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ABSTRACT 

Cardiovascular disease, diabetes mellitus and obesity are the leading causes of 

death, disability and reduced quality of life globally. Hyperglycaemia and 

hyperlipidaemia are the two major causational risk factors for the metabolic and 

vascular complications of Type 1 and 2 diabetes, accumulation of excess body weight 

and atherosclerosis. The research reported in this thesis investigates some of the 

molecular mechanisms linking diabetes with atherosclerosis, as well examining 

potential anti-glycative and antioxidant compounds, which may improve 

cardiovascular related diseases induced by hyperglycaemia and hyperlipidaemia. 

 

People with diabetes have an elevated risk of atherosclerosis. The 

accumulation of lipid within macrophage cells in the artery wall is believed to arise 

via the uptake and subsequent processing of modified low-density lipoproteins (LDL) 

via the endolysosomal system. Chapter 3 explores the effects of prolonged exposure to 

elevated glucose upon macrophage lysosomal function to determine whether this 

contributes to modulated LDL and protein catabolism. Exposure to elevated glucose, 

but not mannitol (to control for osmotic effects), was found to result in a 

concentration-dependent decrease in the activity, and to a lesser extent protein levels, 

of four lysosomal cathepsins. Lysosomal acid lipase (LAL) activity, the major 

hydrolase for cholesteryl esters, was also significantly reduced. Arysulfatase activity, 

lysosomal associated marker protein-1 (LAMP-1) levels (commonly used markers of 

lysosomal numbers) and lysosomal dye accumulation were also decreased at the 

highest glucose concentrations, though to a lesser extent.  

 

Chapter 4 extended this work by monitoring the effects of high glucose upon 

lysosomes during the maturation of human monocytes to monocyte-derived 

macrophages (HMDM) under normal 5.5 mM and high 20 mM glucose conditions. 

High glucose concentrations were shown to have an inhibitory effect on lysosomal 

function in monocytes within two days of culturing and the magnitude of the glucose-

induced changes increased as the cells matured into macrophages. Thus high glucose 

modulated the activity of the lysosomal cathepsin B, L and LAL enzymes, their 

proteins levels and also lysosomal numbers during monocyte maturation with these 

effects becoming more pronounced over time except in the case of LAL. This 
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inhibition of lysosomal function may lead to cellular cholesterol accumulation and 

contribute to the generation of macrophage foam cells and atherosclerotic plaque 

development in people with diabetes. 

 

Carnosine has been shown previously to modulate triglyceride and glycation 

levels in both cell and whole animal systems. In Chapter 5 investigations were 

undertaken to determine whether prolonged supplementation with carnosine inhibits 

atherosclerosis in hyperglycaemic and hyperlipidaemic mice. To assess the possible 

anti-atherogenic properties of carnosine, streptozotocin-induced diabetic apo E
-/- 

mice 

were maintained for twenty weeks, post-induction of diabetes. Half of the animals 

received carnosine (2 g/L) in their drinking water. Diabetes was confirmed by 

significant increases in blood glucose and glycated haemoglobin, plasma triglyceride 

and total cholesterol levels, brachiocephalic artery and aortic sinus plaque area; and a 

significantly lower body mass. Supplementation with carnosine was shown to increase 

plasma carnosine levels. Although this did not result in smaller plaque areas in the 

diabetic mice, carnosine supplementation significantly reduced triglyceride levels and 

the area of plaque occupied by extracellular lipid, and increased the number of 

macrophages, α-actin-positive for smooth muscle cells and plaque collagen content. 

These findings indicate that in a well-established model of diabetes-associated 

atherosclerosis, prolonged carnosine supplementation has a significant impact on 

markers of atherosclerotic plaque stability. Carnosine supplementation may therefore 

be of benefit in lowering triglyceride levels and suppressing plaque instability in 

diabetes-associated atherosclerosis at least in this animal model.  

 

The nitroxide compound TEMPOL has been shown to prevent obesity-induced 

changes in adipokine secretion in both cell and whole animal systems. Chapter 6 

investigated whether TEMPOL supplementation inhibits inflammation and 

atherosclerosis in mice that were fed a high fat diet. Adult male C57BL/6 and apo E
-/-

 

mice were fed for 7 weeks either on a standard chow diet or a high-fat diet. Half the 

mice were supplemented with 10 mg/g TEMPOL in their food. High fat feeding 

resulted in a substantial increase in body mass and hyperlipidaemia. Dietary TEMPOL 

resulted in a marked reduction in weight gain and plasma lipid levels. In the 

hyperlipidaemic and obese mice, a significant elevation in plasma lipid levels and the 

inflammatory markers IL-6, MCP-1, MPO, SAA were observed, along with an 
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increase in leptin and decrease in adiponectin. TEMPOL supplementation reversed 

these effects. No significant differences were detected in plaque area. These data 

indicate that in a well-established model of obesity-associated hyperlipidaemia, 

TEMPOL had a significant impact on weight gain, hyperlipidaemia and inflammation. 

