Health Participatory Sensing Networks for Mobile Device Public Health Data Collection and Intervention
Access status:
Open Access
Type
ThesisThesis type
Doctor of PhilosophyAuthor/s
Clarke, Andrew ParameAbstract
The pervasive availability and increasingly sophisticated functionalities of smartphones and their connected external sensors or wearable devices can provide new data collection capabilities relevant to public health. Current research and commercial efforts have concentrated on ...
See moreThe pervasive availability and increasingly sophisticated functionalities of smartphones and their connected external sensors or wearable devices can provide new data collection capabilities relevant to public health. Current research and commercial efforts have concentrated on sensor-based collection of health data for personal fitness and personal healthcare feedback purposes. However, to date there has not been a detailed investigation of how such smartphones and sensors can be utilized for public health data collection. Unlike most sensing applications, in the case of public health, capturing comprehensive and detailed data is not a necessity, as aggregate data alone is in many cases sufficient for public health purposes. As such, public health data has the characteristic of being capturable whilst still not infringing privacy, as the detailed data of individuals that may allow re-identification is not needed, but rather only aggregate, de-identified and non-unique data for an individual. These types of public health data collection provide the challenge of the need to be flexible enough to answer a range of public health queries, while ensuring the level of detail returned preserves privacy. Additionally, the distribution of public health data collection request and other information to the participants without identifying the individual is a core requirement. An additional requirement for health participatory sensing networks is the ability to perform public health interventions. As with data collection, this needs to be completed in a non-identifying and privacy preserving manner. This thesis proposes a solution to these challenges, whereby a form of query assurance provides private and secure distribution of data collection requests and public health interventions to participants. While an additional, privacy preserving threshold approach to local processing of data prior to submission is used to provide re-identification protection for the participant. The evaluation finds that with manageable overheads, minimal reduction in the detail of collected data and strict communication privacy; privacy and anonymity can be preserved. This is significant for the field of participatory health sensing as a major concern of participants is most often real or perceived privacy risks of contribution.
See less
See moreThe pervasive availability and increasingly sophisticated functionalities of smartphones and their connected external sensors or wearable devices can provide new data collection capabilities relevant to public health. Current research and commercial efforts have concentrated on sensor-based collection of health data for personal fitness and personal healthcare feedback purposes. However, to date there has not been a detailed investigation of how such smartphones and sensors can be utilized for public health data collection. Unlike most sensing applications, in the case of public health, capturing comprehensive and detailed data is not a necessity, as aggregate data alone is in many cases sufficient for public health purposes. As such, public health data has the characteristic of being capturable whilst still not infringing privacy, as the detailed data of individuals that may allow re-identification is not needed, but rather only aggregate, de-identified and non-unique data for an individual. These types of public health data collection provide the challenge of the need to be flexible enough to answer a range of public health queries, while ensuring the level of detail returned preserves privacy. Additionally, the distribution of public health data collection request and other information to the participants without identifying the individual is a core requirement. An additional requirement for health participatory sensing networks is the ability to perform public health interventions. As with data collection, this needs to be completed in a non-identifying and privacy preserving manner. This thesis proposes a solution to these challenges, whereby a form of query assurance provides private and secure distribution of data collection requests and public health interventions to participants. While an additional, privacy preserving threshold approach to local processing of data prior to submission is used to provide re-identification protection for the participant. The evaluation finds that with manageable overheads, minimal reduction in the detail of collected data and strict communication privacy; privacy and anonymity can be preserved. This is significant for the field of participatory health sensing as a major concern of participants is most often real or perceived privacy risks of contribution.
See less
Date
2015-03-23Faculty/School
Faculty of Health SciencesAwarding institution
The University of SydneyShare