A longitudinal study of brain structure
in the early stages of schizophrenia

Thomas J. Whitford

A thesis submitted in fulfilment of the requirements for the degree of
Doctor of Philosophy

School of Psychology, University of Sydney
The Brain Dynamics Centre, Westmead Millennium Institute,
Westmead Hospital
Australia

2007
DECLARATION OF ORIGINALITY

To the best of my knowledge, this thesis contains no copy or paraphrase of work published by another person, except where duly acknowledged in the text. This thesis contains no material that has been presented for a degree at the University of Sydney or any other university.

_________________________________ ___________________
Thomas J. Whitford Date
ABSTRACT

Schizophrenia is a severe mental illness that affects approximately 1% of the population worldwide, and which typically has a devastating effect on the lives of its sufferers. The characteristic symptoms of the disease include hallucinations, delusions, disorganized thought and reduced emotional expression. While many of the early theories of schizophrenia focused on its psychosocial foundations, more recent theories have focused on the neurobiological underpinnings of the disease. This thesis has four primary aims: 1) to use magnetic resonance imaging (MRI) to identify the structural brain abnormalities present in patients suffering from their first episode of schizophrenia (FES), 2) to elucidate whether these abnormalities were static or progressive over the first 2-3 years of patients’ illness, 3) to identify the relationship between these neuroanatomical abnormalities and patients’ clinical profile, and 4) to identify the normative relationship between longitudinal changes in neuroanatomy and electrophysiology in healthy participants, and to compare this to the relationship observed between these two indices in patients with FES.

The aim of Chapter 2 was to use MRI to identify the neuroanatomical changes that occur over adolescence in healthy participants, and to identify the normative relationship between the neuroanatomical changes and electrophysiological changes associated with healthy periadolescent brain maturation. MRI and electroencephalographic (EEG) scans were acquired from 138 healthy participants between the ages of 10 and 30 years. The MRI scans were segmented into grey matter (GM) and white matter (WM) images, before being parcellated into the frontal, temporal, parietal and occipital lobes. Absolute
EEG power was calculated for the slow-wave, alpha and beta frequency bands, for the corresponding cortical regions. The age-related changes in regional tissue volumes and regional EEG power were inferred with a regression model. The results indicated that the healthy participants experienced accelerated GM loss, EEG power loss and WM gain in the frontal and parietal lobes between the ages of 10 and 20 years, which decelerated between the ages of 20 and 30 years. A linear relationship was also observed between the maturational changes in regional GM volumes and EEG power in the frontal and parietal lobes. These results indicate that the periadolescent period is a time of great structural and electrophysiological change in the healthy human brain.

The aim of Chapter 3 was to identify the GM abnormalities present in patients with FES, both at the time of their first presentation to mental health services (baseline), and over the first 2-3 years of their illness (follow-up). MRI scans were acquired from 41 patients with FES at baseline, and 47 matched healthy control subjects. Of these participants, 25 FES patients and 26 controls returned 2-3 years later for a follow-up scan. The analysis technique of voxel-based morphometry (VBM) was used in conjunction with the Statistical Parametric Mapping (SPM) software package in order to identify the regions of GM difference between the groups at baseline. The related analysis technique of tensor-based morphometry (TBM) was used to identify subjects’ longitudinal GM change over the follow-up interval. Relative to the healthy controls, the FES patients were observed to exhibit widespread GM reductions in the frontal, parietal and temporal cortices and cerebellum at baseline, as well as more circumscribed regions of GM increase, particularly in the occipital lobe. Furthermore, the FES patients lost
considerably more GM over the follow-up interval than the controls, particularly in the parietal and temporal cortices. These results indicate that patients with FES exhibit significant structural brain abnormalities very early in the course of their illness, and that these abnormalities progress over the first few years of their illness.

