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ABSTRACT 

To date, the agnostic search of the genome by genome-wide association (GWA) to identify common variants associated with lumbar disc degeneration (LDD) has not been 

fruitful. Likely reasons for this include lack of clarity over what constitutes a ‘case’ as well as inadequate sample sizes, both well recognised attributes of the successful GWA 

study. In LDD the disc space narrows and osteophytes grow at the circumference of the disc. We have developed a continuous trait based on these 2 features which is 

measurable on all forms of imaging (plain radiograph, CT scan and MR imaging) and performed a meta-analysis of 5 cohorts of Northern European extraction having GWAS 

imputed to HapMap vs2. This study of >4,500 individuals identified 4 SNPs with p < 5 x 10-8, the threshold set for genome-wide significance. We identified a novel variant in 

the PARK2 gene (p = 2.8 x 10-8) associated with LDD which has not hitherto been implicated in the condition. This work sheds new light on the pathogenesis of LDD. 

  



Introduction 

Lumbar disc degeneration (LDD) is a common, age-related trait [1] which has been shown to contribute to low back pain [2,3]. As low back pain is common in the general 

population and costly to society LDD is, therefore, of considerable public health importance [4]. The intervertebral disc comprises three distinct components; the nucleus 

pulposus, the annulus fibrosis and the cartilaginous endplate. Discrete biochemical, histological, metabolic and functional changes occur with age, such that the discs 

become dehydrated, lose disc height and there is accompanying in-growth of blood vessels and outgrowth of osteophytes from the vertebral body margin [5]. There are 

similarities with osteoarthritis where similar changes are seen in the cartilage. LDD has been shown to be heritable, with estimates of 65-80% according to precise 

phenotype studied [6,7].  Thus a considerable proportion of the variance in LDD is explained by genetic factors. To date, only a handful of genetic variants have been reliably 

determined using the candidate gene approach (reviewed by [8]) including VDR encoding the vitamin D receptor and some of the collagen genes such as COL9A2 and A3. A 

number of studies show conflicting results: these are likely due to small sample size or may reflect ethnic differences between Northern European and Asian populations, as 

seen in peripheral joint osteoarthritis [9]. The fact that increasing numbers of published genome-wide associations (GWAs) in common complex traits fail to replicate 

candidate gene findings suggest that there are limitations to the candidate gene method. An example  from the bone mineral density literature is the GWAS meta-analysis 

of many thousands of individuals that reproduced only 9 of 150 reported candidate gene associations [10]. Even if a large proportion of replicated candidate gene studies in 

LDD are truly associated, a considerable proportion of the genetic variance in LDD remains unexplained [11]. In order to optimise sample size in the present study we 

performed meta-analysis of GWAS using a number of cohorts having the LDD phenotype. A variable was derived from measures of disc height and osteophytes obtained 

from lateral images on MR, CT scan or plain radiograph. Summing this variable over the 5 lumbar discs provided a continuous measure of disc degeneration.  

Materials and methods  

Using standardised coding methods and uniform transformation a continuously distributed LDD trait was derived for GWA in each cohort. Meta-analysis was performed of 

imputed GWA data from five population cohorts (Framingham, GARP, Rotterdam study 1 and 3 and TwinsUK) having imaging of the spine (see below).  All cohorts had 

obtained fully informed consent from their participants and appropriate ethics committee approval. In all studies, a cumulative degeneration score was constructed from 

the sum of scores of degenerative changes at each level (disc space narrowing coded 0-3 and osteophytes, either anterior or posterior or both, coded 0-3). In those cohorts 

where only 4 disc levels were read (FHS) a fifth level was imputed by taking the mean reading for 4 discs as a surrogate for the fifth disc, and summing over 5 discs. The data 

underwent inverse normal transformation to generate a normally distributed variable.  

Phenotyping the cohorts 



1.  The Framingham Heart study (FHS) is a longitudinal cohort of a defined population in Massachusetts, initiated in 1948 (www.framinghamheartstudy.org).  It began as a 

study sample of 5,209 Framingham men and women between the ages of thirty and sixty.  Subsequently, offspring and third generation subjects were incorporated.  Every 

other year, after an extensive baseline examination, subjects undergo testing that includes a medical history, blood profile, echocardiogram, and bone, eye, and other tests.  

The subset of the Framingham subjects covered by the current analysis comprised 366 subjects from the Offspring and Generation 3 arms of the study who had undergone 

CT scanning of the spine, and the recruitment, conduct, and specifications of CT scanning have been reported elsewhere [12].  Measurement of the lumbar spine CTs for 

disc height  and scoring (0-3) for anterior and posterior osteophytes was performed by a spine specialist using the mid-sagittal plane at spinal levels L2-L3, L3-L4, L4-L5, and 

L5-S1 by author PS using the atlas of Jarosz et al [7]. The measured values for disc height (mm) were converted to 0-3 categorical scale for disc height loss. Using the 

imputed value for the 5th lumbar vertebra, values for disc height loss and anterior and posterior osteophytes were summed over the 5 lumbar disc levels. 

