Modelling Chemical Communication in Neuroglia
Access status:
Open Access
Type
ThesisThesis type
Masters by ResearchAuthor/s
Edwards, James RoyAbstract
In vivo many forms of glia utilise both intercellular and extracellular pathways in the form of IP3 permeable gap junctions and cytoplasmic ATP diffusion to produce calcium waves. We introduce a model of ATP and Ca2+ waves in clusters of glial cells in which both pathways are ...
See moreIn vivo many forms of glia utilise both intercellular and extracellular pathways in the form of IP3 permeable gap junctions and cytoplasmic ATP diffusion to produce calcium waves. We introduce a model of ATP and Ca2+ waves in clusters of glial cells in which both pathways are included. Through demonstrations of its capacity to replicate the results of existing theoretical models of individual pathways and to simulate experimental observations of retinal glia the validity of the model is confirmed. Characteristics of the waves resulting from the inclusion of both pathways are identified and described.
See less
See moreIn vivo many forms of glia utilise both intercellular and extracellular pathways in the form of IP3 permeable gap junctions and cytoplasmic ATP diffusion to produce calcium waves. We introduce a model of ATP and Ca2+ waves in clusters of glial cells in which both pathways are included. Through demonstrations of its capacity to replicate the results of existing theoretical models of individual pathways and to simulate experimental observations of retinal glia the validity of the model is confirmed. Characteristics of the waves resulting from the inclusion of both pathways are identified and described.
See less
Date
2007-09-01Licence
The author retains copyright of this thesis.Faculty/School
Faculty of Science, School of Mathematics and StatisticsAwarding institution
The University of SydneyShare