Chapter 4 employed the same methodology to investigate the white matter abnormalities exhibited by the FES subjects relative to the controls, both at baseline and over the follow-up interval. Compared to controls, the FES patients exhibited volumetric WM deficits in the frontal and temporal lobes at baseline, as well as volumetric increases at the fronto-parietal junction bilaterally. Furthermore, the FES patients lost considerably more WM over the follow-up interval than did the controls in the middle and inferior temporal cortex bilaterally. While there is substantial evidence indicating that abnormalities in the maturational processes of myelination play a significant role in the development of WM abnormalities in FES, the observed longitudinal reductions in WM were consistent with the death of a select population of temporal lobe neurons over the follow-up interval.

The aim of Chapter 5 was to investigate the clinical correlates of the GM abnormalities exhibited by the FES patients at baseline. The volumes of four distinct cerebral regions where 31 patients with FES exhibited reduced GM volumes relative to 30 matched controls were calculated and correlated with patients’ scores on three primary symptom dimensions: Disorganization, Reality Distortion and Psychomotor Poverty. The results indicated that the greater the degree of atrophy exhibited by the FES patients in three of
these four ‘regions-of-reduction’, the less severe their degree of Reality Distortion. These results suggest that an excessive amount of GM atrophy may in fact preclude the formation of hallucinations or highly systematized delusions in patients with FES.

The aim of Chapter 6 was to identify the relationship between the longitudinal changes in brain structure and brain electrophysiology exhibited by 19 FES patients over the first 2-3 years of their illness, and to compare it to the normative relationship between the two indices reported in Chapter 2. The methodology employed for the parcellation of the MRI and EEG data was identical to Chapter 2. The results indicated that, in contrast to the healthy controls, the longitudinal reduction in GM volume exhibited by the FES patients was not associated with a corresponding reduction in EEG power in any brain lobe. In contrast, EEG power was observed to be maintained or even to increase over the follow-up interval in these patients. These results were consistent with the FES patients experiencing an abnormal elevation of neural synchrony. Such an abnormality in neural synchrony could potentially form the basis of the dysfunctional neural connectivity that has been widely proposed to underlie the functional deficits present in patients with schizophrenia.

The primary aim of Chapter 7 was to assimilate the findings from the preceding empirical chapters with the theoretical framework provided in the literature, into an integrated and testable model of schizophrenia. The model emphasized dysfunctions in brain maturation, specifically in the normative processes of synaptic ‘pruning’ and axonal myelination, as playing a key role in the development of disintegrated neural activity and the subsequent
onset of schizophrenic symptoms. The model concluded with the novel proposal that disintegrated neural activity arises from abnormal *elevations* in the synchrony of synaptic activity in patients with first-episode schizophrenia.
ACKNOWLEDGEMENTS

I would like to start by thanking my primary supervisor Associate Professor Lea Williams for her steadfast support, unflagging enthusiasm, tireless energy and uncanny knack for distilling the essence of a convoluted idea into an elegant turn of phrase.

Special thanks also to my two associate supervisors – to Dr Anthony Harris, for sharing his astute insights into the nature of schizophrenia, and for his guidance through difficult times, and to Dr Tom Farrow, for giving me confidence in my abilities, and for emphasizing to me the virtues of living a balanced life.

It would not have been possible to begin, let alone complete this thesis without the assistance of a number of people at every stage in the research.

First and foremost, I would like to give my heartfelt thanks to the young men and women suffering from schizophrenia who agreed to participate in the Western Sydney First Episode Psychosis project (WSFEPP), despite recently being afflicted with a frightening and stigmatising illness.

I would also like to thank the many health care professionals who contributed to the WSFEPP through their involvement in the recruitment, assessment and treatment of the patients – special thanks to Dr John Brennan, Marie-Antoinette Redoblado, Sara Lucas, Dianne Fitzgerald, Virginia Winters, Dr Gary Flynn and Wilson Wong. Special thanks also to Dr Evian Gordon and all the staff at the Brain Resource International Database for their assistance with the acquisition of the control data.

Thanks to the radiologists and radiographers involved in the MRI acquisitions, for their professionalism, flexibility and good humour in accommodating my changing demands – special thanks to Gloria Olivieri, Gerard Hughes and Dr Lavier Gomes.