2. The Genetics, osteoARthrosis and Progression study (GARP) study comprises white sibling pairs of Dutch origin affected by osteoarthritis at multiple sites, and is aimed 

at identifying determinants of osteoarthritis susceptibility and progression.  Probands (ages 40–70 years) and their siblings had osteoarthritis at multiple joint sites of the 

hand or in >2 of the following joint sites hand, spine (cervical or lumbar), knee or hip as described previously [13]. Subjects included in this study had undergone lateral 

radiographs of the spine (T4-S1).  Each intervertebral disc level from L1/2 to L5/S1 was reviewed for the presence and severity of osteophytes (anterior) and disc narrowing, 

using the Lane atlas [14] where 0 = none; grade 1 = mild; grade 2 = moderate; and grade 3 = severe. The score at each level for anterior osteophytes and disc height loss 

were summed over the 5 lumbar levels. 

 

3. The Rotterdam study is a prospective population-based follow-up study of the determinants and prognosis of chronic diseases in the elderly ([15,16]).  All persons living 

in Ommoord, a suburb of Rotterdam, who were aged 55 years and over were invited to participate.  A total of 7,983 participants were examined.  For the current analysis, 

two subsets of the data were considered.  Rotterdam cohort 1 (RS1) consists of 2,440 subjects; Rotterdam cohort 3 (RS3) consists of 974 subjects. Subjects originating from 

the Rotterdam study underwent plain radiography and scoring of LDD as previously described [3].  In brief, lateral lumbar radiographs were scored by a single observer for 

the presence of the individual radiographic features of disc degeneration. Each intervertebral disc from L1/2 to L5/S1 was reviewed for the presence and severity of 

osteophytes (anterior) and disc narrowing, using the Lane atlas as described above [14]. The scores for the 2 traits over the 5 lumbar discs were summed. 

4. The TwinsUK registry (TUK) was described previously [17].  The register was started in 1993 and now comprises of approximately 10,000 monozygotic (MZ) and dizygotic 

(DZ) adult Caucasian twins aged 16 to 85 years from all over the United Kingdom, plus some parents and siblings. It now incorporates previous twin registries from the 

Institute of Psychiatry and Aberdeen University. This is a volunteer sample recruited by successive media campaigns without selecting for particular diseases or traits. All 

http://www.framinghamheartstudy.org/


twins receive a series of detailed disease and environment questionnaires. The majority of twins have been assessed in detail clinically at several time points for several 

hundred phenotypes related to common diseases or intermediate traits.   The subset of TwinsUK covered by the current analysis consisted of 744 subjects who had 

participated in the spine MR study (scanned 1996-2000) using a Siemens MR machine with (Munich, Germany) 1.0-tesla superconducting magnet.  Serial sagittal images of 

the cervical, thoraco-lumbar junction and lumbar spine (T9-L5) were obtained [7]. Images were coded for disc height loss and anterior osteophytes using a 0-3 scale in each 

case, where 0 is normal and 3 maximal degeneration as per the atlas of Jarosz et al [7]. All 5 lumbar discs were scored and the scores summed to give a combined LDD 

variable. 

Genotyping and imputation 

1. Framingham Heart Study subjects were genotyped using  Affymetrix GeneCHip Human Mapping 500K array set and/or the 100K array set and/or the 50K array. Methods 

and quality controls have been described previously [18]. 

 

2. GARP subjects were genotyped using Illumina Human660W Quad BeadChips. Genotyping was performed at the genotyping Rotterdam Genotyping Centre. Positive 

strand, genotypes were called by clustering in Genome studio and imputation was performed using IMPUTE software and hapmap phase II v21[19,20]. Strict selection 

criteria were applied to the measured genotypes using a high information content (RT2 of >95%) and a minor allele frequency > 0.0025. Association analyses were 

performed using an in house developed software package that allows the analyses of family data using all information available in the cases and controls by extending the 

Cochran-Armitage trend test [21].  

3. RS1 and RS3 subjects in the Rotterdam Study sets were genotyped on the HumanHap550v3 Genotyping BeadCHip (Illumina). 

 

4. TUK subjects were genotyped using a combination of Illumina arrays (Human Hap300 and the Human Hap610Q). Genotyping was performed by the Wellcome Trust 

Sanger Institute using the Infinium assay (Illumina, San Diego, USA) across three genome-wide SNP sets, as described previously [22]. Genotyping results had been sent to 

KCL for collation and analysis using statistical package, STATA (StataCorp) [23]. Strict quality control was applied:  314,075 SMPs were retained for analysis (98.7%) – 733 

were excluded because their call rates were <=90% and 725 SNPs had minor allele frequency < 0.01. In TwinsUK, significant population substructure was excluded using the 

STRUCTURE program. 

Meta-analysis of the 5 study groups 



Genotypes for 2.5-3 million autosomal SNPs were imputed separately to increase coverage using HapMap version 2 (www.hapmap.org) as reference panel. In GARP and 

TUK imputation was performed with Impute version 2[24]and in the other studies with MACH[25]. The common reference panel led to the reporting of results for the 

positive strand for all cohorts.  In addition, allele pairs were compared between cohorts and no detectable strand-flips were found; the minor allele frequency was also 

compared between data-sets.  The distributions of beta values of the cohorts were found to be similar and therefore suitable for meta-analysis. All directly genotyped or 

imputed autosomal SNPs having information from more than one study group (n=2,552,511) were included in the meta-analysis. Association results were combined using 

inverse variance weighted fixed effects meta-analysis. Two meta-analyses were run: the first was unadjusted; the second was adjusted for age and sex as both known risk 

factors for LDD and each risk factor was correlated with LDD in each study group.  Heterogeneity of estimated effect was expressed using Q (weighted sum of squares) and 

I2 (ratio of true heterogeneity to total observed variation). SNPs were excluded from the meta-analysis if the cohort-specific imputation quality as assessed by r2.hat 

(MACH) or .info (IMPUTE) metric was <0.40.   

