Optimization-based Framework for Stability and Robustness of Bipedal Walking Robots
Access status:
Open Access
Type
ThesisThesis type
Doctor of PhilosophyAuthor/s
Tang, Justin ZianAbstract
As robots become more sophisticated and move out of the laboratory, they need to be able to reliably traverse difficult and rugged environments. Legged robots -- as inspired by nature -- are most suitable for navigating through terrain too rough or irregular for wheels. However, ...
See moreAs robots become more sophisticated and move out of the laboratory, they need to be able to reliably traverse difficult and rugged environments. Legged robots -- as inspired by nature -- are most suitable for navigating through terrain too rough or irregular for wheels. However, control design and stability analysis is inherently difficult since their dynamics are highly nonlinear, hybrid (mixing continuous dynamics with discrete impact events), and the target motion is a limit cycle (or more complex trajectory), rather than an equilibrium. For such walkers, stability and robustness analysis of even stable walking on flat ground is difficult. This thesis proposes new theoretical methods to analyse the stability and robustness of periodic walking motions. The methods are implemented as a series of pointwise linear matrix inequalities (LMI), enabling the use of convex optimization tools such as sum-of-squares programming in verifying the stability and robustness of the walker. To ensure computational tractability of the resulting optimization program, construction of a novel reduced coordinate system is proposed and implemented. To validate theoretic and algorithmic developments in this thesis, a custom-built “Compass gait” walking robot is used to demonstrate the efficacy of the proposed methods. The hardware setup, system identification and walking controller are discussed. Using the proposed analysis tools, the stability property of the hardware walker was successfully verified, which corroborated with the computational results.
See less
See moreAs robots become more sophisticated and move out of the laboratory, they need to be able to reliably traverse difficult and rugged environments. Legged robots -- as inspired by nature -- are most suitable for navigating through terrain too rough or irregular for wheels. However, control design and stability analysis is inherently difficult since their dynamics are highly nonlinear, hybrid (mixing continuous dynamics with discrete impact events), and the target motion is a limit cycle (or more complex trajectory), rather than an equilibrium. For such walkers, stability and robustness analysis of even stable walking on flat ground is difficult. This thesis proposes new theoretical methods to analyse the stability and robustness of periodic walking motions. The methods are implemented as a series of pointwise linear matrix inequalities (LMI), enabling the use of convex optimization tools such as sum-of-squares programming in verifying the stability and robustness of the walker. To ensure computational tractability of the resulting optimization program, construction of a novel reduced coordinate system is proposed and implemented. To validate theoretic and algorithmic developments in this thesis, a custom-built “Compass gait” walking robot is used to demonstrate the efficacy of the proposed methods. The hardware setup, system identification and walking controller are discussed. Using the proposed analysis tools, the stability property of the hardware walker was successfully verified, which corroborated with the computational results.
See less
Date
2017-03-06Faculty/School
Faculty of Engineering and Information Technologies, School of Aerospace, Mechanical and Mechatronic EngineeringAwarding institution
The University of SydneyShare