For sharing his formidable knowledge of MRI and the ‘statistical imaging’ techniques, and for his assistance with the computer programming, I would like to thank Dr Stuart Grieve. I would also like to thank Dr John Ashburner for first introducing me to tensor-based morphometry over a milkshake in Hungary, and to Dr Andrew Duggins for his freely-given and gratefully accepted advice regarding the implementation of TBM. Thanks also to Braddon Lance for his consistently considered suggestions on the statistical analyses.
In terms of financial assistance, I gratefully acknowledge the contributions made by the Commonwealth Government of Australia, who provided me with an Australian Postgraduate Award, the School of Psychology at the University of Sydney, who provided me with a PhD completion scholarship, and the Westmead Millennium Foundation, who provided me with a Student Top-Up Grant. Thanks also to the Organisation for Human Brain Mapping, the Westmead Charitable Trust, the Australasian Society for Psychophysiology, the Australasian Society for Psychiatric Research and Eli Lilly who all provided me with funding to attend various academic conferences.

I would also like to thank the many people who provided me with encouragement and support along the long and sometimes rocky path that was this thesis.

Thank you to all my colleagues at the Brain Dynamics Centre, for providing such an enjoyable and invigorating environment in which to work. Special thanks to Dr Chris Rennie, for all the stimulating conversations along Parramatta Road, and for his wise, patient and compassionate counsel – I deeply appreciate it, Chris. Thanks also to Dr Pritha Das, Dr Kerri Brown, Matthew Barton and Dr Kim Felmingham for their patience and kindness in hauling me out of a mid-term rut.

Thanks to my colleagues at the School of Psychology at the University of Sydney, for their friendship and forbearance, and for introducing me to the joys of Jack Ladder and Ma-Jong.

To all of my old friends, from the strange worlds of Planet-B, G-Spot and beyond – thank you for all the good times, and here’s to the many more to come.

To Madelaine Healey, to whom I grew closer by breaking apart from – all my love, and thank you.

To Kiley Seymour, who brightened my Northern Sky. Thank you – for everything.

And, finally, to my dear family – Mum, Dad, Laura, Grandma, Grandpa and Cousin Andy – it is impossible for me to fully express my gratitude. For all your inspiration, love and support, thank you so, so much. This thesis is for you.
TABLE OF CONTENTS

PUBLICATIONS RELATING TO THIS THESIS ... 14
LIST OF FIGURES AND TABLES ... 16
LIST OF ABBREVIATIONS .. 23

1. GENERAL INTRODUCTION ... 24
 1.1 PREAMBLE .. 25
 1.2 THE COST OF SCHIZOPHRENIA .. 26
 1.3 THE DIAGNOSTIC ENTITY OF SCHIZOPHRENIA 27
 1.3.1 The ‘positive’ symptoms of schizophrenia 28
 1.3.2 The ‘negative’ symptoms of schizophrenia 32
 1.4 PSYCHOSOCIAL AND ENVIRONMENTAL THEORIES OF SCHIZOPHRENIA ... 34
 1.5 NEUROBIOLOGICAL THEORIES OF SCHIZOPHRENIA 38
 1.5.1 The dopamine hypothesis ... 38
 1.5.2 Weinberger’s model of schizophrenia 41
 1.5.3 Neurodevelopmental vs neurodegenerative theories of schizophrenia ... 42
 1.5.4 Structural brain maturation in adolescence 48
 1.5.5 Dysfunctional synaptic ‘pruning’ in schizophrenia 49
 1.5.6 Schizophrenia as a dysfunction in neural connectivity 51
 1.6 THE NEUROANATOMICAL UNDERPINNINGS OF SCHIZOPHRENIA ... 57
 1.6.1 Identifying and quantifying neuroanatomical abnormalities in patients with schizophrenia ... 58
 1.6.2 Principles of Magnetic Resonance Imaging (MRI) 63
 1.6.3 Assessing neuroanatomical abnormalities on the basis of MR images: the Region-of-Interest (ROI) approach .. 68
 1.6.4 Assessing neuroanatomical abnormalities on the basis of MR images: the ‘Statistical Imaging’ (SI) approach 71
 1.6.5 Voxel-based morphometry with SPM 73
 1.6.5.1 Spatial Normalization .. 75
 1.6.5.2 Segmentation ... 78
 1.6.5.3 Cleaning (removal of extra-cerebral tissue) 79
 1.6.5.4 Correction for volume changes (Jacobian modulation) 80
 1.6.5.5 Smoothing ... 82
 1.6.5.6 Statistical Analysis ... 84
 1.7 STRUCTURAL BRAIN ABNORMALITIES IN PATIENTS WITH SCHIZOPHRENIA ... 86
 1.7.1 Structural brain abnormalities in patients with chronic schizophrenia .. 86
 1.7.2 Structural brain abnormalities in patients with first-episode schizophrenia .. 90
2. BRAIN MATURATION IN ADOLESCENCE: CONCURRENT CHANGES
IN NEUROANATOMY AND NEUROPHYSIOLOGY