Results 

The study samples for the meta-analysis included 4683 individuals of European ancestries. Table 2 shows sample size, demographic characteristics, LDD and lumbar spine 

imaging method for each independent cohort. Participants were mainly females (67.0%) and had mean age 57.7 years. Across the cohorts, mean level of LDD varied from 

0.011 to 3.46, reflecting differences in imaging methods. However, the variance of the LDD variable were broadly similar (range 0.958 – 1.14), as were the distributions of 

the estimated genetic effect sizes (beta).  Results from the adjusted analysis were broadly similar to the unadjusted: the Manhattan plots for the unadjusted and adjusted 

analyses are shown in Figure 1 and data from the analyses are shown in Table 3 (unadjusted) and Supplementary Table 1 (adjusted) for SNPs having p<10-5. All signals with 

suggestive levels of significance are listed in Table 3a and Table 3b for unadjusted and adjusted analyses respectively. Quantile-quantile plots for LDD, both unadjusted and 

adjusted, are presented in Figure 2. Test statistic inflation post meta-analysis, as measured by the genomic control statistic [26] was low (λGC unadjusted =1.02; λGC 

adjusted=1.03) suggesting that relatedness had been adequately dealt with by the individual cohorts.   

Four markers achieved genome-wide significance in the unadjusted GWAS, 3 of which were on chromosome 6 (rs926849; rs2187689; rs7767277), plus an intergenic marker 

on chromosome 3 (rs17034687). The results of the meta-analysis adjusted for age and gender were broadly similar, with p values slightly attenuated: the top signal for was 

also for SNP rs926849. This SNP lies on an intronic region of the Parkinson protein 2, E3 ubiquitin protein ligase (PARK2) gene on chromosome 6. Data were available from 

four studies and the range of estimated minor allele frequencies was 0.23-0.32.  Imputation quality was high for all four studies contributing this SNP (>0.90).  The minor or 

C allele of rs926849 was associated with a lower level of LDD implying that the minor allele is protective.   Figure 4 shows association results (for the adjusted analysis) of 

both genotyped and imputed SNPs within 200 Kb of the PARK2 gene, along with recombination rates.  

http://www.hapmap.org/


Two of the other strongly associated SNPs are in perfect LD: rs2187689 and rs7767277 on chromosome 6. Data were available for four studies and the range of estimated 

allele frequency was 0.05-0.10.  Imputation quality was high for all four studies (>0.90).  Both SNPs are in strong LD (r2=0.76) with an intronic marker on the proteasome 

subunit, beta type 9, large multifunctional peptidase 2 gene (PSMB9) that is located in the class II region of the major histocompatibility complex (MHC). Figure 5 shows 

association results (for the adjusted analysis) of both genotyped and imputed SNPs within 400 Kb of rs2187689, along with recombination rates.  

DISCUSSION 

The availability of HapMap data and development of GWA technology has provided the ability for researchers to search the genome for associated variants without a priori 

assumptions of their involvement. While disadvantaged by the multiple testing involved, the main strength of the method is that it provides an agnostic search and so novel 

genes and pathways may be identified. This sort of approach may play an important role in conditions such as LDD where it is difficult for cell biologists to obtain fresh 

normal disc specimens for examination and the pathology that underlies LDD remains incompletely understood. GWA offers an unbiased scan of common genetic variants 

(minor allele frequency >5%) and thus may deliver novel variants in genes not hitherto suspected of playing a role in disc degeneration. At the time of writing there are no 

published genome-wide studies of lumbar disc degeneration (LDD), lumbar disc disease (disc bulge/prolapsed in cases vs controls), sciatica or back pain. This work is, 

therefore, the first to report on a genome-wide meta-analysis being conducted for lumbar disc degeneration. LDD is an age-related process which occurs in all people to 

some extent and may be detected as early as the teenage years [1]. LDD is known to have genetic determinants [7,16] and its expression is also influenced by gender 

(women develop LDD later), body mass index [27–31] and smoking [32]. Occupational factors also play a role in LDD [33]. LDD as determined by MR imaging has been 

implicated in the development of episodes of severe and disabling low back pain [2,7]. LDD has, therefore, considerable social and health-related costs which it is important 

to address. We undertook this large meta-analysis in order to identify novel genetic variants associated with LDD and to shed light on the underlying pathology of disc 

degeneration. 

GWA data obtained using differing chip technology may be readily compared using imputation to HapMap. In total 2,543,887 overlapping markers were available in each 

cohort. We identified 4 markers having significant association with the LDD phenotype (p<5x10-8). There was a marked similarity in the results obtained with and without 

adjustment for the covariates age and sex.  A total of twenty-six markers had p<10-5 in both meta-analyses.  In both analyses there were multiple associations to the HLA 

region and to markers in PARK2 (Parkinson protein 2, E3 ubiquitin protein ligase).  Among the most significant findings (Table 3) SNP rs926849 lies at 6q25.2-27 within an 

intron in the PARK2 gene, a large gene of 1.3 Mb comprising 12 exons. The SNP encodes a change of base from T to C and is reported to have minor allele frequency of 0.23 

– 0.34 in dbSNP, which is keeping with the findings in our study groups (Table 3, Figures 3 and 4). Although this SNP has not been directly genotyped by any study group, 

estimates suggest imputation to be accurate for rs926849 (range 95-99%, Table 3). PARK2 encodes a protein called parkin which is a component of a multiprotein E3 



ubiquitin ligase complex that mediates the targeting of unwanted proteins for proteasomal degradation.  This complex also controls the level of proteins involved in several 

critical cell activities such as the timing of cell division and growth and for this reason it is postulated to be a tumour suppressor protein.  Alternative splicing of the gene 

produces multiple transcript variants encoding distinct isoforms.  Parkin is widely expressed in solid organs as well as skeletal muscle (http://www.proteinatlas.org/). 

