Nanoparticle formation and dynamics in a complex (dusty) plasma: from the plasma ignition to the afterglow.
Access status:
Open Access
Type
ThesisThesis type
Doctor of PhilosophyAuthor/s
Couedel, Lenaic Gael Herve FabienAbstract
Complex (dusty) plasmas are a subject of growing interest. They areionized gases containing charged dust particles. In capacitively-coupled RF discharges, dust growth can occur naturally and two methods can be used to grow dust particles: chemically active plasmas or sputtering. ...
See moreComplex (dusty) plasmas are a subject of growing interest. They areionized gases containing charged dust particles. In capacitively-coupled RF discharges, dust growth can occur naturally and two methods can be used to grow dust particles: chemically active plasmas or sputtering. The growth of dust particles in argon discharges by RF sputtering and the effect of dust particles on theplasma have been investigated from the plasma ignition to the afterglow. It was shown that plasma and discharge parameters are greatly affected by the dust particles. Furthermore, plasma instabilities can be triggered by the presence of the dust particles. These instabilities can be due to dust particle growth or they can be instabilities of a well established dust cloud filling the interelectrode space. When the discharge is switched off, the dust particles act like a sink for the charge carrier and consequently affect the plasma losses. It was shown that the dust particles do keep residual chargeswhich values are greatly affected by the diffusion of the charge carriers and especially the transition from ambipolar to free diffusion.
See less
See moreComplex (dusty) plasmas are a subject of growing interest. They areionized gases containing charged dust particles. In capacitively-coupled RF discharges, dust growth can occur naturally and two methods can be used to grow dust particles: chemically active plasmas or sputtering. The growth of dust particles in argon discharges by RF sputtering and the effect of dust particles on theplasma have been investigated from the plasma ignition to the afterglow. It was shown that plasma and discharge parameters are greatly affected by the dust particles. Furthermore, plasma instabilities can be triggered by the presence of the dust particles. These instabilities can be due to dust particle growth or they can be instabilities of a well established dust cloud filling the interelectrode space. When the discharge is switched off, the dust particles act like a sink for the charge carrier and consequently affect the plasma losses. It was shown that the dust particles do keep residual chargeswhich values are greatly affected by the diffusion of the charge carriers and especially the transition from ambipolar to free diffusion.
See less
Date
2009-03-19Licence
The author retains copyright of this thesis.Faculty/School
Faculty of Science, School of PhysicsAwarding institution
The University of SydneyShare