TEMPOL supplementation may therefore be of potential value in suppressing obesity 

and metabolic disorders. However whether TEMPOL inhibits atherosclerosis requires 

further investigation.  

 

Chapter 7 extended these in vivo studies by examining the impact of TEMPOL 

supplementation upon macrophage lysosomal function and the potential anti-

inflammatory and anti-glycaemic properties of TEMPOL on cytokine expression in 

hyperglycaemic macrophages.  TEMPOL did not affect the inhibition of lysosomal 

cathepsin B, L and LAL activities observed between the different concentrations of 

glucose. Levels of MCP-1, IL-6, MIF, CRP, TNF-α and MIP-1α were increased with 

LPS stimulation, and a dose dependent increase in TNF-α and MIP-1α expression was 

only seen with increasing concentrations of glucose. TEMPOL supplementation 

inhibited this elevation of TNF-α and MIP-1α induced by high glucose. These 

findings indicate that TEMPOL had a significant suppressive impact upon the pro-

inflammatory cytokines TNF-α and MIP-1α in human macrophages that were matured 

in high glucose conditions. These data support the hypothesis that TEMPOL 

supplementation may be of therapeutic benefit in alleviating inflammation and 

oxidative stress induced by hyperglycaemia.  

 

Overall, the data presented in this thesis are consistent with the hypothesis that 

the chronic elevated blood glucose levels detected in people with diabetes may have a 

detrimental impact upon macrophage lysosomal function, and that this may promote 

atherosclerosis. Long term exposure of human and murine macrophage cells to 

elevated glucose levels resulted in a depression of lysosomal proteolytic and lipase 

activities, their proteins levels and also lysosomal numbers in both maturing 

monocytes and macrophages. These functional changes may affect the capacity of 

macrophages to catabolise modified (lipo)proteins and enhance lipid accumulation in 

people with diabetes. Lysosomal damage may therefore contribute to the increased 

incidence, and rate of development of atherosclerosis in people with diabetes. The 

endogenous agent carnosine was examined in a murine model of diabetes-induced 
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atherosclerosis. The effect of carnosine supplementation was shown to have anti-

hyperlipidaemic effects and properties that may enhance plaque stability which may 

be of therapeutic value in the treatment of diabetes-accelerated atherosclerosis. The 

nitroxide TEMPOL was investigated in two well-established obesity murine models 

by a high fat feeding. The intervention of TEMPOL was shown to effectively block 

weight gain in mice and relieve the associated hyperlipidaemia induced by a high fat 

diet. Further mechanistic studies showed that TEMPOL was able to reduce systemic 

inflammation and reverse the changed adipokine profile of obesity. TEMPOL was 

also shown to have an impact upon inflammation induced by high glucose in human 

macrophages. TEMPOL therefore appears to be a promising novel therapeutic target 

for chronic metabolic disorders such as diabetes, obesity, cardiovascular diseases.  
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1.1 Metabolic syndrome 

The metabolic syndrome embodies a cluster of metabolic and haemodynamic 

disorders the prevalence of which are associated with lifestyle and other risk factors [1]. 

Factors characteristic of the metabolic syndrome include varying degrees of insulin 

resistance and glucose intolerance, central abdominal visceral obesity, abnormal lipid 

levels in the blood (elevated triglycerides, total cholesterol, and low density lipoprotein 

(LDL) cholesterol; and low high density lipoprotein (HDL) cholesterol), raised blood 

pressure, and prothrombotic and proinflammatory states [2,3,4]. The diagnostic criteria 

of metabolic syndrome, as determined by several major health authorities are shown in 

Table 1.1. 

The metabolic syndrome is becoming a major global health crisis as it affects all 

ages, from children to adults and all racial / ethnic groups [2,5]. The prevalence has 

been reported to be as high as 50% in the United States and 34% in Australia. It is 

predicted to continue increasing in developed countries with continuing global 

modernisation [2,6,7,8,9]. The rising prevalence of obesity is a major contributor to the 

incidence of metabolic syndrome worldwide [2]. A direct association between high 

body mass index (BMI) and disease is observed for both genders across all racial or 

ethnic groups [2]. The prevalence of metabolic syndrome is the highest in obese 

children and adolescents, and the severity of this syndrome worsens as BMI increases, 

leading to obesity-related morbidity and premature deaths [2,5].  