Mutations within PARK2 are associated with autosomal recessive juvenile Parkinson’s disease, Alzheimer’s disease, diabetes mellitus and a number of solid tumours 

(reviewed in [34]). It has been postulated that Parkin accounts for the observed inverse relation between Parkinson’s disease and cancer epidemiology [35]. In addition, 

variation within the PARK2 gene have been shown to alter the risk of leprosy [36] and other infectious diseases [37]. 

Three further markers in the unadjusted meta-analysis had p<5x10-8. Marker rs17034687 is an intergenic marker on chromosome 3.  Based on 1KG/CEU data, it is not in LD 

(r2>0.3) with any known gene-based markers.  Markers rs2187689 (Fig 5) and rs7767277 are HLA-region markers, neither of which is included in the 1KG pilot data.  Using 

data from HapMap version 3 (release 2), rs2187689 and rs776277 are in perfect LD with each other and in LD (r2=0.76) with an intronic marker in PSMB9 (proteasome 

(prosome, macropain) subunit, beta type 9; large multifunctional peptidase 2).  Proteasomes are distributed throughout eukaroytic cells at high concentration and cleave 

peptides in an ATP/ubiquitin-dependent process in a non-lysosomal pathway.  The gene is located in the class II region of the MHC (major histocompatibility complex).  

Expression of the gene is induced by gamma interferon and this gene product replaces catalytic subunit 1 (proteasome beta 6 subunit) in the immunoproteasome. 

While lumbar degeneration is not considered an inflammatory process and has not been reported to be auto-immune in aetiology, there is evidence of proinflammatory 

cytokine activation in degenerate, particularly herniated, lumbar discs [38] and further, anti-TNF has been used successfully to treat disc herniation [39].  Of note, the 

COL11A2 gene lies 164 KB upstream from rs2187689. A SNP (rs2076311) within this very reasonable candidate gene has been shown to be associated with MR-determined 

disc signal intensity in a candidate gene study of Finnish male twins [40]. SNP rs2076311 is not, however, in LD with our top hit, rs2187689 (R2 = 0.017) so it seems unlikely 

that this collagen-encoding gene accounts for our results. So many published GWA studies have identified SNPs in intergenic regions and gene deserts, it is clear that there 

is an as-yet undefined role for these regions. Long range enhancers, for example, could operate in this region so an influence on Col XI alpha2 expression cannot be 

excluded. 

Of possible significance is SNP rs4802666(p = 3.76x10-06, adjusted meta-analysis) which lies within the MYH14 gene which encodes myosin, heavy chain 14, non-muscle. It is 

expressed in cell lines derived from bone (www.proteinatlas.org) and is implicated in autosomal dominant hearing impairment. It is of interest in LDD because it lies on 

chromosome 19 under the linkage peak we have reported in twins for LDD [41] and a peak reported by the Framingham group for hand osteoarthritis [42]. As there is a 

known phenotypic relationship between these two sites, this region on chromosome 19 forms a plausible candidate region for OA. It is not impossible that a muscle-

expressed protein plays a role LDD through mechanisms similar to those proposed for OA [43]. 

http://www.proteinatlas.org/
http://www.proteinatlas.org/


 

The main limitation of the study is one of obtaining accurate phenotype on individuals which is known to be an important factor in the success of GWA [44]. There is no 

agreed gold standard imaging method in the determination of LDD, although it is recognised that MR imaging offers the most sensitive, widely available tool. Even so, MR is 

still expensive and many of the largest cohorts of spine imaging have plain radiographs, with more limited phenotypic information. The coding method applied to the 

imaging is also yet to be formally standardised.  In order to obtain sufficient sample size, a number of cohorts were recruited having different imaging methods, but traits 

were selected such that they were comparable across the cohorts. Thus cohorts recoded their imaging where necessary to meet uniform requirements for inclusion. We 

included measures of disc height (coded 0-3) and anterior osteophytes (in RS1, RS3, GARP and TUK, also coded 0-3) and posterior osteophytes in FHS (coded 0-3). These 

sub-phenotypes were summed over the 5 discs and underwent inverse normal transformation to give a normal distribution. A further limitation is that 4 cohorts are 

population samples while GARP is derived from OA-affected sib pairs. We included GARP because it has made a contribution to similar analyses performed for OA [45]and, 

with adjustment for relatedness, appears to provide data comparable to other studies. While the differing methods of imaging provide different amounts of information, so 

the LDD variable has lower mean in those cohorts with radiographs, the variance of each groups LDD variable is comparable. Where GARP samples made a contribution to 

the meta-analysis (a number of the significant SNPs did not include a contribution from GARP, Table 3) the MAF was similar to those of other groups. The TUK group has a 

disproportionate number of women, for historical reasons. The men were retained, however, as they did not differ significantly from women in the LDD variable or BMI 

(data not shown). This study lacks a replication group. A second sample of similar size to the first is considered important to show that the findings of the first sample are 

true positives. Unfortunately there are, to our knowledge, no other collections of Northern Europeans having spine imaging which together would approach 4,500 

individuals. There is considerable evidence in the literature that the genetic predisposition between Northern Europeans and Asians to OA is different [46] and given the 

phenotypic and genetic similarities between OA and LDD, replication should be made in Northern Europeans. We elected to include all the subjects in a single, powerful 

study rather than split the sample and reduce the chances of finding significant novel loci. 

