Optimisation of steam reconditioning for regrowth-ash and plantation-grown eucalypt species

A thesis submitted in fulfilment of the requirements for the degree of Doctor of Philosophy

by

Philip Alexander Blakemore

School of Chemical and Biomolecular Engineering
The University of Sydney

Australia
March 2008
Abstract

Steam reconditioning to recover collapse, in mid to low density eucalypt species, has been known for over ninety years. The current industrial practices for steam reconditioning have largely been based on a few older studies, which were often poorly documented and based on very small sample sizes. On top of this, many local practices and ‘rules of thumb’ have developed over time, many of which have a questionable scientific basis. This thesis was undertaken to more rigorously investigate and fundamentally understand collapse recovery, and try to optimise its application.

The most obvious variable that kiln operators have control over is the moisture content of the timber prior to steam reconditioning. Experiments were undertaken to generate a range of moisture gradients (ranging from minimal to more industrially realistic) to evaluate the effect of moisture content on collapse recovery. An optimal moisture content for the core of the boards was found to be between about 18–20%, although there was no statistical difference in recoveries between about 17–25% moisture content. Below 15% moisture content recovery dropped off severely and intra-ring internal checking closure was incomplete, while at 25% moisture content an increased level of normal shrinkage, due to the early removal of drying stresses, was the main drawback. Above a core moisture content of about 35% incomplete closure of intra-ring internal checks was again observed. There was little evidence of re-collapse occurring in these high moisture content samples.

Previously established relationships between density and collapse and drying rate were again generally observed in these experiments. However, for the first time an effect of collapse in reducing the fitted drying diffusion coefficients was also observed.
It was also observed that, provided the moisture content of the board was in the critical range, most of the collapse recovery was achieved in the time it took to get the core of the board up to the steaming temperature of close to 100°C. This suggests that for most thicknesses a conservative reconditioning period of two hours at temperature is all that is required. This recommended shortening of the reconditioning cycle could dramatically increase the throughput of timber through the steam reconditioning chambers. Alternatively, it could mean that where modern final drying kilns are being used, the reconditioning treatment could be carried out within the final drying kiln.

A finite element model was developed to demonstrate the mechanism by which collapse recovery occurs. The theory tested was that the elastic component that stores the energy to restore the shape of the deformed cell is primarily found in the S\textsubscript{1} and S\textsubscript{3} layers. In contrast, the inelastic component is primarily found in the S\textsubscript{2} layer. The model generated here provided limited support for this theory.
Acknowledgments

I would firstly like to thank Associate-Professor Tim Langrish for his patient supervision. Apart from his guidance, support and constructive criticism with this thesis, his enthusiasm for sharing just some of his wider engineering knowledge and experience has been greatly stimulating and enjoyable.

I would also like to thank all my colleagues in Ensis\(^1\) for their support and cooperation. In particular, I wish to thank to Dr Silvia Pongracic, for her encouragement of me, and the hard work she undertook to ensure it was possible for me to undertake this study. Mr Richard Northway, also played a key role as an associate supervisor, and in my 11 years of working at CSIRO, his support, advice and friendship have always been much appreciated. Other colleagues whose discussion and support at various times have been appreciated include: Dr Russell Washusen, Dr Junli Yang, Dr Jugo Ilic, Dr Nawshad Haque and Mr Andrew Morrow.

This thesis was also only possible with the assistance of an FWPRDC PhD scholarship.

Acknowledgment also needs to be made to the ITC Heyfield sawmill for their supply of experimental timber for this thesis. In particular, I would like to thank Mr Vince Hurley and Mr Shane Phillips for their openness and willingness to discuss their steam reconditioning operations.

Most importantly I would like to thank all my family and friends for their encouragement and support. Particularly, the love and understanding of my wife, Mary-Anne, and two children, Eden and Cara. They have been vital for me to be able to keep life in perspective. I promise to make this up to you some day soon!