2.1 PREAMBLE
2.2 ABSTRACT
2.3 INTRODUCTION
2.4 METHODS
2.4.1 Participants
2.4.2 MR imaging and parcellation
2.4.3 Electrophysiological data acquisition and parcellation
2.4.4. Statistical Analysis
2.5 RESULTS
2.6 DISCUSSION

3. PROGRESSIVE GREY MATTER ATROPHY OVER THE FIRST 2-3
YEARS OF ILLNESS IN FIRST-EPOIDE SCHIZOPHRENIA: A TENSOR
BASED MORPHOMETRY STUDY

3.1 PREAMBLE
3.2 ABSTRACT
3.3 INTRODUCTION
3.4 METHODS
3.4.1 Participants
3.4.2 MRI acquisition: baseline study
3.4.3 MRI acquisition: longitudinal study
3.4.4 Image pre-processing: baseline study
3.4.5 Image pre-processing: longitudinal study
3.4.6 Statistical analysis: baseline study
3.4.7 Statistical analysis: longitudinal study
3.5 RESULTS
3.5.1 Baseline study
3.5.2 Longitudinal study
3.6 DISCUSSION

4. VOLUMETRIC WHITE MATTER ABNORMALITIES IN FIRST-EPOIDE
SCHIZOPHRENIA: A LONGITUDINAL MRI STUDY

4.1 PREAMBLE
4.2 ABSTRACT
4.3 INTRODUCTION
4.4 METHODS
4.4.1 Participants
4.4.2 MRI acquisition
4.4.3 Image pre-processing
4.4.4 Statistical analyses
4.5 RESULTS
4.5.1 Baseline study
5. GREY MATTER DEFICITS AND SYMPTOM PROFILE IN FIRST-EPISTEME SCHIZOPHRENIA

5.1 PREAMBLE

5.2 ABSTRACT

5.3 INTRODUCTION

5.4 METHODS

5.4.1 Participants

5.4.2 Clinical assessment

5.4.3 MRI acquisition and pre-processing

5.4.4 Statistical analysis

5.4.4.1 Regional grey matter volume reductions in FES patients relative to controls

5.4.4.2 Relationship between regional grey matter volume and syndrome scores in the FES patients

5.5 RESULTS

5.5.1 Regional grey matter volume reductions in FES patients relative to controls

5.5.2 Relationship between regional grey matter volume and syndrome scores in the FES patients

5.6 DISCUSSION

6. LONGITUDINAL CHANGES IN REGIONAL GREY MATTER VOLUME AND CORRESPONDING EEG POWER IN FIRST-EPISTEME SCHIZOPHRENIA

6.1 PREAMBLE

6.2 ABSTRACT

6.3 INTRODUCTION

6.4 METHODS

6.4.1 Participants

6.4.2 MR imaging and parcellation

6.4.3 Electrophysiological data acquisition and parcellation

6.4.4 Statistical Analysis

6.5 RESULTS

6.6 DISCUSSION

7. GENERAL DISCUSSION

7.1 PREAMBLE

7.2 INTEGRATION OF THE EMPIRICAL FINDINGS

7.3 AN INTEGRATED MODEL OF SCHIZOPHRENIA: ASSIMILATING THE THEORETICAL FRAMEWORK AND EMPIRICAL OBSERVATIONS

7.3.1 Mechanisms of neuroanatomical abnormality in FES patients at first clinical presentation
7.3.2 Neuroanatomical abnormalities and schizophrenic symptomatology……………………………………………………… 227
7.3.3 Progressive brain atrophy in first-episode schizophrenia…… 230
7.3.4 The relationship between neuroanatomy and electrophysiology in patients with FES……………………………………………… 232
7.4 LIMITATIONS OF THE THESIS…………………………………………………… 234
7.5 RELATED ISSUES AND FUTURE RESEARCH………………………………… 238
7.6 CONCLUDING COMMENTS……………………………………………… 243