This is the first large-scale GWA study of LDD and we have identified several novel variants in the PARK2 gene and in PSMB9 within MHC class 2.  
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Table 1 .Characteristics of the study samples  

 FHS GARP RS1 RS3 TUK 

N 330 192 2440 974 744 

Age, years 
54.3 

(11.0) 

60.3 

(7.1) 

65.7 

(6.7) 

54.7 

(3.4) 

53.6 

(8.3) 

Women (%) 42.2 79.7 57 59 96.8 

BMI, kg/m 2 
28.1 

(5.1) 
XXX 

26.3 

(3.4) 

27.12 

(4.6) 

24.9 

(4.4) 

Lumbar spine imaging CT radiograph radiograph radiograph MRI 

LDD variable 
2.49 

(0.97) 

0.02 

(0.958) 

0.006 

(0.978) 

0.011 

(0.965) 

3.46 

(1.14) 

 

Legend to Table 1 

FHS represents Framingham Heart Study; GARP, Genetics of OsteoArthrosis and Progression study; RS1, Rotterdam study cohort 1; RS3:, Rotterdam study cohort 3; TUK, 

TwinsUK: BMI, body mass index; MRI, magnetic resonance imaging; CT, computed tomography 

Values are mean (SD) unless specified otherwise.  



Table 2. Genotyping and imputation methods by study 

  FHS  GARP  RS1 RS3  TUK 

Genotyping      

Platform Affymetrix Illumina Illumina Illumina Illumina 

Chip 500K or 1000K or 10 K 
Human660W 

quad 
Human Hap550 Human Hap550 

Human Hap300 or Human 
Hap610Q 

Call rate >0.97 > 0.95 > 0.975 > 0.975 >0.90 

MAF > 0.05 > 0.0025 > 0.01 > 0.01 >0.01 

HWE p-value > 10-6 XXX > 10-6 > 10-6 > 10-4 

      

Imputation      

Variants included for imputation 534,982 xxx 512,349 514,073 314,075 

Imputation software MACH vs1 IMPUTE MACH MACH IMPUTE vs 2 

Genome build 
HapMap Phase II 

release 22 
Hapmap Phase II 

release 21 
Hapmap Phase II 

release 22 
Hapmap Phase II release 

22  

Total number of SNPs available 2,543,887  1,830,601   2,543,887 2,543,887  3,044,064  

 

 

Legend to Table 2 

FHS represents Framingham Heart Study; GARP, Genetics of OsteoArthrosis and Progression study; RS1, Rotterdam study cohort 1; RS3:, Rotterdam study cohort 3; TUK, 

TwinsUK: BMI, body mass index; MAF, Minor Allele Frequency; HWE, Hardy-Weinberg equilibrium 

  



Table 3. Results of the GWA meta-analysis (unadjusted, showing those SNPs having p<10-5). 

SNP Gene Chr position N MAF.R1 MAF.R3 MAF.T MAF.F MAF.G R2.R1 R2.R3 Inf.T R2.F R2.G 
Eff 
All beta SE P 

rs17034687 NA 3 3654852 4429 0.09 0.10 0.05 0.08 NA 0.92 0.93 0.88 0.82 NA C 0.23 0.0383 1.82E-09 

rs2187689 NA 6 32960625 4457 0.08 0.07 0.06 0.09 NA 0.98 0.99 0.95 0.93 NA C 0.23 0.0411 2.72E-08 

rs7767277 NA 6 32961020 4457 0.08 0.07 0.06 0.09 NA 0.98 0.99 0.95 0.93 NA A 0.23 0.0411 2.81E-08 

rs926849 PARK2 6 162081609 3939 0.31 0.32 NA 0.31 0.23 0.98 0.99 NA 0.90 95.04 C -0.13 0.0243 3.25E-08 

rs7744666 NA 6 32967690 4466 0.10 0.09 0.06 0.10 NA 0.99 1.00 0.97 0.96 NA C 0.2 0.0367 5.58E-08 

rs11969002 NA 6 32967726 4466 0.10 0.09 0.06 0.10 NA 0.99 1.00 0.97 0.96 NA A 0.2 0.0367 5.59E-08 

rs6457690 NA 6 32963695 4464 0.10 0.09 0.07 0.11 NA 0.98 1.00 0.96 0.97 NA A 0.19 0.0364 9.36E-08 

rs1029296 NA 6 32964359 4464 0.10 0.09 0.07 0.11 NA 0.98 1.00 0.96 0.97 NA C 0.19 0.0364 9.39E-08 

rs6936004 NA 6 32964912 4462 0.10 0.09 0.07 0.11 NA 0.98 1.00 0.96 0.97 NA C 0.19 0.0364 1.04E-07 

