Cold thermal processing in the spinal cord

Paul J Wrigley

A thesis submitted in fulfilment of the requirements for the degree of Doctor of Philosophy (Medicine)

Pain Management Research Institute, Division of the Kolling Institute, Northern Clinical School,

University of Sydney, Australia

2006
Abstract

Two recently identified transient receptor potential (TRP) channels, TRPM8 and TRPA1, have been proposed to play an important role in mammalian cool and cold peripheral sensory transduction. When expressed in cell-lines the cloned TRPM8 and TRPA1 receptors have distinct pharmacological and temperature response characteristics. Although these receptors are also transported to the central terminals of primary afferents, little is known about their centrally mediated actions. In this thesis, I use an in vitro electrophysiological approach to investigate the dorsal horn processing of cool afferent modalities and the role of TRP ion channels. The results of this thesis provide further information on thermal processing, indicate direction for further research and suggest possible therapeutic targets for the management of abnormal cold sensory processing.

Initial experiments demonstrate that the cooling agents and known TRPM8 and TRPA1 agonists, menthol and icilin, inhibit primary afferent evoked excitatory postsynaptic currents (EPSCs) in rat spinal cord dorsal horn neurons. In addition, temperature reduction, menthol and icilin increase the frequency of miniature EPSCs without affecting amplitude distribution or kinetics. Little or no direct postsynaptic effect on dorsal horn neurons, GABAergic or glycinergic transmission was found. In combination, these observations demonstrate that temperature reduction, menthol and icilin act presynaptically to increase the probability of glutamate release from primary afferent fibres.

Further examination of the changes in glutamatergic synaptic transmission induced by temperature reduction, menthol and icilin reveals a subset of neurons sensitive to innocuous cool (< 29 °C) and low concentrations of icilin (3-10 µM) which closely match the temperature activation and pharmacological profile of TRPM8. In addition, the majority of lamina I and II neurons displayed characteristics partly consistent with TRPA1-activation, including a concentration-dependent response to icilin and blockade by ruthenium red. The present experiments did not allow thermal characterisation of these TRPA1-like responses. Together these observations indicate that the
effects of menthol and icilin on glutamatergic synaptic transmission in the superficial dorsal horn are mediated by TRPM8 and possibly by TRPA1.

Examination of the anatomical location of neurons activated by temperature reduction, menthol, icilin and capsaicin allowed the central termination pattern of thermoreceptive primary afferent fibres with specific TRP-like response characteristics to be determined. TRPM8-like presynaptic activation was confined to a subpopulation of neurons located in lamina I and outer lamina II, while the majority of neurons throughout laminae I and II received inputs sensitive to menthol, high concentrations of icilin and capsaicin. These findings suggest that innocuous cool sensation projects to a specific subpopulation of superficial dorsal horn neurons unlike other modalities (mediated by TRPV1, possibly TRPA1 and other receptors), which non-selectively engage circuits within the entire superficial dorsal horn. No morphological specificity was identified for recovered neurons after electrophysiological characterisation.

Finally, µ-opioids were shown to inhibit basal glutamatergic synaptic transmission as well as menthol- and icilin-induced transmission in the superficial dorsal horn. Of particular interest, δ-opioids selectively inhibited icilin-induced synaptic transmission within the same location. The selective effect of δ-opioids suggests a possible role in modulating receptors activated by icilin (TRPM8 and TRPA1).

Overall, this thesis provides further evidence that TRPM8 is responsible for the transduction of innocuous cold sensation in mammals and is a potential therapeutic target in humans with cold hyperaesthesia secondary to abnormal thermal processing. The use of δ-opioid agonists warrants further investigation in cold hypersensitivity states and potentially other forms of pain.
Statement

I hereby declare that this submission is my own work, and to the best of my knowledge and belief it contains no material previously published or written by another person or material which to a substantial extent has been accepted for the award of any other degree or diploma of a university or other institution or higher learning, except where due acknowledgement is made in the text.

Code of Ethics

All experiments were performed in accordance with the guidelines of the National Health and Medical Research Council ‘Code of Practice for the Care and Use of Animals in Research in Australia’ and with the approval of the Royal North Shore Hospital/University of Technology Sydney Animal Care and Ethics Committee.

Paul J Wrigley
Acknowledgements

I would like to thank my supervisor Dr Christopher Vaughan for having the courage to school a *clinician* in basic science. His patience, availability and rigorous scientific approach have sustained me when progress was slow and enabled me to gain an initial understanding of pain neurophysiology. I would also like to thank my co-supervisor Professor Mac Christie for his support from the inception of the project, and Professor Michael Cousins whose ongoing confidence, encouragement and provision of resources enabled my desire to undertake further research in pain to become a reality.

I am grateful to the Pain Management and Research Institute, Australian and New Zealand College of Anaesthetists, National Health and Medical Research Council, Pfizer Neuroscience Research, Anthony Pierre Balthasar and Dr Nic Jools for providing financial support throughout my PhD candidature.

