirculation". G. Kaley & B.M. Altura (Eds), Univ. Park Press,

Stucker, F.J.
Prevention of post-rhinoplasty oedema.

Stutten, G.
Vasoconstriction in response to corticosteroids observed in human
lips.
Dermatologica 152 (Suppl. 1): 91-100, 1976.

Sueishi, K., Nanno, S., Tanaka, K.
Permeability enhancing and chemotactic activities of low molecular
weight degradation products of human fibrinogen.

Sutherland, E.W.
Studies on the mechanisms of hormone action.
Science 177: 401-8, 1972.

Sween, K.
Effect of the addition of a vasoconstrictor to local anaesthetic
solution on operative and post-operative bleeding, analgesia and
wound healing.
Sweet, J.B., Butler, D.P.
The relationship of smoking to localized osteitis.

Taubé, M., Elliot, P., Ellis, K.
Jaundice and wound healing: a tissue-culture study.

Taylor, A.E.
Capillary fluid filtration. Starling forces and lymph flow.

Ten Bosch, J.J., van Gool, A.V.
The interrelation of post-operative complaints after removal of the mandibular third molar.

Ten Cate, J.W.
Platelet function tests.

Ten Cate, A.R.
A histochemical investigation of repair in the skin and oral mucosa of the mouse.

Tengrup, I., Ahonen, J., Rank, F., Zederfeldt, B.
Cytochemical study of granulation tissue in zinc treated rats.

Tengrup, I., Ahonen, J., Zederfeldt, B.
Granulation tissue formation in zinc-treated rats.

Tengrup, I., Ahonen, J., Zederfeldt, B.
Influence of zinc on synthesis and the accumulation of collagen in early granulation tissue.

Tenovuo, J., Pruitt, K.M., Thomas, E.L.
Peroxidase antimicrobial system of human saliva: hypotitocyanite levels in stimulated and resting saliva.

Thakral, K.K., Goodson, W.H., Hunt, T.K.
Stimulation of wound blood vessel growth by wound macrophages.

Thomas, C.L., (Ed.)
"Taber's cyclopedic medical dictionary": 14th Edit., F.A. Davis Co.

Thomas, E.L., Bates, K.P., Jefferson, M.M.
Peroxidase antimicrobial system of human saliva: requirements for accumulation of hypotitocyanite.

B.53
Thomas, G.
Characteristics of prostaglandin E1: potentiation of inflammatory activity of some agents.

Thomas, L.
Adaptive aspects of Inflammation.
"Immunopathology of Inflammation". B.K. Forscher & J.C. Houck (Eds)

Thomas, L.
Inflammation as a disease mechanism.
"The Inflammation Process". B.W. Zweifach et al. (Eds) (2nd Edition)

Thompson, D.P., Ashley, F.L.
Face-lift complications. A study of 922 cases performed in a six year period.

Thorgierson, G., Robertson, A.L.
The vascular endothelium - pathobiologic significance.

Tripathi, R.C., Tripathi, B.J.
Functional ultrastructure of endothelium.

Vailas, A.C., Tipton, C.M., Matthes, S., Gart, M.
Physical activity and its influence on the repair process of medial collateral ligaments.

van Arman, C.G.
Oedema and increased vascular permeability.
"Anti-Inflammatory Drugs". J.R. Vane & S.H. Ferreira, (Eds)

van de Stadt, K.D.
Prostaglandins and leucocytes in inflammation and allergy.

van der Linden, W., Gedda, S., Edlund, G.
Randomized trial of drainage after cholecystectomy. Suction versus static drainage through a main wound versus a stab incision.

van der Meulen, J.C.H.
Present state of knowledge on processes of healing in collagen structures.
The lower third molar and anti-phlogistics. Effects of betamethasone, ibuprofen, indomethacin, naproxin, nilumic acid, oxyphenylbutazone, tranexamic acid and glafenine on the patient's condition after surgical removal of a lower third molar.

van Furth, R.
Cell kinetics during inflammation.

van Furth, R., Willemen, R.
Phagocytic cells during an acute inflammatory reaction.

van Gool, A.V., Ten Bosch, J.J., Boering, G.
Clinical consequences of complaints and complications after removal of the mandibular third molar.

van Lancker, J.L.

van Schalm, P.T., Brakkee, A.J.M., Kuiper, J.P.
Effect of oedema on capillary filtration and on vascular extensibility.

van Winkle, W.
A correlation of cellular and biochemical aspects of tissue repair.

Vanhoutte, P.M.
Pharmacology of the blood vessel wall.

Hemodynamics and vascular permeability in patients with chronic adrenal cortex insufficiency.

Vidic, B., Melloni, B.J.
Applied anatomy of the oral cavity and related structures.

Vinegar, R.
Personal communication.
1983.