\(^1\) The joint forces of CSIRO and Scion (www.ensisjv.com)
List of Publications

The following papers were either published or are in submission as a result of the work presented at the time of submission of this thesis:

List of Abbreviations

- **CML** — Compound Middle Lamella
- **CSIRO** — Commonwealth Scientific and Industrial Research Organisation
- **DBT** — Dry Bulb Temperature
- **MC** — Moisture Content
- **ML** — Middle Lamellae
- **P** — Primary cell wall
- **RH** — Relative Humidity
- **S$_{1, 2~or~3}$** — Secondary cell wall (1, 2 or 3 indicates layer in secondary cell wall)
- **S$_{r, t, l~or~v}$** — Shrinkage (r – radial, t – tangential, l – longitudinal and v – volumetric)
- **US** — Unit Shrinkage
- **WBD** — Wet Bulb Depression
- **WBT** — Wet Bulb Temperature
Table of contents

Abstract i

Acknowledgments iii

List of Publications iv

List of Abbreviations v

Table of contents vi

Chapter 1

Introduction and literature review 1

1.1 Importance of collapse in Australian timber industry 1

1.2 Cell wall composition and structure 2

1.2.1 Microfibrils 4

1.3 Wood anatomy 8

1.3.1 Stem structure and growth rings 8

1.3.2 Species descriptions 9

1.4 Water in wood 13

1.4.1 Equilibrium moisture content 13

1.4.2 Moisture gradients 17

1.4.3 Water sorption and diffusion 18

1.5 Normal shrinkage 23

1.5.1 Drying stresses 25

1.5.2 Measurement of unconfined shrinkage 27

1.5.3 Measurement of macroscopic shrinkage 27

1.6 Mechanism for shrinkage anisotropy 32

1.6.1 Longitudinal shrinkage 33

1.6.2 Transverse shrinkage 40

1.7 Collapse 45

1.8 Collapse related degrade 50

1.9 Reconditioning to recover collapse 51

1.9.1 Theory of Reconditioning 57

1.9.2 Cell base model of reconditioning 58

1.9.3 Models relating ultrastructure to mechanical properties 66

1.10 Summary 70

1.11 References 72

Chapter 2

Effect of mean moisture content on the steam reconditioning of collapsed *Eucalyptus regnans.* 84

2.1 Introduction 84

2.2 Methods 84

2.3 Results and discussion 93
Chapter 3 Effect of pre-drying schedule ramping on collapse recovery and internal checking with Victorian Ash eucalypts

3.1 Introduction

3.2 Methods

3.3 Results and discussion
 3.3.1 Collapse and recovery
 3.3.2 Relationships between collapse, recovery and material properties
 3.3.3 Observations during steam reconditioning
 3.3.4 Dimensional analysis and predictions from heat-transfer theory
 3.3.5 Effect of reconditioning on internal checking

3.4 Conclusions

3.5 References

Chapter 4 Effect of collapse on fitted diffusion coefficients for Victorian Ash eucalypts.

4.1 Introduction

4.2 Methods

4.3 Results and discussion

4.4 Conclusions

4.5 References

Chapter 5 Importance of temperature in the steam reconditioning of collapsed Victorian Ash Eucalypts.

5.1 Effect of moisture membrane on collapse recovery
 5.1.1 Introduction
 5.1.2 Methods
 5.1.3 Results and discussion

5.2 Effect of extended reconditioning on internal checks
 5.2.1 Introduction
 5.2.2 Methods
 5.2.3 Results and discussion

5.3 Conclusions

5.4 References

Chapter 6 Finite element modelling of collapse and recovery

6.1 Introduction
6.2 Thick-walled cylinder
 6.2.1 Single layer isotropic material properties

6.3 Three layer isotropic material properties
 6.3.1 Analytical solution
 6.3.2 2D FEM – Plane-strain assumption

6.4 Single layer orthotropic material properties

6.5 Three layer orthotropic material properties
 6.5.1 Non-linear (elastic–plastic) material properties
 6.5.2 Viscoelastic material properties
 6.5.3 Isotropic viscoelastic
 6.5.4 Orthotropic viscoelastic behaviour

6.6 Repeating cell unit model with cyclical constraints
 6.6.1 Circular based cell model
 6.6.2 Square based cell model

6.7 Conclusions and recommendations

6.8 References

Chapter 7 Conclusions and recommendations

7.1 Recommendations for industrial steam reconditioning
 7.1.1 Pre-drying
 7.1.2 Moisture content
 7.1.3 Period and temperature of reconditioning
 7.1.4 Requirement for reconditioning chambers

7.2 Applicability of results for other collapse prone species, especially plantation-grown material.

7.3 Suggested future work
 7.3.1 Cell wall material properties
 7.3.2 Plantation species
 7.3.3 Internal checks in backsawn material

7.4 References

Appendix A: Scans of internal check in thick sections cut from sub-samples before and after reconditioning and after equilibrating to 12% moisture content.

Appendix B: Scans of internal check in thick sections cut from sub-samples before and after reconditioning and after equilibrating to 10% moisture content.