REFERENCES……………………………………………………………………………………………… 244

APPENDICES (not provided in the online version that is available via the Sydney Digital Thesis Program) …………………………………………
APPENDIX 1: Longitudinal study of neuropsychological and neuropathological changes in first episode schizophrenia……………………
APPENDIX 2: Biological Psychiatry published article: Diagnosis-related regional grey matter loss over two years in first episode schizophrenia and bipolar disorder………………………………………………………………………………
APPENDIX 3: NeuroImage published article: Progressive grey matter atrophy over the first 2-3 years of illness in first-episode schizophrenia: a tensor-based morphometry study………………………………………………………………………………
APPENDIX 4: Psychiatry Research – Neuroimaging published article: Grey matter deficits and symptom profile in first episode schizophrenia…………
APPENDIX 5: Human Brain Mapping uncorrected proof: Brain maturation in adolescence – concurrent changes in neuroanatomy and neurophysiology……
APPENDIX 6: NeuroReport uncorrected proof: Longitudinal changes in neuroanatomy and neural activity in early schizophrenia …………………
PUBLICATIONS RELATING TO THIS THESIS

Listed below are the details for the papers on which Chapters 2 to 6 are based. Also listed are two additional papers on which I was involved that were closely related to the work presented in this thesis, and which were included as Appendices 1 and 2.

Chapter 2

Brain maturation in adolescence: concurrent changes in neuroanatomy and neurophysiology
Whitford TJ, Rennie CJ, Grieve SM, Clark CR, Gordon E, Williams LM
Reprinted by permission of Wiley-Liss Inc., a subsidiary of John Wiley and Sons, Inc.
I was primarily responsible for this work, with an overall contribution of about 90%.

Chapter 3

Progressive grey matter atrophy over the first 2-3 years of illness in first-episode schizophrenia: a tensor-based morphometry study
Whitford TJ, Grieve SM, Farrow TF, Gomes L, Brennan J, Harris AW, Gordon E, Williams LM
Published in *NeuroImage*, 32: 511-519 (2006)
I was primarily responsible for this work, with an overall contribution of about 90%.

Chapter 4

Volumetric white matter abnormalities in first-episode schizophrenia: a longitudinal, tensor-based morphometry study
Whitford TJ, Grieve SM, Farrow TF, Gomes L, Brennan J, Harris AW, Gordon E, Williams LM
I was primarily responsible for this work, with an overall contribution of about 90%.

Chapter 5

Grey matter deficits and symptom profile in first episode schizophrenia
Whitford TJ, Farrow TF, Gomes L, Brennan J, Harris AW, Williams LM
Published in *Psychiatry Research: Neuroimaging*, 139: 229-238 (2005)
I was primarily responsible for this work, with an overall contribution of about 90%.

Chapter 6
Longitudinal changes in neuroanatomy and neural activity in early schizophrenia
Whitford TJ, Farrow TF, Rennie CJ, Grieve SM, Gomes L, Brennan J, Harris AW, Williams LM
Published in NeuroReport, 18: 435-439 (2007)
Reprinted by permission of Lippincott Williams & Wilkins
I was primarily responsible for this work, with an overall contribution of about 90%.

Appendix 1
Longitudinal study of neuropsychological and neuropathological changes in first-episode schizophrenia
Zipparo L, Whitford TJ, Redoblado MA, Lucas S, Farrow TFD, Brennan J, Gomes L, Williams LM, Harris AWF
Submitted to Progress in Neuro-Psychopharmacology and Biological Psychiatry
My contributions, which amounted to about 20% of this work, were in acquiring the MRI data, building the masks used to parcellate the images, pre-processing and analysing the MR images, and in writing the section on the MRI methodology in the manuscript.

