UniversityLibraryCurrent studentsStaff intranet
University of Sydney
University of Sydney
View Item 
  • Sydney eScholarship Home
  • Postgraduate Theses
  • Sydney Digital Theses (Open Access)
  • View Item
  • Sydney eScholarship Home
  • Postgraduate Theses
  • Sydney Digital Theses (Open Access)
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Experimental study of fluid flow and heat transfer in tortuous microchannels

Thumbnail
View/Open
Thesis (PDF, 14.89MB)
Date
2014-03-31
Author
Dai, Zhenhui
Metadata
Show full item record
Abstract
Tortuous microchannels have attracted increasing interest due to great potential to enhance fluid mixing and heat transfer. While the fluid flow and heat transfer in wavy microchannels have been studied extensively in a numerical fashion, experimental studies are very limited due to the technical difficulties of making accurate measurements in micro-scale flows. This thesis provides insights into thermohydraulics of tortuous microchannels by developing experimental techniques and performing systematic visualisation and heat transfer experiments. The detailed flow patterns (including Dean vortices) and transition behaviours in wavy channels are successfully identified using Micro-Particle Image Velocimetry (micro-PIV) and 3D reconstruction techniques. Conjugate heat transfer simulations are carried out to understand the complex thermal behaviour present in the current experimental design and to validate and compare with experimental results. The impact of tortuous geometry on flow and heat transfer in microchannels is studied systematically. The high quality experimental data provide a new perspective on flow behaviour and heat transfer performance in wavy microchannels. In addition, the stackability of channels on a plate is considered. The zigzag pathways are found to provide the greatest heat transfer intensification based on a plate structure. A significant component of the research in this thesis has been the development of experimental techniques to measure local heat transfer rates in microchannels. A two-dye laser induced fluorescence (LIF) technique using temperature sensitive particles (TSPs) is developed with promising characteristics for local temperature measurement and the capability for simultaneous measurement of temperature and velocity fields in microscale systems. The advanced experimental techniques developed in this thesis provide important tools for the investigation of thermohydraulics of various micro-devices in the field of engineering.
URI
http://hdl.handle.net/2123/11596
Collections
  • Sydney Digital Theses (Open Access) [4718]

Browse

All of Sydney eScholarshipCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

LoginRegister

Statistics

Most Popular ItemsStatistics by CountryMost Popular Authors

Links

University homeLibraryCurrent studentsStaff intranet

Repository

  • About us
  • FAQ
  • Policies & guidelines
  • Email us
  • Non-UniKey login
Leadership for good starts here

Media

  • News
  • Find an expert
  • Media contacts

Student links

  • Log in to University systems
  • Study dates
  • Student handbooks
  • Timetables
  • Library

About us

  • Our world rankings
  • Faculties and schools
  • Centres and institutes
  • Campus locations
  • Maps and locations

Connect

  • Contact us
  • Find a staff member
  • Careers at Sydney
  • Events
  • Emergencies and personal safety
Inspired: Campaign to support the University of SydneyGroup of Eight
Disclaimer
Privacy
Accessibility
Website feedback
ABN: 15 211 513 464
CRICOS Number: 00026A
Disclaimer
Privacy
Accessibility
Website feedback
ABN: 15 211 513 464
CRICOS Number: 00026A