Buildings and Hecke Algebras
Access status:
Open Access
Type
ThesisThesis type
Doctor of PhilosophyAuthor/s
Parkinson, James WilliamAbstract
We establish a strong connection between buildings and Hecke algebras through the study of two algebras of averaging operators on buildings. To each locally finite regular building we associate a natural algebra B of chamber set averaging operators, and when the building is affine ...
See moreWe establish a strong connection between buildings and Hecke algebras through the study of two algebras of averaging operators on buildings. To each locally finite regular building we associate a natural algebra B of chamber set averaging operators, and when the building is affine we also define an algebra A of vertex set averaging operators. In the affine case, it is shown how the building gives rise to a combinatorial and geometric description of the Macdonald spherical functions, and of the centers of affine Hecke algebras. The algebra homomorphisms from A into the complex numbers are studied, and some associated spherical harmonic analysis is conducted. This generalises known results concerning spherical functions on groups of p-adic type. As an application of this spherical harmonic analysis we prove a local limit theorem for radial random walks on affine buildings.
See less
See moreWe establish a strong connection between buildings and Hecke algebras through the study of two algebras of averaging operators on buildings. To each locally finite regular building we associate a natural algebra B of chamber set averaging operators, and when the building is affine we also define an algebra A of vertex set averaging operators. In the affine case, it is shown how the building gives rise to a combinatorial and geometric description of the Macdonald spherical functions, and of the centers of affine Hecke algebras. The algebra homomorphisms from A into the complex numbers are studied, and some associated spherical harmonic analysis is conducted. This generalises known results concerning spherical functions on groups of p-adic type. As an application of this spherical harmonic analysis we prove a local limit theorem for radial random walks on affine buildings.
See less
Date
2005-01-01Licence
Copyright Parkinson, James William;http://www.library.usyd.edu.au/copyright.htmlFaculty/School
Faculty of Science, School of Mathematics and StatisticsAwarding institution
The University of SydneyShare