Electronic Photonic Integrated Circuits and Control Systems
Access status:
Open Access
Type
ThesisThesis type
Doctor of PhilosophyAuthor/s
Mahendra, AndriAbstract
Photonic systems can operate at frequencies several orders of magnitude higher than electronics, whereas electronics offers extremely high density and easily built memories. Integrated photonic-electronic systems promise to combine advantage of both, leading to advantages in accuracy, ...
See morePhotonic systems can operate at frequencies several orders of magnitude higher than electronics, whereas electronics offers extremely high density and easily built memories. Integrated photonic-electronic systems promise to combine advantage of both, leading to advantages in accuracy, reconfigurability and energy efficiency. This work concerns of hybrid and monolithic electronic-photonic system design. First, a high resolution voltage supply to control the thermooptic photonic chip for time-bin entanglement is described, in which the electronics system controller can be scaled with more number of power channels and the ability to daisy-chain the devices. Second, a system identification technique embedded with feedback control for wavelength stabilization and control model in silicon nitride photonic integrated circuits is proposed. Using the system, the wavelength in thermooptic device can be stabilized in dynamic environment. Third, the generation of more deterministic photon sources with temporal multiplexing established using field programmable gate arrays (FPGAs) as controller photonic device is demonstrated for the first time. The result shows an enhancement to the single photon output probability without introducing additional multi-photon noise. Fourth, multiple-input and multiple-output (MIMO) control of a silicon nitride thermooptic photonic circuits incorporating Mach Zehnder interferometers (MZIs) is demonstrated for the first time using a dual proportional integral reference tracking technique. The system exhibits improved performance in term of control accuracy by reducing wavelength peak drift due to internal and external disturbances. Finally, a monolithically integrated complementary metal oxide semiconductor (CMOS) nanophotonic segmented transmitter is characterized. With segmented design, the monolithic Mach Zehnder modulator (MZM) shows a low link sensitivity and low insertion loss with driver flexibility.
See less
See morePhotonic systems can operate at frequencies several orders of magnitude higher than electronics, whereas electronics offers extremely high density and easily built memories. Integrated photonic-electronic systems promise to combine advantage of both, leading to advantages in accuracy, reconfigurability and energy efficiency. This work concerns of hybrid and monolithic electronic-photonic system design. First, a high resolution voltage supply to control the thermooptic photonic chip for time-bin entanglement is described, in which the electronics system controller can be scaled with more number of power channels and the ability to daisy-chain the devices. Second, a system identification technique embedded with feedback control for wavelength stabilization and control model in silicon nitride photonic integrated circuits is proposed. Using the system, the wavelength in thermooptic device can be stabilized in dynamic environment. Third, the generation of more deterministic photon sources with temporal multiplexing established using field programmable gate arrays (FPGAs) as controller photonic device is demonstrated for the first time. The result shows an enhancement to the single photon output probability without introducing additional multi-photon noise. Fourth, multiple-input and multiple-output (MIMO) control of a silicon nitride thermooptic photonic circuits incorporating Mach Zehnder interferometers (MZIs) is demonstrated for the first time using a dual proportional integral reference tracking technique. The system exhibits improved performance in term of control accuracy by reducing wavelength peak drift due to internal and external disturbances. Finally, a monolithically integrated complementary metal oxide semiconductor (CMOS) nanophotonic segmented transmitter is characterized. With segmented design, the monolithic Mach Zehnder modulator (MZM) shows a low link sensitivity and low insertion loss with driver flexibility.
See less
Date
2017-08-30Licence
The author retains copyright of this thesis. It may only be used for the purposes of research and study. It must not be used for any other purposes and may not be transmitted or shared with others without prior permission.Faculty/School
Faculty of Engineering and Information Technologies, School of Electrical and Information EngineeringAwarding institution
The University of SydneyShare