Show simple item record

FieldValueLanguage
dc.contributor.authorShen, Yandong
dc.date.accessioned2019-07-29
dc.date.available2019-07-29
dc.date.issued2019-07-29
dc.identifier.urihttp://hdl.handle.net/2123/20805
dc.description.abstractActivation of the B-cell receptor (BCR), and subsequent signalling via the Bruton's tyrosine kinase (BTK), phosphoinositide-3 kinase (PI3K) and mitogen-activated protein kinase (MAPK), plays a significant role in the pathogenesis of CLL. This thesis aimed to better understand the role of the CLL microenvironment and to investigate novel treatment strategies for targeting CLL cells in the lymph nodes or bone marrow. We demonstrated using the DotScan cluster of differentiation (CD) antibody microarray, that immunophenotypic changes induced on CLL cells by co-culture with fibroblasts expressing the CD40 ligand can be blocked by ibrutinib or idelalisib. These data provide insight on the mechanisms underlying the lymphocytosis observed in patients treated with these agents. We demonstrated that as a single agent the MEK1/2 inhibitor, binimetinib was effective against CLL cells under certain in vitro conditions and that the drug was effective and synergistic with the AKT inhibitor, MK2206, but not idelalisib. These data suggest that this combination of drugs may represent a novel therapeutic option for CLL effective against CLL cells in the tumour microenvironment. Next, we demonstrated efficacy of the dual PI3K/PIM inhibitor, IBL-202 and showed high synergy with the Bcl-2 inhibitor, venetoclax against CLL cells under conditions that mimic the tumour microenvironment and against a TP53 knock-out cell line we derived from the OSU-CLL cell line using the CRISPR-Cas9 system. This combination was synergistic in terms of apoptosis and inhibition of both the proliferative and migratory capacities of CLL cells. These data suggest that IBL-202 in combination with venetoclax may be an effective treatment option for high risk CLL disease. Collectively, the data presented highlight several pathways and novel drugs that may contribute to the development of therapeutic strategies for CLL patients.en_AU
dc.publisherUniversity of Sydneyen_AU
dc.publisherFaculty of Scienceen_AU
dc.publisherSchool of Life and Environmental Sciencesen_AU
dc.rightsThe author retains copyright of this thesis. It may only be used for the purposes of research and study. It must not be used for any other purposes and may not be transmitted or shared with others without prior permission.en_AU
dc.subjectCLLen_AU
dc.subjectmicroenvironmenten_AU
dc.subjectnovel treatmentsen_AU
dc.subject.otherincludes published articlesen_AU
dc.titleThe Chronic Lymphocytic Leukemia (CLL) Microenvironment and Novel Targeted Therapiesen_AU
dc.typePhD Doctorateen_AU
dc.type.pubtypeDoctor of Philosophy Ph.D.en_AU
dc.description.disclaimerAccess is restricted to staff and students of the University of Sydney . UniKey credentials are required. Non university access may be obtained by visiting the University of Sydney Library.en_AU


Show simple item record

Associated file/s

Associated collections

Show simple item record

There are no previous versions of the item available.