Several studies have indicated that the metabolic syndrome is a strong predictor 

of cardiovascular morbidity and mortality, diabetes and all-cause mortality in a number 

of populations worldwide [3,10,11,12,13]. Thus, the metabolic syndrome is referred to 

as the inducing factor for a “new cardiovascular epidemic,” as it triples the risk of a 

heart attack and doubles the risk of early mortality [14]. Furthermore those affected by 

the metabolic syndrome have a fivefold greater possibility of developing Type 2 

diabetes [2]. 
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1.1.1 Diagnostic criteria of the metabolic syndrome 

The constellation of metabolic disorders which is now defined as the metabolic 

syndrome was first observed by the anatomist Morgagni in 1765, where he identified 

the close correlation between abdominal obesity and the occurrence of hypertension, 

atherosclerosis, dyslipidaemia, sleep apnea and hyperuricaemia. This syndrome became 

well established in the 20
th

 century [15] when Kylin proposed that hypertension, 

atherosclerosis, dyslipidaemia and gout tended to appear together [16].  Subsequently, 

central obesity was noted as a key feature, by Vogue, in predisposing patients to 

diabetes, atherosclerosis, gout and uric calculi [17]. The definition of the metabolic 

syndrome was further refined by Reaven, as referring to a combination of hypertension, 

abdominal obesity, insulin resistance and hyperlipidaemia [18,19,20]. In 1988, Reaven 

established the clinical importance of this syndrome by proposing a conceptual 

framework connecting these independent biological events into a single 

pathophysiological paradigm [21].  

The diagnostic criteria of the metabolic syndrome have yet to be standardised 

worldwide. The metabolic syndrome has also been known under different names 

including metabolic syndrome X, syndrome X, insulin resistance syndrome, 

cardiometabolic syndrome and Reaven’s syndrome. In Australia it has been termed 

CHAOS, which stands for Coronary artery disease, Hypertension, Atherosclerosis, 

Obesity, and Stroke, to explicitly delineate the manifestations and complications that are 

associated with the elevated risk of cardiovascular disease, obesity  and Type 2 diabetes 

[22,23,24]. 

Diagnostic criteria for the metabolic syndrome have been proposed by the World 

Health Organisation (WHO), the International Diabetes Federation (IDF), the United 

States National Cholesterol Education Program Adult Treatment Panel III (NECP) and 

the European Group for the Study of Insulin Resistance (EGIR) [2,14,16,25,26,27]. 

These criteria are given in Table 1.1. 
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 WHO  IDF  EGIR  NCEP ATP 

III  

Criterion  Diabetes or impaired 

glucose tolerance or 

insulin resistance 

plus 2 or more of the 

following: 

Central obesity  

Waist 

circumference  

Plus any 2 of the 

following: 

Insulin resistance 

or 

hyperinsulinaemia 

(only non-diabetic 

subjects) plus two 

or more of the 

following: 

Three or more of 

the following: 

Blood Pressure 

or controlled 

by Medication  

≥ 140/90 mmHg  ≥130/85 mmHg  ≥ 140/90 mmHg  ≥130/85 mmHg  

Triglyceride 

(TG) level 

≥ 1.695 mmol/L ≥ 1.7 mmol/L ≥ 2.0 mmol/L ≥1.695 mmol/L 

HDL-C level ≤ 0.9 mmol/L (M) 

≤ 1.0 mmol/L (F) 

 

1.03 mmol/L (M) 

≤1.29 mmol/L (F) 

≤1.0 mg/dL ≤40 mg/dL (M) 

≤ 50 mg/dL (F) 

Waist 

circumference 

≥ 0.90 (M) 

≥ 0.85 (F) 

(Waist: Hip Ratio) 

Ethnicity Specific ≥ 94 cm (M) 

≥ 80 cm (F) 

≥ 102 cm (M) 

≥ 88 cm (F) 

Other features Obesity: BMI ≥ 30 

kg/m
2
 

Microalbuminuria: 

Urinary albumin 

excretion ratio > 20 

μg/min or albumin: 

creatinine ratio >30 

mg/g 

Fasting plasma 

glucose ≥          

5.6 mmol/L or 

previously 

diagnosed Type 2 

Diabetes 

Fasting plasma 

glucose ≥          

6.1 mmol/L 

Fasting plasma 

glucose ≥        

6.1 mmol/L 

(1100 mg/dL) 

 

Table 1.1: Current diagnostic criteria for the Metabolic Syndrome  
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1.2 Cardiovascular disease 

Cardiovascular disease (CVD) is a general term reflecting the dysfunction of the 

heart and the blood vessels (specifically the arteries and veins) subsequently affecting 

the circulation of the body system and as such affecting the supply of oxygen and 

nutrients to, and removal of waste from, the cells and tissues of the body [28]. Common 

cardiovascular conditions include rheumatic heart disease, peripheral arterial disease, 

hypertensive heart disease, heart failure, ischemic heart disease, cerebrovascular 

disease, inflammatory heart disease, congenital heart disease, deep vein thrombosis and 

pulmonary embolism [28]. 

