Show simple item record

FieldValueLanguage
dc.contributor.authorSinha, Saket
dc.date.accessioned2020-09-21
dc.date.available2020-09-21
dc.date.issued2020en_AU
dc.identifier.urihttps://hdl.handle.net/2123/23401
dc.description.abstractThe rise in living standards and the environmental challenges associated with fossil energy has attracted engineers and researchers to focus on energy use of buildings. Buildings consume 40% of world’s total energy consumption and air-conditioning alone consumes 15% of building’s total energy consumption. The integration of solar energy with adsorption cooling technology is an attractive area of research. The thesis develops a literature review of adsorption working pairs and different nanofluids used as cooling liquid in the adsorption chiller system. An advanced adsorption chiller system uses composites ‘salt inside porous matrix’ (CSPM) as adsorption material and multiwalled carbon nanotubes/graphene nanofluid (MWCNT/GNF) as cooling liquid. An adsorption chiller model used in TRNSYS simulation software compares temperature profiles of different components like solar collector, hot storage tank and an office space for conventional silica gel↔water and activated carbon fiber with barium chloride salt (ACF/BCS)↔ammonia adsorption chillers. The effect of MWCNT/GNF to improve performance of adsorption chiller is analysed. It is found that activated carbon fiber/nickel chloride salt (ACF/NCS) and ACF/BCS can improve the coefficient of performance (COP) by 23.4% and 95.7%, respectively. The later part of the thesis develops a nonlinear model predictive control (NMPC) model for (ACF/BCS)↔ammonia adsorption chiller system. The cumulative fossil fuel consumption for an year reduces by 61.3% using the NMPC approach for (ACF/BCS)↔ammonia adsorption chiller plant. The potential benefits of the application of NMPC in optimal management of solar energy, improving energy-efficiency and thermal comfort for an office space are highlighted in this study.en_AU
dc.publisherUniversity of Sydneyen_AU
dc.subjectenergy efficienten_AU
dc.subjectsolaren_AU
dc.subjectadsorption chilleren_AU
dc.titleAn energy efficient solar-assisted advanced adsorption chiller systemen_AU
dc.typeThesis
dc.type.thesisDoctor of Philosophyen_AU
dc.rights.otherThe author retains copyright of this thesis. It may only be used for the purposes of research and study. It must not be used for any other purposes and may not be transmitted or shared with others without prior permission.en_AU
usyd.facultySeS faculties schools::Faculty of Engineering::School of Chemical and Biomolecular Engineeringen_AU
usyd.degreeDoctor of Philosophy Ph.D.en_AU
usyd.awardinginstThe University of Sydneyen_AU
usyd.advisorABBAS, ALI


Show simple item record

Associated file/s

Associated collections

Show simple item record

There are no previous versions of the item available.