The completion of this thesis would not have been possible without the consistent support and confidence of my wife and best friend, Allison. Her constant encouragement helped ward off many events which threatened the progress of this work including illness, the birth of Jane and Peter, and several moments of doubt.
Publications during PhD candidature

1.1. Abstracts published in conference proceedings

Table of contents

Abstract i
Statement and code of ethics iii
Acknowledgements iv
Publications v
Table of contents vi
List of figures and tables viii
Abbreviations x

Chapter 1: A review of the literature
1.1 The significance of cold perception 2
1.2 Phenomenology and sensory physiology 2
1.3 Psychophysics of cold thermosensation 5
1.4 The sensory physiology of cold transduction 8
1.5 Thermal transduction and the transient receptor potential superfamily of receptors 12
1.6 Cold central processing 21
1.7 Thesis proposal – rationale for experiments proposed 34

Chapter 2: General methods
2.1 Preparation of spinal cord slices 37
2.2 Electrophysiological recording 38
2.3 Determination of cell location 40
2.4 Lamina I and II morphological classification system 41
2.5 Drugs and chemicals 46
2.6 Data analysis 47

Chapter 3: Menthol, icilin and temperature reduction modulate primary afferent transmission via presynaptic mechanisms in the superficial dorsal horn
3.1 Summary 53
3.2 Chapter aims 54
3.3 Introduction 54
3.4 Results 56
3.5 Discussion 71

Chapter 4: The effects of menthol and icilin on synaptic transmission are mediated by TRP-like ion channels
4.1 Summary 83
4.2 Chapter aims 84
4.3 Introduction 84
4.4 Results 86
4.5 Discussion 97
List of figures and tables

Chapter 1: A review of the literature

Figure 1.1: Approaches to the study of thermoreception 3
Figure 1.2: Psychophysical observations regarding temperature and thermal sensation. 6
Figure 1.3: Psychophysical intensity ratings of changing cutaneous temperature at the thenar eminence 7
Figure 1.4: Temperature thresholds of temperature-activated transient receptor potential ion channels (thermoTRPs) 14
Table 1.1: Pharmacological characteristics and known tissue expression of heat activated thermoTRP receptors (TRPV1 - 4) 15
Table 1.2: Pharmacological characteristics and known tissue expression of cold activated thermoTRP receptors (TRPM8 & TRPA1) 16
Figure 1.5: Summary of spinal cord dorsal horn connections 25
Figure 1.6: Ascending projections for temperature and pain 26

Chapter 2: General methods

Figure 2.1: Orientation of spinal cord slices and cytoarchitectonic organisation 37
Figure 2.2: Diagrammatic representation of the dendritic territories of various lamina I and II neuronal types 42
Figure 2.3: Response criteria for miniature EPSC and miniature IPSC rate versus time plots during TRP superfusion 48
Figure 2.4: Response criteria for miniature EPSC rate versus time plots during opioid superfusion 50

Chapter 3: Menthol, icilin and temperature reduction modulate primary afferent transmission via presynaptic mechanisms in the superficial dorsal horn

Figure 3.1: Effects of menthol and icilin on primary afferent evoked synaptic transmission 57
Figure 3.2: Effect of menthol and icilin on miniature EPSCs 60
Figure 3.3: Effect of menthol (200 µM), icilin (100 µM) and capsaicin (1 µM) on miniature EPSCs 61
Figure 3.4: Effect of capsaicin on miniature EPSCs 62
Figure 3.5: Temperature reduction presynaptically enhances glutamatergic transmission 64
Figure 3.6: Effect of temperature reduction on miniature EPSC rate and amplitude 65
Figure 3.7: Postsynaptic effect of menthol, icilin and capsaicin in the superficial dorsal horn 67
Figure 3.8: Effects of menthol, icilin and capsaicin on inhibitory transmission 69
Figure 3.9: Effect of menthol, icilin and capsaicin on miniature IPSCs 70
Chapter 4: The effects of menthol and icilin on synaptic transmission are mediated by TRP-like ion channels

Figure 4.1: Concentration-response relationships for menthol and icilin 87
Figure 4.2: Correlation of temperature, icilin, menthol and capsaicin responses 89
Figure 4.3: Temperature reduction and low concentration icilin produce a rise in miniature EPSCs in a subpopulation of superficial dorsal horn neurons 90
Figure 4.4: Effect of TRP ion channel blockers and alterations in extracellular calcium concentration 92
Figure 4.5: Effect of allyl isothiocyanate (AIT) on miniature EPSCs 95
Figure 4.6: Effect of Δ9-tetrahydrocannabinol (THC) on miniature EPSCs 96

Chapter 5: Reduction in temperature enhances glutamatergic transmission in a subpopulation of icilin sensitive neurons in lamina I and II

Figure 5.1: Neurons responding to temperature drop display a distinct lamina distribution 115
Figure 5.2: Temperature reduction, menthol, icilin and capsaicin responding neurons display distinct lamina distributions 116
Table 5.1: Morphology and function of lamina I and II neurons 118
Table 5.2: Morphological classification of neurons according to response 119

Chapter 6: Opioid effects on menthol and icilin enhanced glutamatergic synaptic transmission

