Financial Time Series Analysis using Pattern Recognition Methods
Access status:
Open Access
Type
ThesisThesis type
Doctor of PhilosophyAuthor/s
Zeng, ZhangguiAbstract
This thesis is based on research on financial time series analysis using pattern recognition methods. The first part of this research focuses on univariate time series analysis using different pattern recognition methods. First, probabilities of basic patterns are used to represent ...
See moreThis thesis is based on research on financial time series analysis using pattern recognition methods. The first part of this research focuses on univariate time series analysis using different pattern recognition methods. First, probabilities of basic patterns are used to represent the features of a section of time series. This feature can remove noise from the time series by statistical probability. It is experimentally proven that this feature is successful for pattern repeated time series. Second, a multiscale Gaussian gravity as a pattern relationship measurement which can describe the direction of the pattern relationship is introduced to pattern clustering. By searching for the Gaussian-gravity-guided nearest neighbour of each pattern, this clustering method can easily determine the boundaries of the clusters. Third, a method that unsupervised pattern classification can be transformed into multiscale supervised pattern classification by multiscale supervisory time series or multiscale filtered time series is presented. The second part of this research focuses on multivariate time series analysis using pattern recognition. A systematic method is proposed to find the independent variables of a group of share prices by time series clustering, principal component analysis, independent component analysis, and object recognition. The number of dependent variables is reduced and the multivariate time series analysis is simplified by time series clustering and principal component analysis. Independent component analysis aims to find the ideal independent variables of the group of shares. Object recognition is expected to recognize those independent variables which are similar to the independent components. This method provides a new clue to understanding the stock market and to modelling a large time series database.
See less
See moreThis thesis is based on research on financial time series analysis using pattern recognition methods. The first part of this research focuses on univariate time series analysis using different pattern recognition methods. First, probabilities of basic patterns are used to represent the features of a section of time series. This feature can remove noise from the time series by statistical probability. It is experimentally proven that this feature is successful for pattern repeated time series. Second, a multiscale Gaussian gravity as a pattern relationship measurement which can describe the direction of the pattern relationship is introduced to pattern clustering. By searching for the Gaussian-gravity-guided nearest neighbour of each pattern, this clustering method can easily determine the boundaries of the clusters. Third, a method that unsupervised pattern classification can be transformed into multiscale supervised pattern classification by multiscale supervisory time series or multiscale filtered time series is presented. The second part of this research focuses on multivariate time series analysis using pattern recognition. A systematic method is proposed to find the independent variables of a group of share prices by time series clustering, principal component analysis, independent component analysis, and object recognition. The number of dependent variables is reduced and the multivariate time series analysis is simplified by time series clustering and principal component analysis. Independent component analysis aims to find the ideal independent variables of the group of shares. Object recognition is expected to recognize those independent variables which are similar to the independent components. This method provides a new clue to understanding the stock market and to modelling a large time series database.
See less
Date
2006-08-30Licence
The author retains copyright of this thesis.Faculty/School
Faculty of Engineering and Information Technologies, School of Electrical and Information EngineeringAwarding institution
The University of SydneyShare