Appendix 2
Diagnosis-related regional gray matter loss over two years in first episode schizophrenia and bipolar disorder
Farrow TF, Whitford TJ, Williams LM, Gomes L, Harris AWF
Published in Biological Psychiatry, 58:713-723 (2005)
My contributions, which amounted to about 20% of this work, were in acquiring the MRI data, pre-processing and analysing the MR images with voxel-based morphometry in conjunction with the Statistical Parametric Mapping (SPM) software package, assistance with writing the manuscript and suggesting a number of ideas in relation to the interpretation of the results.
LIST OF FIGURES AND TABLES

LIST OF FIGURES

Figure 1-1: A post mortem slice of the human brain with the grey matter, white matter and ventricles (which are filled with cerebrospinal fluid in the living brain) clearly delineated. Image from Carlson et al. (2002) 60

Figure 1-2: A CT scan of the living human brain. Whilst the skull and ventricles can be clearly distinguished from the underlying brain tissue, it is more difficult to distinguish between the grey and white matter of the brain. Image from Sharma and Chitnis (2000) ... 62

Figure 1-3: A T1-weighted MR image of the living human brain (the brain of the author, in fact!). MRI allows for a clear delineation between the three fundamental tissue types of the brain: the grey matter (e.g. in the parietal cortex), white matter (e.g. in the corpus callosum), and cerebrospinal fluid (e.g. in the lateral ventricles) 67

Figure 1-4: Using the Region-of-Interest (ROI) approach to investigate the neuroanatomical underpinnings of schizophrenia. In this example, the fusiform gyrus is being defined as the ROI. Image from Lee et al. (2002) 69

Figure 1-5: A diagrammatical summary of the analytic technique of voxel-based morphometry (VBM), which was implemented with the Statistical Parametric Mapping (SPM) software package in this thesis. The arrows track the normalization of the raw images to a template image, the segmentation of the normalized images and the subsequent Jacobian modulation, smoothing and voxel-wise analysis of the grey matter segment................. 74
Figure 1-6: A pictorial representation of a deformation field describing the transformations necessary to warp the voxels (represented by the circles) of an example subject’s image into the space defined by a template image. Image from Ashburner and Friston (2004) 81

Figure 1-7: Smoothing an image with a Gaussian kernel – note how the image composed of discrete black pixels on the left is transformed into a continuous ‘grey-scale’ image on the right after convolution with a Gaussian kernel (from the Cognition and Brain Sciences Unit, Cambridge, UK; www.mrc-cbu.cam.ac.uk/Imaging/Common/rikSPM-preproc.ppt) 83

Figure 2-1: Illustration of the regions-of-interest identified for the structural MR images. The five grey matter regions-of-interest are shown on top, superimposed on the GM segment of the MNI T1-weighted single-subject brain (blue = frontal, green = temporal, orange = occipital, yellow = parietal, red = limbic). The four white matter regions-of-interest are shown below, superimposed on the WM segment of the MNI single-subject image (blue = frontal, green = temporal, orange = parietal, red = parietal) 109

Figure 2-2: Schematic diagram of the constituent electrodes of the four ‘EEG regions’. Electrodes making up the frontal lobe ‘EEG region’ are in red, the temporal lobe ‘EEG region’ in green, the parietal lobe ‘EEG region’ in blue and the occipital lobe ‘EEG region’ in purple. The average power of each ‘EEG region’ (for each frequency band for each subject) was calculated by averaging the standardized absolute power scores of the constituent electrodes.. 112

Figure 2-3: Grey matter vs age scatterplots for the frontal, parietal, temporal and occipital regions-of-interest............................... 114

Figure 2-4: White matter vs age scatterplots for the frontal lobe, parietal lobe, occipital lobe and temporal lobe regions-of-interest....... 116
Figure 3-1: Regions of reduced grey matter volume at baseline in 41 FES patients compared to 47 matched healthy controls. The regions of reduction are displayed as a rendered, three-dimensional statistical parametric map (SPM); height threshold: $p<.05$ corrected for family-wise error, extent threshold = 100 voxels.

