Unsupervised learning for long-term autonomy
Access status:
Open Access
Type
ThesisThesis type
Doctor of PhilosophyAuthor/s
Ott, LionelAbstract
This thesis investigates methods to enable a robot to build and maintain an environment model in an automatic manner. Such capabilities are especially important in long-term autonomy, where robots operate for extended periods of time without human intervention. In such scenarios ...
See moreThis thesis investigates methods to enable a robot to build and maintain an environment model in an automatic manner. Such capabilities are especially important in long-term autonomy, where robots operate for extended periods of time without human intervention. In such scenarios we can no longer assume that the environment and the models will remain static. Rather changes are expected and the robot needs to adapt to the new, unseen, circumstances automatically. The approach described in this thesis is based on clustering the robot’s sensing information. This provides a compact representation of the data which can be updated as more information becomes available. The work builds on affinity propagation (Frey and Dueck, 2007), a recent clustering method which obtains high quality clusters while only requiring similarities between pairs of points, and importantly, selecting the number of clusters automatically. This is essential for real autonomy as we typically do not know “a priori” how many clusters best represent the data. The contributions of this thesis a three fold. First a self-supervised method capable of learning a visual appearance model in long-term autonomy settings is presented. Secondly, affinity propagation is extended to handle multiple sensor modalities, often occurring in robotics, in a principle way. Third, a method for joint clustering and outlier selection is proposed which selects a user defined number of outlier while clustering the data. This is solved using an extension of affinity propagation as well as a Lagrangian duality approach which provides guarantees on the optimality of the solution.
See less
See moreThis thesis investigates methods to enable a robot to build and maintain an environment model in an automatic manner. Such capabilities are especially important in long-term autonomy, where robots operate for extended periods of time without human intervention. In such scenarios we can no longer assume that the environment and the models will remain static. Rather changes are expected and the robot needs to adapt to the new, unseen, circumstances automatically. The approach described in this thesis is based on clustering the robot’s sensing information. This provides a compact representation of the data which can be updated as more information becomes available. The work builds on affinity propagation (Frey and Dueck, 2007), a recent clustering method which obtains high quality clusters while only requiring similarities between pairs of points, and importantly, selecting the number of clusters automatically. This is essential for real autonomy as we typically do not know “a priori” how many clusters best represent the data. The contributions of this thesis a three fold. First a self-supervised method capable of learning a visual appearance model in long-term autonomy settings is presented. Secondly, affinity propagation is extended to handle multiple sensor modalities, often occurring in robotics, in a principle way. Third, a method for joint clustering and outlier selection is proposed which selects a user defined number of outlier while clustering the data. This is solved using an extension of affinity propagation as well as a Lagrangian duality approach which provides guarantees on the optimality of the solution.
See less
Date
2014-08-29Faculty/School
Faculty of Engineering and Information Technologies, School of Information TechnologiesAwarding institution
The University of SydneyShare