rs3749982 NA 6 32970585 4458 0.10 0.09 0.06 0.10 NA 0.99 1.00 0.96 0.96 NA A 0.19 0.0367 1.46E-07 

rs9469300 NA 6 32968730 4482 0.10 0.09 0.07 0.10 NA 0.99 1.00 0.92 0.96 NA A 0.19 0.0365 1.47E-07 

rs10214886 NA 6 32965397 4479 0.10 0.09 0.07 0.11 NA 0.98 1.00 0.92 0.97 NA A 0.19 0.0363 2.32E-07 

rs10046257 NA 6 32962675 4461 0.10 0.09 0.08 0.11 NA 0.98 1.00 0.96 0.97 NA A 0.19 0.0366 3.22E-07 

rs4875102 NA 8 4272100 4608 0.26 0.26 0.27 0.25 0.29 0.99 0.99 0.95 0.91 97.65 A -0.12 0.0238 3.61E-07 

rs3019449 PARK2 6 162085083 4636 0.32 0.32 0.31 0.31 0.28 0.98 0.98 0.98 0.99 97.18 A -0.12 0.0228 3.68E-07 

rs1029295 NA 6 32964460 3747 0.10 0.09 NA 0.11 NA 0.98 1.00 NA 0.97 NA C 0.19 0.0382 4.58E-07 

rs9301951 GPC6 13 93750833 4397 0.04 0.04 0.03 0.05 NA 0.96 0.97 0.74 0.78 NA C -0.26 0.0539 9.47E-07 

rs7896691 PFKP 10 3145173 4652 0.10 0.10 0.09 0.13 0.07 0.99 1.00 0.96 0.67 97.61 C 0.17 0.0354 2.02E-06 

rs6602024 PFKP 10 3145237 4673 0.10 0.10 0.09 0.13 0.07 0.99 1.00 0.98 0.67 97.62 A 0.17 0.0354 2.20E-06 

rs1884158 PARK2 6 162081656 4491 0.31 0.32 0.31 0.31 NA 0.98 0.99 0.99 0.91 NA C -0.11 0.0231 3.56E-06 

rs10998466 NA 10 70296435 4446 0.01 0.01 0.01 0.02 NA 0.75 0.97 0.73 0.51 NA A -0.53 0.1136 3.59E-06 

rs17132175 PFKP 10 3140814 4659 0.10 0.10 0.09 0.13 0.07 0.98 0.99 0.97 0.63 97.13 C 0.16 0.0356 3.73E-06 

rs1981483 PIGQ 16 570666 3939 0.42 0.43 NA 0.42 0.47 0.99 0.98 NA 0.44 99.64 A 0.11 0.023 3.75E-06 

rs1154053 NA 8 4272798 4639 0.17 0.17 0.18 0.16 0.20 0.99 1.00 0.96 0.89 96.17 C -0.13 0.028 3.99E-06 

rs737631 PARK2 6 162082423 4303 0.28 0.29 0.23 0.28 NA 0.92 0.91 0.89 0.83 NA A -0.11 0.0246 4.32E-06 

rs2484990 NA 10 31555138 4429 0.01 0.01 0.00 0.02 NA 0.56 0.82 0.47 0.93 NA C 0.68 0.148 4.39E-06 

rs1250307 NA 10 31535980 4415 0.01 0.01 0.00 0.02 NA 0.56 0.82 0.45 0.94 NA A 0.68 0.1484 4.39E-06 

rs7204439 RAB40C 16 601336 3939 0.42 0.43 NA 0.43 0.47 0.97 0.98 NA 0.43 97.37 C 0.11 0.023 4.43E-06 

rs4802666 MYH14 19 55412886 4094 0.27 0.27 0.18 0.27 NA 0.70 0.74 0.76 0.64 NA A -0.13 0.0286 4.55E-06 

rs2484992 NA 10 31552104 4440 0.01 0.01 0.00 0.02 NA 0.56 0.82 0.48 0.93 NA C 0.68 0.1485 4.81E-06 

rs9488238 NA 6 114123826 4464 0.04 0.03 0.02 0.03 NA 0.87 0.88 0.87 0.97 NA A -0.28 0.0609 5.17E-06 



rs763014 RAB40C 16 615681 3939 0.42 0.43 NA 0.43 0.47 0.98 0.99 NA 0.42 99.40 C 0.1 0.023 5.43E-06 

rs1205863 NA 6 12051512 3939 0.06 0.06 NA 0.06 0.07 0.99 1.00 NA 0.99 98.23 G 0.21 0.0465 5.64E-06 

rs11918654 ARL8B 3 5163246 4310 0.27 0.27 0.29 0.27 NA 0.97 0.98 0.90 0.99 NA C -0.11 0.0243 7.10E-06 

rs4881085 PFKP 10 3145540 4490 0.10 0.10 0.10 0.13 NA 1.00 1.00 0.99 0.67 NA A 0.16 0.0356 7.44E-06 

rs2657195 NA 8 92629091 4316 0.22 0.21 0.18 0.21 NA 0.85 0.85 0.87 0.74 NA A -0.13 0.0281 7.54E-06 

rs11754641 NA 6 65692644 4478 0.03 0.03 0.02 0.04 NA 0.93 0.95 0.91 1.00 NA C 0.29 0.0644 7.84E-06 