Vinegar, R., Macklin, A.W., Truax, J.F., Selph, J.L.
Formation of pedal oedema in normal and granulocytopenic rats.
Vinegar, R., Truax, J.F.
Pathways to inflammation. II. Introduction to and philosophy of the symposium.

Vinegar, R., Truax, J.F., Selph, J.L.
Some quantitative temporal characteristics of carrageenin-induced pleurisy in the rat. (37397).

Vinegar, R., Truax, J.F., Selph, J.L., Johnston, P.R.
Antagonism of pain and hyperalgesia.

Development of carrageenin pleurisy in the rat: effects of colchicine on inhibition of cell mobilization. (41229).

Vinegar, R., Truax, J.F., Selph, J.L., Lea, A., Johnston, P.R.
Quantitative in vivo studies of the acute actions of anti-inflammatory drugs in the rat.

Vinegar, R., Truax, J.F., Selph, J.L., Voelker, F.A.
Pathway of onset, development and decay of carrageenin pleurisy in the rat.

Volger, E., Stoiber, S., Lanzl, M., Blomer, H.
Influences of cardiovascular risk factors on the flow properties of blood.

von Schulte, W.
Blutgerinnung in der Mundhohle.

Vrako, R.
Basal lamina layering in Diabetes Mellitus. Evidence for accelerated rate of cell death and cell regeneration.

Wagner, R.C., Casley-Smith, J.R.
Review. Endothelial vesicles.

Wahl, S.M., Arend, W.P., Ross, R.
The effect of complement depletion on wound healing.

Wallace, S.L., Ringsdorf, W.M., Cheraskin, E.
Zinc and oral wound healing.

B.56
Walter, J.B.
Wound healing.

Wang, J.H., Waite, D.E.
Vertical osteotomy versus sagittal split osteotomy of mandible ramus: comparison of operative and post-operative factors.

Ward, C.M.
Oedema of the hand after fasciectomy, with or without tourniquet.

Ward, P.A.
Inflammatory proteins: chemical and biological aspects.

Warne, P.J., West, G.B.
Seasonal variation in drug action and animal responses in models of inflammation.

Wasi, S., Movat, H.Z.
Phlogistic substances in neutrophil leucocyte lysosomes: their possible role in vivo and their in vitro properties.

Watson, P.D.
The interstitial matrix as a barrier in blood-to-lymph solute movement.

Wedmore, C.V., Williams, T.J.
Control of vascular permeability by polymorphonuclear leucocytes in inflammation.

Weinberg, S.
Oral Surgery complications in general practice.

Weinberg, S., Warren, R.E., van de Mark, T.B.
Simplified technique to reduce perioral oedema in intraoral sagittal split osteotomies.

Weissman, G., Dukor, P., Sessa, G.
Studies on lysosomes: mechanisms for enzyme release from endocytic cells and a model for latency in vitro.

Weissmann, C., Smolen, J.E., Korchak, H.
Prostaglandins and inflammation: receptor/cyclose coupling as an explanation of why prostaglandin E2 and prostaglandin I2 inhibit functions of inflammatory cells.
Weksler, B.B., Goldstein, I.M.
Prostaglandins: interactions with platelets and polymorphonuclear leucocytes in haemostasis and inflammation.

Wells, P.N.
History.

Wells, R.
Rheologic factors in inflammation.

Weringer, E.J., Arquilla, E.R.
Wound healing in normal and diabetic chinese hamsters.

Weringer, E.J., Kelso, J.M., Tamai, I.Y.
Effects of insulin on wound healing in diabetic mice.

Westwick, J.
Prostaglandins as mediators of inflammation: vascular aspects.

Wheeler, M.H., Lakhany, Z.
Breast biopsy: a trial of wound drainage.

Wiederhielm, C.A.
Blood-lymph transport mechanisms.

Wiederhielm, C.A.
Tissue onotic and hydrostatic pressures.

Wiederhielm, C.A.
Dynamics of capillary fluid exchange: a non-linear computer simulation.

Wiederhielm, C.A., Black, L.L.
Osmotic interaction of plasma proteins with interstitial macromolecules.

Wilhelm, D.L.
Chemical mediators.

Wilkins, R.B., Kulwin, D.R.
Wound healing.
Williams, T.J.
The pro-inflammatory activity of E-, A-, D-, and F-type prostaglandins and analogues 16, 16-dimethyl-PGE2 and (15'S)-15-methyl-PGE2 in rabbit skin; the relationship between the potentiation of plasma exudation and local blood flow changes.

Williams, T.J.
Oedema and vasodilatation in inflammation; the relevance of prostaglandins.

Williams, T.J.
The relationship between inflammatory exudation and vasodilation with special reference to prostaglandins.

Williams, T.J.
Prostaglandin E2, Prostaglandin I2, and the vascular changes of inflammation.

Williams, T.J.
Personal communication.
1983.