Figure 3-2: Regions of increased grey matter volume at baseline in 41 FES patients compared to 47 matched healthy controls. The regions of increase are displayed as a rendered, three-dimensional statistical parametric map (SPM); height threshold: $p<.05$ corrected for family-wise error, extent threshold = 100 voxels.

Figure 3-3: Regions where 25 FES patients lost more grey matter volume over the 2-3 year follow-up interval compared to 26 matched healthy controls. These regions are displayed as a rendered, three-dimensional statistical parametric map (SPM); height threshold: $p<.05$ corrected for family-wise error, extent threshold = 100 voxels. There were no regions in which the 26 controls were observed to lose more grey matter over the follow-up interval compared to the 25 FES patients, given the height and extent threshold.

Figure 4-1: Regions of volumetric white matter reduction in 41 patients with first-episode schizophrenia relative to 47 matched healthy controls at the baseline scan. Participants’ age, gender, handedness and whole-brain white matter volume were controlled for in the analysis. At the top of the figure, the regions of reduction are displayed as an SPM ($P<.05$ corrected for multiple comparisons, extent threshold=100 voxels). At the bottom of the figure the regions of reduction are overlaid onto the cleaned, white matter segment of the MNI single-subject T1-weighted MR image.
Figure 4-2: Regions of volumetric white matter increase in 41 patients with first-episode schizophrenia relative to 47 matched healthy controls at the baseline scan. Participants’ age, gender, handedness and whole-brain white matter volume were controlled for in the analysis. At the top of the figure, the regions of increase are displayed as an SPM (P<.05 corrected for multiple comparisons, extent threshold=100 voxels). At the bottom of the figure the regions of increase are overlaid onto the cleaned, white matter segment of the MNI single-subject T1-weighted MR image.

Figure 4-3: Regions where the 25 patients with first-episode schizophrenia who underwent a follow-up scan lost a greater volume of white matter over the follow-up interval compared to the 26 matched healthy controls who underwent a follow-up scan. Participants’ age, gender, handedness and follow-up interval were controlled for in the analysis. At the top of the figure, the regions of reduction are displayed as an SPM (P<.05 corrected for multiple comparisons, extent threshold=100 voxels). At the bottom of the figure the regions of reduction are overlaid onto the cleaned, white matter segment of the MNI single-subject T1-weighted MR image.

Figure 4-4: Regions where the 25 patients with first-episode schizophrenia who underwent a follow-up scan experienced greater volumetric grey matter loss (in yellow) and white matter loss (in blue) over the follow-up interval compared to the 26 matched healthy controls who underwent a follow-up scan....

Figure 5-1: Four regions of grey matter volume reduction in 31 patients with first episode schizophrenia relative to 30 matched healthy controls. The regions of reduction are displayed as an SPM (P<0.05 corrected for multiple comparisons, extent threshold=400 voxels). Slices of the masks created from these regions are overlaid onto the MNI single-subject T1-weighted MR image.
Figure 5-2: To validate the VBM results, the left superior temporal gyrus was manually traced (as illustrated) and its volume calculated in MRICRO for all 31 FES and 30 matched control subjects. The left superior temporal gyrus was chosen due to its being a distinct and clearly delineated structure that was found to be substantially reduced in the FES patients in the VBM analyses.

Figure 6-1: Schematic diagram of the constituent electrodes of the four ‘EEG regions’. Electrodes making up the frontal lobe ‘EEG region’ are in red, the temporal lobe ‘EEG region’ in green, the parietal lobe ‘EEG region’ in blue and the occipital lobe ‘EEG region’ in purple. The average power of each ‘EEG region’ (for each frequency band for each subject) was calculated by averaging the standardized absolute power scores of the constituent electrodes.

Figure 6-2: Mean grey matter volume in litres (± SEM) at baseline and follow-up for the frontal (pink), parietal (blue), occipital (purple) and temporal (green) grey matter ROIs for the 19 patients with first-episode schizophrenia **p<.001...

