CHAPTER 6

Conclusion

In the final chapter I summarise the descriptive contributions and the theoretical claims presented in the thesis.

Ch 2 provided a description of stress in open-syllabled roots, and in compounds. The initial syllable consistently has some stress, and is associated with a pitch accent. In quadrisyllabic roots, primary stress on the penultimate is in variation with initial primary stress in some words.

Several sections of the thesis have shown that a two-level description of morphology is needed to account for phonological and prosodic patterns in the language. In Ch 2 I showed that a simple description of stress in complex forms is possible by distinguishing two levels of morphological structure, which I called WORD-level and ROOT-level. Only the WORD-level is consistently represented in prosodic structure. WORD-level stems retain the stress organisation they have as independent words. ROOT-level stems do not have a consistent prosodic structure: ROOT-compounds are stressed as prosodic units.

The WORD-level/ROOT-level distinction is motivated on semantic grounds. WORD-level morphology is regular, productive, and semantically compositional. ROOT-level morphology is neither regular nor productive, and ROOT-level compounds do not always have predictable meanings. ROOT-affixes (tense inflection on verbs) do have consistent interpretations, however they fall into numerous irregular and unproductive paradigms and are hence included in the ROOT-level.

Morphological structure is also reflected in the distribution of apical contrasts: the initial apicals of stems (WORD- and ROOT-level), clitics, and modifying prefixes alternate consistently between alveolar and postalveolar realisation depending on the presence of a preceding vowel. The distribution of apicals does not distinguish
between WORD- and ROOT-level stems, but it does distinguish between types of affix. ROOT-level suffixes are the only morphemes which are always apico-alveolar initial: there are no postalveolar forms, while there are no apical-initial WORD-level suffixes at all.

I observed in Ch 2 that there is a distinction between metrical stress and pitch accent in Ngalakgan. The head of every metrical foot is audibly more prominent than a non-head, but not every metrical head is associated with a salient pitch movement. There are therefore four levels of stress: primary with pitch accent, secondary with pitch accent, secondary without pitch accent, and no stress.

Ch 3 extended the description of stress in complex words to the various stress patterns of suffixes, clitics, and two kinds of prefixes in Ngalakgan. I showed that each of these affix types has distinct characteristics. Disyllabic suffixes and clitics are always stressed on the initial syllable, though only in clitics is the stress necessarily associated with a pitch accent. Monosyllabic suffixes and clitics do not get stressed inherently in this way, but depend on surrounding material for inclusion in metrical structure. Prefixes are never associated with pitch accent, although the initial syllable of a polysyllabic prefix or string of prefixes is audibly more prominent, i.e. has some degree of stress.

WORD-level bound elements - suffixes, prefixes, clitics - have consistent relationships to prosodic structure. Since most of these elements cannot occur as free words, the prosodic patterns suggest that speakers have an awareness of internal morphological structure: complex words are not stressed as indivisible units.

provided data on the phonetic correlates of geminates: duration and voice onset time (VOT). I showed that there were two consistent correlates of geminates in contrast to singletons: greater duration, and voicelessness throughout closure. Singletons have
pattern, and showed that the alternation is correlated with the location of pitch accents in the word.

To explain the geminate alternation pattern discussed in Ch 4, I appealed to the 'boundary signal' notion of the Prague School phonologists (e.g. Trubetzkoy 1939[1969]). In this approach, geminate alternations take on a function not unlike that of stress in complex words. Both are sensitive to WORD-level morphological structure, and insensitive to the ROOT-level. The distribution of geminates is determined by prosodic constituent boundaries, and the relationship of the latter to the intonation contour and tonic syllables. This view has some benefits: it makes sense of the similar distribution of glottal stops, and of geminate alternations, in languages such as Yolngu.

Ch 5 discussed stress patterns in roots distinct from those of open-syllabled roots in Ch 2. I showed that medial stress is correlated with closed syllables, but that not all closed syllables are correlated with this stress pattern. Medial syllables closed by the first half of a geminate or homorganic nasal+stop cluster are not correlated with this stress pattern. My explanation for the Ngalakgan stress pattern in Ch 5 represents a new approach to quantity-sensitivity, based on perceptual difficulty. The perceptual approach also allows us to account for the exceptional behaviour of glottal stops in Ngalakgan.