rs12805875 NA 11 103034842 4674 0.42 0.41 0.42 0.43 0.41 1.00 1.00 1.00 1.00 98.12 A 0.09 0.0209 8.51E-06 

rs980238 NA 8 4270026 4491 0.30 0.29 0.31 0.29 NA 1.00 1.00 1.00 1.00 NA A -0.1 0.0234 9.11E-06 

rs7103004 NA 11 103031234 4667 0.42 0.41 0.42 0.43 0.41 1.00 1.00 0.99 1.00 97.09 C 0.09 0.0209 9.20E-06 

rs4554859 NA 11 103035576 4674 0.42 0.41 0.42 0.43 0.41 1.00 1.00 1.00 1.00 98.12 G 0.09 0.0209 9.24E-06 

rs7118412 NA 11 103030964 4669 0.42 0.41 0.42 0.43 0.41 1.00 1.00 0.99 1.00 97.09 A 0.09 0.0209 9.37E-06 

rs2017567 NA 16 577213 4683 0.42 0.43 0.42 0.42 0.47 0.99 1.00 1.00 0.45 100.00 C 0.1 0.0214 9.38E-06 

rs710924 PIGQ 16 573354 4683 0.42 0.43 0.42 0.42 0.47 1.00 1.00 1.00 0.45 99.64 C 0.09 0.0214 9.93E-06 
 

Legend to Table 3 

Studies contributing data are denoted RS1: Rotterdam study cohort 1; RS3: Rotterdam study cohort 3; TUK: TwinsUK: BMI: body mass index; FHS: Framingham Heart Study; 

GARP: Genetics of OsteoArthrosis and Progression study;  

SNP single nucleotide polymorphism; Chr chromosome; position, SNP location in base pairs; MAF minor allele frequency; 

R2 

Inf 

Eff All, effector allele; beta, effect size; SE, standard error of beta; p, p value 

  



Figure 1. Quantile-quantile plot of observed versus expected distribution of p values for the GWA meta-analysis  

 

a)       b) 

 

Legend to Figure 1 

The plots show GWA meta-analysis quantile-quantile plot a) unadjusted and b) adjusted for age and sex 

  



 

Figure  2. Manhattan plot for GWA meta-analysis unadjusted results      

  

 

 

Legend to Figure 2 

Plot shows combined results for the 5 studies included in the meta-analysis  



Figure 3 Forest plot of rs926849 in PARK2 unadjusted for covariates

 

Legend to Figure 3 

  



Figure 4. Regional plot of association results and recombination rates for the PARK2 gene adjusted for age and 

sex.

 

Legend to Figure 4 

−log10 P values (y axis) of the SNPs are shown according to their chromosomal positions (x axis) 

The colour intensity of each symbol reflects the extent of LD with the rs926849, coloured red (r2 > 0.8) through to 

blue (r2 < 0.2). Genetic recombination rates (cM/Mb), estimated using HapMap CEU samples, are shown with a light 

blue line. Physical positions are based on build 36 (NCBI) of the human genome. Also shown are the relative 

positions of genes mapping to the region of association. Genes have been redrawn to show the relative positions, 

and therefore, the maps are not to physical scale.  



Figure 5. Regional plot of association results and recombination rates for the class II MHC region adjusted for age 

and sex. 

 

 

 

Legend to Figure 5 

−log10 P values (y axis) of the SNPs are shown according to their chromosomal positions (x axis) 

The colour intensity of each symbol reflects the extent of LD with the rs926849, coloured red (r2 > 0.8) through to 

blue (r2 < 0.2). Genetic recombination rates (cM/Mb), estimated using HapMap CEU samples, are shown with a light 

blue line. Physical positions are based on build 36 (NCBI) of the human genome. Also shown are the relative 

positions of genes mapping to the region of association. Genes have been redrawn to show the relative positions, 

and therefore, the maps are not to physical scale. 

  



Supplementary Table 1. Results of the GWA meta-analysis adjusted for age and sex, showing those SNPs having 

p<10-5. 

 

SNP gene Chr position N MAF.R1 MAF.R3 MAF.T MAF.F MAF.G R2.R1 R2.R3 Inf.T R2.F R2.G 
Eff 
All BETA SE P 

rs926849 PARK2 6 162081609 3939 0.31 0.32 NA 0.31 0.23 0.98 0.99 NA 0.90 95.04 C -0.12 0.0231 9.50E-08 

rs17034687 NA 3 3654852 4429 0.09 0.10 0.05 0.08 NA 0.92 0.93 0.88 0.82 NA C 0.19 0.0367 3.67E-07 

rs2187689 NA 6 32960625 4457 0.08 0.07 0.06 0.09 NA 0.98 0.99 0.95 0.93 NA C 0.19 0.0385 6.63E-07 

rs7767277 NA 6 32961020 4457 0.08 0.07 0.06 0.09 NA 0.98 0.99 0.95 0.93 NA A 0.19 0.0385 6.64E-07 

rs9488238 NA 6 114123826 4464 0.04 0.03 0.02 0.03 NA 0.87 0.88 0.87 0.97 NA A -0.28 0.0575 7.30E-07 

rs3019449 PARK2 6 162085083 4636 0.32 0.32 0.31 0.31 0.28 0.98 0.98 0.98 0.99 97.18 A -0.11 0.0215 7.42E-07 

