Functional Neuroanatomy of Morphine-Induced Abstinence, Tolerance, and Sensitisation
Access status:
Open Access
Type
ThesisThesis type
Doctor of PhilosophyAuthor/s
Hamlin, Adam ScottAbstract
The investigation into the relationship between neural plasticity in the rat forebrain associated with opiate-induced behaviours yielded two major results. The major finding of the functional neuroanatomy of acute morphine dependence was that doses of naloxone that induced hyperalgesia ...
See moreThe investigation into the relationship between neural plasticity in the rat forebrain associated with opiate-induced behaviours yielded two major results. The major finding of the functional neuroanatomy of acute morphine dependence was that doses of naloxone that induced hyperalgesia following a brief exposure to morphine, in previously drug-naïve rats, caused a specific induction of the inducible transcription factor (itf) proteins c-Fos and zif268 in the extended amygdala. Moreover, doses of naloxone that caused a simple reversal in morphine analgesia failed to induce itf proteins in these same brain regions. This increase in itf proteins was specific to regions of the extended amygdala that receive and process nociceptive information relayed via the spino-parabrachio-amygdaloid pathway and was not observed in other regions that are involved in supraspinal pain modulation such as the rostral ventromedial medulla and the periaqueductal gray. We also found that acute morphine increased c-Fos protein in the basolateral amygdala and the major output nucleus of the central amygdala the medial subdivision. Acute morphine also up-regulated c-Fos protein in striatal, midbrain, and hypothalamic nuclei. A unique finding of the current study was that prolonged exposure to morphine was required to induce c-Fos in these brain regions, as the subsequent administration of naloxone 30-minutes after morphine either reversed or blocked this induction. These results indicate the potential role of the amygdala in analgesia following systemic morphine and in pain facilitation during acute morphine abstinence. Investigation into the neurons and circuitry that undergo long-term neuroplasticity in response to repeated morphine exposure revealed that network-level changes in the distribution of Fos protein in the nucleus accumbens and striatum predicted both tolerance to catalepsy and psychomotor sensitisation. Drug-naïve rats became profoundly cataleptic following morphine, an effect that rats with a drug-history became tolerant. Rats with a history of morphine exposure showed an increase in stereotyped behaviours compared to drug-naïve rats. The major finding of this study was that a shift in the induction of c-Fos protein from a matrix predominance in drug-naïve rats toward a patch predominance in drug-sensitised rats in the accumbens core predicted both tolerance to catalepsy and sensitisation of oral stereotyped behaviours. Acute injection of morphine in a drug-naïve rat induced catalepsy and increased the number of c-Fos-positive neurons in matrix striatopallidal projection neurons of the rostral accumbens core. An increase in activity of striatopallidal projection neurons, which give rise to the indirect pathway, could potentially increase inhibitory drive to the pedunculopontine nucleus (PPN). The PPN, long known as a site of termination for basal ganglia output, is thought to direct the outflow of incentive-motivational and sensorimotor information from the nucleus accumbens to pons, medullary, and spinal cord nuclei translating the incentive impact of the stimuli into appropriate motor, autonomic and emotive responses (Winn et al., 1997). Inhibition of this nucleus would cause the animal to be unable to initiate a movement and in effect lock up, which is precisely what cataleptic postures look like. In contrast c-Fos-positive neurons were decreased in the rostral matrix and increased in patch striatonigral projection neurons along the rostro-caudal extent of the accumbens core when morphine was administered to drug-sensitised rats. Striatonigral neurons located in the patch give rise to the direct pathway innervating the dopaminergic neurons in both substantia pars compacta and the dopamine rich islands in the substantia nigra pars reticulata (Berendse et al., 1992; Gerfen, 1992; Furuta et al., 2002). Activity of this pathway is thought to be involved in the initiation of movement (Gerfen, 1992; Gerfen and Wilson, 1996), however, when this pathway is overstimulated as is the case when morphine is injected in drug-sensitised rats this could potentially cause increased activity of PPN neurons leading to repetitive psychomotor behaviours or stereotypy. This data adds to the growing body of evidence that suggests that long-term neuroadaptations induced by drugs of abuse including morphine that lead to behavioural sensitisation involves the circuitry that includes the nucleus accumbens.
