Energy Demand Response Management in Smart Home Environments
Access status:
USyd Access
Type
ThesisThesis type
Masters by ResearchAuthor/s
Xia, ChunqiuAbstract
ENABLING DEMAND RESPONSE ON ENERGY MANAGEMENT IN SMART HOME With the penetration of the Internet of Things (IoT) paradigm into the household scenario, an increasing number of smart appliances have been deployed to improve the comfort of living in the household. At present, most ...
See moreENABLING DEMAND RESPONSE ON ENERGY MANAGEMENT IN SMART HOME With the penetration of the Internet of Things (IoT) paradigm into the household scenario, an increasing number of smart appliances have been deployed to improve the comfort of living in the household. At present, most smart home devices are adopting the Cloud-based paradigm. The increasing electricity overhead from these smart appliances, however, has caused issues, as existing home energy management systems are unable to reduce electricity consumption effectively. To address this issue, we propose the use of an Edge-based computing platform with lightweight computing devices. In our experiments, this Edge-based platform has proven to be more energy efficient when compared to the traditional Cloud-based platform. To further reduce energy tariffs for households, we propose an energy management framework, namely Edge-based energy management System (EEMS), to be used with the Edge-based system that was designed in the first stage of our research. The EEMS is a low infrastructure investment system. A small-scale solar energy harvesting system has also been integrated into this system. The non-intrusive load monitoring (NILM) algorithm has been implemented in appliances monitoring. Regarding to energy management function, the scheduling strategy can also conform to user preference. We have conducted a realistic experiment with several smart appliances and Raspberry Pi. The experiment resulted in the electricity tariff being reduced by 82.3%. The last part of research addresses demand response (DR) technology. With the development of DR, energy management systems such as EEMS are better able to be implemented. We propose the use of an electricity business trading model, integrated with user-side demand response resources. The business trading model can be adopted to manage risks, increase profit and improve user satisfaction. Users will also benefit from tariffs reduction with the use of this model.
See less
See moreENABLING DEMAND RESPONSE ON ENERGY MANAGEMENT IN SMART HOME With the penetration of the Internet of Things (IoT) paradigm into the household scenario, an increasing number of smart appliances have been deployed to improve the comfort of living in the household. At present, most smart home devices are adopting the Cloud-based paradigm. The increasing electricity overhead from these smart appliances, however, has caused issues, as existing home energy management systems are unable to reduce electricity consumption effectively. To address this issue, we propose the use of an Edge-based computing platform with lightweight computing devices. In our experiments, this Edge-based platform has proven to be more energy efficient when compared to the traditional Cloud-based platform. To further reduce energy tariffs for households, we propose an energy management framework, namely Edge-based energy management System (EEMS), to be used with the Edge-based system that was designed in the first stage of our research. The EEMS is a low infrastructure investment system. A small-scale solar energy harvesting system has also been integrated into this system. The non-intrusive load monitoring (NILM) algorithm has been implemented in appliances monitoring. Regarding to energy management function, the scheduling strategy can also conform to user preference. We have conducted a realistic experiment with several smart appliances and Raspberry Pi. The experiment resulted in the electricity tariff being reduced by 82.3%. The last part of research addresses demand response (DR) technology. With the development of DR, energy management systems such as EEMS are better able to be implemented. We propose the use of an electricity business trading model, integrated with user-side demand response resources. The business trading model can be adopted to manage risks, increase profit and improve user satisfaction. Users will also benefit from tariffs reduction with the use of this model.
See less
Date
2018-08-31Licence
The author retains copyright of this thesis. It may only be used for the purposes of research and study. It must not be used for any other purposes and may not be transmitted or shared with others without prior permission.Faculty/School
Faculty of Engineering and Information Technologies, School of Computer ScienceAwarding institution
The University of SydneyShare