Figure 6.1: Direct effect of selective opioids on miniature EPSCs 135
Figure 6.2: Direct effect of selective opioids on superficial dorsal horn neurons 136
Figure 6.3: Effect of selective opioids on superficial dorsal horn neurons during menthol activation 138
Figure 6.4: Effect of selective opioids on miniature EPSCs during menthol activation 139
Figure 6.5: Effect of selective opioids on miniature EPSCs during high concentration icilin activation 141
Figure 6.6: Effect of selective opioids on superficial dorsal neurons during high concentration icilin activation 142
Figure 6.7: Selective opioid effects on glutamatergic synaptic transmission with and without menthol and HC icilin activation 143
Abbreviations/Definitions

ACC - anterior cingulate cortex
ACSF - artificial cerebrospinal fluid
AIT - allyl iso-thiocyanate

Allodynia - pain arising from a stimulus which is not normally painful

AM 251 - (1-(2,4-dichlorophenyl)-5-(4-iodophenyl)-4-methyl-N-1-piperidinyl-1H-pyrazole-3-carboxamide), a CB1 cannabinoid receptor antagonist

AMPA - α-amino-3-hydroxy-5-methylisoxazole-4-propionic acid receptor, a glutamate receptor subtype

CB - cerebellum

CB1 – a cannabinoid receptor subtype

cDNA – complementary deoxyribonucleic acid

CGRP – calcitonin gene-related peptide

CL - centrolateral nucleus of the thalamus

CNQX – a non-NMDA receptor antagonist

COOL – innocuous cold thermospecific neurons found in lamina I of the dorsal horn

CTAP - D-Phe-Cys-Tyr-D-Trp-Arg-Pen-Thr-NH₂, a selective µ-opioid antagonist

DAB - 3,3-diaminobenzidine

DAMGO - Tyr-D-Ala-Gly-N-Me-Phe-Gly-ol enkephalin, a selective µ-opioid agonist

Deltorphin II – a selective δ-opioid agonist

dH₂O – distilled water

DMSO - dimethylsulfoxide

DRG – dorsal root ganglion

EC₉₀ – the concentration of an agonist that produces 50% of the maximal response for that agonist
in vitro

EPSC – excitatory postsynaptic current

FRAP – fluoride-resistant acid phosphatase
GABA – γ-aminobutyric acid

Gd$^{3+}$ – gadolinium, a lanthanide and non-specific calcium channel-blocker

GlyR – glycine receptor

HC icilin – high micromolar concentrations of icilin (>30 μM)

HPC – lamina I dorsal horn neuron receiving convergent heat, pinch and cold sensory inputs

12-HPETE - 12-hydroperoxy-eicosatetraenoic acid, a lipoxygenase metabolite of arachidonic acid

HT – high threshold

Hyperaesthesia – excessive sensitivity to a sensory stimulus

Hyperalgesia – excessive sensitivity to a painful stimulus

I-RTX – iodoresiniferotoxin

IB4 – Bandeiraea simplicifolia I-isolectin B4

IC – insular cortex

ICI-174,864 – a selective δ-opioid antagonist

IPSC – inhibitory postsynaptic current

I-RTX - iodoresiniferotoxin

LC icilin – low micromolar concentrations of icilin (<30 μM)

LT – low threshold

LTB4 - leukotriene B4, a lipoxygenase metabolite of arachidonic acid

MDvc - ventrocaudal part of medial dorsal nucleus of the thalamus

NADA - N-arachidonyl-dopamine, an anandamide analogue

NMDA - N-methyl-D-aspartate receptor, a glutamate receptor subtype

nor-BNI - nor-binaltorphimine dihydrochloride, a selective κ-opioid antagonist

NS – nociceptive specific

P2X3 – a purinergic receptor subtype

PB - Phosphate buffer

PET - positron emission tomography
Pf - parafascicular nucleus of the thalamus

PFC - prefrontal cortex

Primary afferent convergence – the meeting of different primary afferent sensory modalities onto one dorsal horn neuron

Primary afferent divergence – widespread primary afferent projection to spinal cord dorsal horn neurons

rCBF - regional cerebral blood flow

RR - ruthenium red, a non-specific TRP receptor antagonist

SP – substance P

SR 95531 – a GABA\(_A\) receptor antagonist

STT – spinothalamic tract

TG – trigeminal ganglion

THC - \(\Delta^9\)-tetrahydocannabinol, a non-selective cannabinoid receptor agonist

ThermoTRPs – temperature-activated transient receptor potential ion channels

TrkA – neurotrophic tyrosine kinase receptor, type 1

TRP – transient receptor potential

TTX – tetrodotoxin, a sodium channel blocker

U-69593 - a selective \(\kappa\)-opioid agonist

VGCC - voltage-gated-Ca\(^{2+}\)-channels

VMpo - posterior ventral medial nucleus of the thalamus

VPI - ventral posterior inferior nucleus of the thalamus

VPL - ventral posterior lateral nucleus of the thalamus

VPM - ventral posterior medial nucleus of the thalamus

WDR – wide dynamic range