See less
See moreThe investigation into the relationship between neural plasticity in the rat forebrain associated with opiate-induced behaviours yielded two major results. The major finding of the functional neuroanatomy of acute morphine dependence was that doses of naloxone that induced hyperalgesia following a brief exposure to morphine, in previously drug-naïve rats, caused a specific induction of the inducible transcription factor (itf) proteins c-Fos and zif268 in the extended amygdala. Moreover, doses of naloxone that caused a simple reversal in morphine analgesia failed to induce itf proteins in these same brain regions. This increase in itf proteins was specific to regions of the extended amygdala that receive and process nociceptive information relayed via the spino-parabrachio-amygdaloid pathway and was not observed in other regions that are involved in supraspinal pain modulation such as the rostral ventromedial medulla and the periaqueductal gray. We also found that acute morphine increased c-Fos protein in the basolateral amygdala and the major output nucleus of the central amygdala the medial subdivision. Acute morphine also up-regulated c-Fos protein in striatal, midbrain, and hypothalamic nuclei. A unique finding of the current study was that prolonged exposure to morphine was required to induce c-Fos in these brain regions, as the subsequent administration of naloxone 30-minutes after morphine either reversed or blocked this induction. These results indicate the potential role of the amygdala in analgesia following systemic morphine and in pain facilitation during acute morphine abstinence. Investigation into the neurons and circuitry that undergo long-term neuroplasticity in response to repeated morphine exposure revealed that network-level changes in the distribution of Fos protein in the nucleus accumbens and striatum predicted both tolerance to catalepsy and psychomotor sensitisation. Drug-naïve rats became profoundly cataleptic following morphine, an effect that rats with a drug-history became tolerant. Rats with a history of morphine exposure showed an increase in stereotyped behaviours compared to drug-naïve rats. The major finding of this study was that a shift in the induction of c-Fos protein from a matrix predominance in drug-naïve rats toward a patch predominance in drug-sensitised rats in the accumbens core predicted both tolerance to catalepsy and sensitisation of oral stereotyped behaviours. Acute injection of morphine in a drug-naïve rat induced catalepsy and increased the number of c-Fos-positive neurons in matrix striatopallidal projection neurons of the rostral accumbens core. An increase in activity of striatopallidal projection neurons, which give rise to the indirect pathway, could potentially increase inhibitory drive to the pedunculopontine nucleus (PPN). The PPN, long known as a site of termination for basal ganglia output, is thought to direct the outflow of incentive-motivational and sensorimotor information from the nucleus accumbens to pons, medullary, and spinal cord nuclei translating the incentive impact of the stimuli into appropriate motor, autonomic and emotive responses (Winn et al., 1997). Inhibition of this nucleus would cause the animal to be unable to initiate a movement and in effect lock up, which is precisely what cataleptic postures look like. In contrast c-Fos-positive neurons were decreased in the rostral matrix and increased in patch striatonigral projection neurons along the rostro-caudal extent of the accumbens core when morphine was administered to drug-sensitised rats. Striatonigral neurons located in the patch give rise to the direct pathway innervating the dopaminergic neurons in both substantia pars compacta and the dopamine rich islands in the substantia nigra pars reticulata (Berendse et al., 1992; Gerfen, 1992; Furuta et al., 2002). Activity of this pathway is thought to be involved in the initiation of movement (Gerfen, 1992; Gerfen and Wilson, 1996), however, when this pathway is overstimulated as is the case when morphine is injected in drug-sensitised rats this could potentially cause increased activity of PPN neurons leading to repetitive psychomotor behaviours or stereotypy. This data adds to the growing body of evidence that suggests that long-term neuroadaptations induced by drugs of abuse including morphine that lead to behavioural sensitisation involves the circuitry that includes the nucleus accumbens.
See less
Date
2006-01-01Licence
The author retains copyright of this thesis.Faculty/School
Faculty of Medicine, Northern Clinical SchoolAwarding institution
The University of SydneyShare