Characterisation of mutants influencing epigenetic gene silencing in the mouse
Access status:
Open Access
Type
ThesisThesis type
Doctor of PhilosophyAuthor/s
Bruxner, Timothy JamesAbstract
The field of epigenetics emerged primarily from studies in Drosophila, and is now being studied intensively by mammalian biologists. In order to increase our knowledge of epigenetic gene control in the mouse, I have studied modifiers of epigenetic gene silencing. My main method ...
See moreThe field of epigenetics emerged primarily from studies in Drosophila, and is now being studied intensively by mammalian biologists. In order to increase our knowledge of epigenetic gene control in the mouse, I have studied modifiers of epigenetic gene silencing. My main method of investigation involved the characterisation of mutants from a sensitised ENU mutagenesis screen performed previously in our laboratory. The screen was carried out in an FVB/NJ strain carrying a variegating GFP transgene expressed in erythrocytes. To date we have recovered 12 dominant (D) and seven recessive (R) mutant mouse lines from this screen that display altered transgene expression. We have named these Mommes (Modifiers of murine metastable epialleles). I investigated the phenotype and attempted to identify the underlying causative mutation of two of these Momme mutants. MommeD6 is a semi-dominant, homozygous lethal mutation that acts as a suppressor of variegation with respect to the GFP transgene. This mutation has a large effect on the level of expression of the transgene in expressing cells, but little effect on the percentage of cells expressing the transgene. MommeD6 is linked to a 2.5 Mbp interval on chromosome 14. MommeD9 is a semi-dominant, homozygous lethal mutation that acts as an enhancer of variegation with respect to the GFP transgene. Mutants have a tendency to become obese as they age, show abnormal haematology profiles, and females develop infertility. MommeD9 is linked to a 17.4 Mbp region on chromosome 7. I produced and studied a strain carrying the same GFP transgene but in a new strain background, C57BL/6J. This strain provided an opportunity to look for strain-specific modifiers of expression of the GFP transgene. Several regions were mapped to chromosomal locations. Further work will be needed to identify the genes involved. This mouse will be useful in future mutagenesis screens of this type.
See less
See moreThe field of epigenetics emerged primarily from studies in Drosophila, and is now being studied intensively by mammalian biologists. In order to increase our knowledge of epigenetic gene control in the mouse, I have studied modifiers of epigenetic gene silencing. My main method of investigation involved the characterisation of mutants from a sensitised ENU mutagenesis screen performed previously in our laboratory. The screen was carried out in an FVB/NJ strain carrying a variegating GFP transgene expressed in erythrocytes. To date we have recovered 12 dominant (D) and seven recessive (R) mutant mouse lines from this screen that display altered transgene expression. We have named these Mommes (Modifiers of murine metastable epialleles). I investigated the phenotype and attempted to identify the underlying causative mutation of two of these Momme mutants. MommeD6 is a semi-dominant, homozygous lethal mutation that acts as a suppressor of variegation with respect to the GFP transgene. This mutation has a large effect on the level of expression of the transgene in expressing cells, but little effect on the percentage of cells expressing the transgene. MommeD6 is linked to a 2.5 Mbp interval on chromosome 14. MommeD9 is a semi-dominant, homozygous lethal mutation that acts as an enhancer of variegation with respect to the GFP transgene. Mutants have a tendency to become obese as they age, show abnormal haematology profiles, and females develop infertility. MommeD9 is linked to a 17.4 Mbp region on chromosome 7. I produced and studied a strain carrying the same GFP transgene but in a new strain background, C57BL/6J. This strain provided an opportunity to look for strain-specific modifiers of expression of the GFP transgene. Several regions were mapped to chromosomal locations. Further work will be needed to identify the genes involved. This mouse will be useful in future mutagenesis screens of this type.
See less
Date
2007-10-18Licence
The author retains copyright of this thesis.Faculty/School
Faculty of Science, School of Molecular and Microbial BiosciencesAwarding institution
The University of SydneyShare