Figure 6-3: Mean absolute EEG power values in μV2 (± SEM) at baseline and follow-up for the slow-wave (0.5-7.5Hz), alpha (8-12Hz) and beta (12.5-34.5Hz) frequency bands in the frontal, parietal, occipital and temporal ‘EEG regions’ for the 19 patients with first-episode schizophrenia *p<.05...

Figure 7-1: An integrated model of schizophrenia. In particular, the model focuses on the role of dysfunctional adolescent brain maturation in fermenting the neural disintegration that has been argued to underlie all of the symptoms of schizophrenia...
LIST OF TABLES

Table 2-1: Breakdown of the subject sample (n=138) in terms of age and gender .. 104
Table 2-2: The five supraregional grey matter masks and their constituent Automatic Anatomical Labelling (AAL) masks 108
Table 2-3: Linear regression analyses for the MR data, controlling for gender. Model: Tissue Volume = b0 + b1(gender) + b2(log(age)) ... 113
Table 2-4: Linear regression analyses for the absolute EEG power data, controlling for gender. Model: Regional Power = b0 + b1(gender) + b2(log(age)) ... 115
Table 2-5: Partial correlations (controlling for gender) between the volumes of the GM supraregions for the frontal, parietal, temporal and occipital lobes and the absolute power of the corresponding ‘EEG regions’ (e.g. frontal lobe GM with frontal lobe EEG power) for the slow-wave, alpha and beta frequency bands ... 117
Table 3-1: Demographic details of the subject sample for both the baseline and follow-up studies, with the mean, standard deviation and range provided ... 133
Table 3-2: Baseline Study – regions where the 41 FES patients had less GM at baseline than did the 47 matched healthy controls (statistically controlling for age, gender, handedness and global GM volume) ... 140
Table 3-3: Baseline study - regions where the 47 matched healthy controls had less GM at baseline than did the 41 FES patients (statistically controlling for age, gender, handedness and global GM volume) ... 142
Table 3-4: Longitudinal study – regions where the 25 FES patients lost more GM over the FU interval than did the 26 matched healthy controls (statistically controlling for age, gender, handedness and FU interval) ... 144
Table 4-1: Baseline Study – regions where the 41 FES patients had less WM at baseline than did the 47 matched healthy controls (statistically controlling for age, gender, handedness and global WM volume) ... 161

Table 4-2: Baseline study - regions where the 47 matched healthy controls had less WM at baseline than did the 41 FES patients (statistically controlling for age, gender, handedness and global WM volume) ... 161

Table 4-3: Longitudinal study – regions where the 25 FES patients lost more WM over the follow-up interval than did the 26 matched healthy controls (statistically controlling for age, gender, handedness and FU interval) ... 163

Table 5-1: Descriptive details of the four regions of grey matter volume reduction in 31 patients with first episode schizophrenia relative to 30 matched healthy controls (P <0.05 corrected for multiple comparisons, extent threshold=400 voxels) 185

Table 6-1: Demographic information at baseline for the 19 patients with first-episode schizophrenia... 200
LIST OF ABBREVIATIONS

AAL – Automated Anatomical Labelling
BRID – Brain Resource International Database
CNS – central nervous system
CSF – cerebro-spinal fluid
CT – Computer Assisted Tomography
EEG – electroencephalography
FEBD – first-episode bipolar disorder
FES – first-episode schizophrenia
FFT – fast Fourier transform
fMRI – functional magnetic resonance imaging
FOV – field-of-view
FU – follow-up
GM – grey matter
HVA – homovanillic acid
ICBM – International Consortium for Brain Mapping
MEG – magnetoencephalography
MNI – Montreal Neurological Institute
MRI – magnetic resonance imaging
PET – positron emission tomography
PFC – prefrontal cortex
RD – Reality Distortion
RF – radio frequency
ROI – region-of-interest
ROIs – regions-of-interest
SI – statistical imaging
SMA – supplementary motor area
SPM – Statistical Parametric Mapping
SPSS – Statistical Package for the Social Sciences
TBM – tensor-based morphometry
TE – time-to-echo
TI – inversion-time
TR – time-to-repeat
VBM – voxel-based morphometry
WM – white matter