Show simple item record

FieldValueLanguage
dc.contributor.authorSong, Shijie
dc.date.accessioned2019-09-13
dc.date.available2019-09-13
dc.date.issued2019-02-28
dc.identifier.urihttp://hdl.handle.net/2123/21113
dc.description.abstractMicrowave photonic (MWP) signal processing has attracted strong interest due to its unique advantages such as large operational bandwidth and immunity against electromagnetic interference. Recently, fast-growing markets in 5G wireless networks and the Internet of Things have become a strong thrust to the development of MWP signal processing. They are expected to benefit from MWPs with its capabilities to achieve a high time-bandwidth product in the transmission of microwave or millimeter-wave signals. Conventional MWP systems are composed of discrete optoelectronic devices and fiber-based components, which are usually bulky and power-hungry, making them inferior to the commercial RF electronic devices. It is therefore imperative to realize compact integrated MWP systems with reduced cost, size, weight and power consumption. While Moore's Law is approaching its limit to drive the evolution of electronic circuits, the silicon photonic integration platform, which features high compatibility with the standard CMOS processes, emerges as a promising solution. By incorporating both electronics and optics components on a single integrated chip, silicon photonic circuits ensure the unique characteristics of MWP signal processing such as wide bandwidth and high configurability are fully utilized, thus promoting the performance of integrated MWP signal processors. In this thesis, the applications of integrated silicon photonics on key MWP building blocks are investigated. The investigation is focused on the applications of microring resonators fabricated on SOI platform, which exhibit excellent compactness due to their inherent resonance effect and strong light confinement of the waveguide. The MWP building blocks we explore include an integrated optical single sideband modulator, a frequency tunable microwave filter for amplitude control and a photonic-assisted microwave frequency measurement system.en_AU
dc.rightsThe author retains copyright of this thesis. It may only be used for the purposes of research and study. It must not be used for any other purposes and may not be transmitted or shared with others without prior permission.en_AU
dc.subjectMicrowave Photonicsen_AU
dc.subjectPhotonic signal processingen_AU
dc.subjectSilicon-on-insulatoren_AU
dc.subjectring resonatoren_AU
dc.titleIntegrated Microwave Photonic Signal Processor based on Microring Resonatorsen_AU
dc.typeThesisen_AU
dc.type.thesisDoctor of Philosophyen_AU
usyd.facultyFaculty of Engineering, School of Chemical and Biomolecular Engineeringen_AU
usyd.degreeDoctor of Philosophy Ph.D.en_AU
usyd.awardinginstThe University of Sydneyen_AU


Show simple item record

Associated file/s

Associated collections

Show simple item record

There are no previous versions of the item available.