rs9301951 GPC6 13 93750833 4397 0.04 0.04 0.03 0.05 NA 0.96 0.97 0.74 0.78 NA C -0.25 0.0513 1.35E-06 

rs11136566 CSMD1 8 2922480 4610 0.39 0.39 0.36 0.39 0.46 0.99 0.98 0.97 0.96 97.39 A -0.1 0.0207 2.24E-06 

rs7744666 NA 6 32967690 4466 0.10 0.09 0.06 0.10 NA 0.99 1.00 0.97 0.96 NA C 0.16 0.0348 3.07E-06 

rs11969002 NA 6 32967726 4466 0.10 0.09 0.06 0.10 NA 0.99 1.00 0.97 0.96 NA A 0.16 0.0348 3.07E-06 

rs365962 NA 16 85267450 4608 0.44 0.44 0.48 0.47 0.42 0.99 0.99 0.96 0.69 98.61 C -0.1 0.0204 3.10E-06 

rs387953 NA 16 85271706 4683 0.46 0.45 0.48 0.46 0.43 1.00 0.99 1.00 0.67 99.99 G -0.09 0.0203 3.37E-06 

rs737631 PARK2 6 162082423 4303 0.28 0.29 0.23 0.28 NA 0.92 0.91 0.89 0.83 NA A -0.11 0.0233 3.57E-06 

rs4802666 MYH14 19 55412886 4094 0.27 0.27 0.18 0.27 NA 0.70 0.74 0.76 0.64 NA A -0.13 0.0273 3.76E-06 

rs1154053 NA 8 4272798 4639 0.17 0.17 0.18 0.16 0.20 0.99 1.00 0.96 0.89 96.17 C -0.12 0.0261 4.68E-06 

rs1205863 NA 6 12051512 3939 0.06 0.06 NA 0.06 0.07 0.99 1.00 NA 0.99 98.23 G 0.21 0.0448 4.77E-06 

rs3749982 NA 6 32970585 4458 0.10 0.09 0.06 0.10 NA 0.99 1.00 0.96 0.96 NA A 0.16 0.0349 4.97E-06 

rs6457690 NA 6 32963695 4464 0.10 0.09 0.07 0.11 NA 0.98 1.00 0.96 0.97 NA A 0.16 0.0346 5.93E-06 

rs1029296 NA 6 32964359 4464 0.10 0.09 0.07 0.11 NA 0.98 1.00 0.96 0.97 NA C 0.16 0.0346 5.93E-06 

rs4875102 NA 8 4272100 4608 0.26 0.26 0.27 0.25 0.29 0.99 0.99 0.95 0.91 97.65 A -0.1 0.0225 6.24E-06 

rs7234567 NA 18 3410806 4682 0.26 0.26 0.22 0.22 0.29 1.00 1.00 1.00 0.89 97.67 A -0.1 0.0225 6.34E-06 

rs6936004 NA 6 32964912 4462 0.10 0.09 0.07 0.11 NA 0.98 1.00 0.96 0.97 NA C 0.16 0.0346 6.52E-06 

rs1884158 PARK2 6 162081656 4491 0.31 0.32 0.31 0.31 NA 0.98 0.99 0.99 0.91 NA C -0.1 0.0217 6.54E-06 

rs1981483 PIGQ 16 570666 3939 0.42 0.43 NA 0.42 0.47 0.99 0.98 NA 0.44 99.64 A 0.1 0.0219 6.79E-06 

rs10890236 NA 1 43348908 4683 0.09 0.09 0.09 0.09 0.09 1.00 1.00 1.00 0.93 100.00 C 0.16 0.0353 7.07E-06 

rs1029295 NA 6 32964460 3747 0.10 0.09 NA 0.11 NA 0.98 1.00 NA 0.97 NA C 0.16 0.0366 7.08E-06 

rs763014 RAB40C 16 615681 3939 0.42 0.43 NA 0.43 0.47 0.98 0.99 NA 0.42 99.40 C 0.1 0.0219 7.28E-06 

rs10046257 NA 6 32962675 4461 0.10 0.09 0.08 0.11 NA 0.98 1.00 0.96 0.97 NA A 0.15 0.0344 8.21E-06 

rs7204439 RAB40C 16 601336 3939 0.42 0.43 NA 0.43 0.47 0.97 0.98 NA 0.43 97.37 C 0.1 0.0221 8.23E-06 

rs9469300 NA 6 32968730 4482 0.10 0.09 0.07 0.10 NA 0.99 1.00 0.92 0.96 NA A 0.15 0.0346 8.73E-06 

rs7205409 RAB40C 16 582611 4590 0.42 0.43 0.45 0.43 0.47 0.99 0.99 0.96 0.44 99.33 C 0.09 0.0205 8.78E-06 

rs10998466 NA 10 70296435 4446 0.01 0.01 0.01 0.02 NA 0.75 0.97 0.73 0.51 NA A -0.47 0.1072 9.70E-06 
 

Legend to Supplementary table 4 

Studies contributing data are denoted RS1: Rotterdam study cohort 1; RS3: Rotterdam study cohort 3; TUK: TwinsUK: 

BMI: body mass index; FHS: Framingham Heart Study; GARP: Genetics of OsteoArthrosis and Progression study;  

SNP single nucleotide polymorphism; Chr chromosome; position, SNP location in base pairs; MAF minor allele 

frequency; 

R2 Inf 

Eff All, effecter allele; beta, effect size; SE, standard error of beta; p, p value 