Williams, T.J., Jose, P.J., Forrest, M.J., Smaje, L.H., Clough, G.F.
Inflammatory oedema induced by synergism between prosta glandins and CSA; the importance of the interaction between neutrophils and venular endothelial cells.

Williams, T.J., Morley, J.
Prostaglandins as potentiators of increased vascular permeability in inflammation.

Williams, T.J., Peck, M.J.
The role of prostaglandin-mediated vasodilatation in inflammation.

Williamson, J.J.
A study of extent of variation in daily counts of candida albicans in saliva.

Williamson, J.J.
Diurnal variation of candida albicans counts in saliva.

Williamson, L.W., Lorson, E.L., Osborn, D.B.
Hypothalamic - pituitary - adrenal suppression after short term dexamethasone therapy for oral surgical procedures.

B.59
Willoughby, D.A.
Mediation of increased vascular permeability in inflammation.
"The Inflammation Process". B.W. Zweifach et al. (Eds) (2nd Edition),

Willoughby, D.A.
Vascular permeability and other factors in the modulation of the
inflammation response.

Willoughby, D.A., Di Rosa, M.
A unifying concept for inflammation: a new appraisal of some old
mediators.
"Immunopathology of Inflammation". B.K. Forscher & J.C. Houck (Eds)

Wilmore, D.W., Aulick, L.H.
Systemic responses to injury and the healing wound.

Wilson, D.H.
Treatment of soft-tissue injuries by pulsed electrical energy.

Winter, G.D.
Movement of epidermal cells over the wound surface.

Winters, B.
Promoting wound healing in the diabetic patient.

Wissig, S.L.
Identification of the small pore in muscle capillaries.

Wolff, J.R.
Ultrastructure of the terminal vascular bed as related to function.
"Microcirculation". G. Kaley & B.M. Altura (Eds), Univ. Park Press,

Worm, A.M., Parving, H.-H.
Plasma and interstitial fluid volume in extensive skin disease.

Worm, A.M., Rossing, N.
Microvascular protein leakage in extensive skin diseases: aspects of the
transport mechanisms.

Wright, G.P.
"An Introduction to Pathology". Longman, Green & Co., (Lond.) 2nd

Yamada, K., Alfonso, M.D., Bremer, M., West, C.
Effects of dexamethasone on tumor-induced brain oedema and its
distribution in the brain of monkeys.

B.60
Yamaguchi, T., Hirobi, T.
The effect of chalone on the cell kinetics in the epidermis during wound healing organ culture.

Yamaura, H., Matsuzawa, T.
Decrease in capillary growth during ageing.

Yen, A., Braverman, I.M.
Ultrastructure of the human dermal microcirculation: the horizontal plexus of the papillary dermis.

Yokoyama, J., Seo, S., Taki, Y., Kurose, M., Murakami, M., Saeki, K.
Effect of histamine on adenosine 3',5'-cycle monophosphate levels in granulation tissue.

Yordan, E.L., Bernhard, L.A.
The surgeons role in wound healing.

Young, C.R.
Chymoral-100 and Swelling: fact or fiction.

Young, H.R.
Resolution of post-operative swelling following oral surgery: Chymoral.

Yukihide, I., Koichi, M., Takuo, Y., Hiromasa, O., Michihko, A., Masaaki, A., Masakazu, A.
Intravascular erythrocyte aggregation and hemorheological abnormalities in diabetes.

Zabucchi, G., Bellavite, P., Berton, G., Dri, P.
Free radicals generation by the inflammatory cells.
Agents Actions (Suppl) 7: 159-166, 1980.

Zallen, R.D., Strader, R.J.
The use of prophylactic antibiotics in extraoral procedures for mandibular prognathism.

Zarem, H.A., Soderberg, R.
Tissue reaction to ischaemia in the rabbit ear chamber: effects of prednisolone on inflammation and microvascular flow.

Zaworski, R.E., Noriega, C.J.
Massive post-operative facial oedema in rhytidectomy: case report.
Zielendorf, L.M., Witt, C.S.
Zinc deficiency in the pathogenesis of impaired wound healing. Review of the literature.

Zucker, M.B.
Platelets.

Zweifach, B.W.
Microvascular aspects of tissue injury.

Zweifach, B.W.
Microcirculation.

Zweifach, B.W.
The microcirculatory approach to homeostasis.

Zweifach, B.W.
Introduction: perspectives in microcirculation.

Zweifach, B.W., Intaglialtta, M.
Mechanics of fluid movement across single capillaries in the rabbit.

Zweifach, B.W., Shorr, E., Black, M.M.
The influence of the adrenal cortex on the behavior of the terminal vascular bed.

Zweifach, B.W., (chairman)
Capillary filtration and mechanisms of oedema formation.

Zweifach, B.W., (Ed)
Symposium on capillary interchange and the interstitial space.