CVD is the number one cause of death in developed countries [29] and 

worldwide total mortality approaches 17.5 million a year, representing a third of all 

global deaths [28]. One in every three adult men and women suffer from some form of 

CVD. It affects all age and ethnic groups and its prevalence is increasing as nations 

develop commercially and industrially, resulting in changes in diet and lifestyle that 

greatly increase CVD risk [29]. The increase in associated morbidities and the number 

of people dying prematurely is a substantial economic burden to developed and 

developing nations. For instance it is predicted that between 2006 and 2015 that the cost 

of China will be $558 billion from heart disease, stroke and diabetes [28]. 

CVD remains the leading cause of death in Australia and continues to be a 

heavy burden on the Australian population in terms of illness and disability and affects 

the health system economically. In 2004 - 2005, the total health care expenditure for 

cardiovascular diseases in Australia was approximately $6 billion, representing 11% of 

the total health care expenditure and was higher than for any other disease sector 

[30,31]. Health expenditure for CVD is estimated to rise to $16.2 billion in 2032-2033 

[32]. In 2009, CVD was the cause of approximately 46 100 deaths, representing almost 

a third (32.8%) of all total deaths in Australia [31].  The onset of cardiovascular disease 

increases with age, with 13% aged between 35 and 44, 23% between the ages of 45 and 

54, and 63% aged 75 years or over having been as reported as having a cardiovascular 

condition [33]. 
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1.3 Atherosclerosis  

Atherosclerosis is a chronic inflammatory disease characterised by the 

thickening and loss of elasticity in the walls of large and medium arteries leading to 

narrowing and constriction of the blood vessels that can give rise to severe 

complications such as myocardial infarction, stroke and limb amputation [34]. The 

accumulation of fat (cholesterol, cholesteryl esters and triglycerides derived from 

apolipoprotein B-100 containing lipid-protein particles) combined with vascular 

inflammation give rise to lesions in the vessel intima known as plaques.  

Atheroma (‘lump of gruel’ in Greek) is characterised by three main 

compartments: the nodular build up of a soft flaky yellow substance consisting of large 

plaques rich in lipid-laden macrophages; cholesterol crystals; and calcification in 

chronic and advanced lesions.  ‘Sclerosis’ refers to the hardening of the arteries due to 

fibrotic changes in the connective tissues of the walls.  This chronic disease ultimately 

produces two critical problems.  Firstly, lesion rupture, thrombus formation and the 

potential for thrombo-emboli to form that become lodged in smaller vessels leading to 

ischaemic damage. Though the clot can heal and contract, stenosis remains which 

results in narrowing of the artery causing reduced downstream blood supply to the 

tissues and organs.  The second problem that may arise is that after a long and excessive 

period of inflammation the vessel wall is weakened and results in an  aneurysm with an 

increased risk of vessel rupture and life-threatening haemorrhage [35].  

 

1.3.1 Cholesterol and lipoproteins  

The majority of cholesterol in the plasma is transported in protein-lipid particles, 

known as lipoproteins, including: very-low density lipoprotein (VLDL), low-density 

lipoprotein (LDL) and high-density lipoprotein (HDL). These lipoproteins are 

heterogeneous in size, density, composition and atherogenicity [36]. High levels of 

LDL, VLDL and remnant, intermediate-density lipoproteins (IDL), can promote 

atherosclerosis and thus high blood levels are major risk factors for coronary heart 

disease [37].   

LDL (approx. 2.5 MDa) is a spherical-shaped particle that is the major carrier of 

cholesterol to cells [38]. The LDL particle is much smaller in size (180-250 Å in 

diameter) than when originally secreted as VLDL (600 to 800 Å in diameter). LDL 
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consists of around 22% protein, with a single molecule of apoB-100, 22% 

phospholipids, 8% cholesterol, 42% cholesteryl esters and 6% triglycerides (w/w) [38].   

There are three LDL subclasses, L3-L1 (L1 as the smallest and L3 densest), and 

the differences between these subclasses are due to differences in lipid composition, 

density, size, chemical composition and apoB-100 structural changes [39].  Small and 

dense LDL particles have been associated with the development of coronary heart 

disease [39]. Different mechanisms have been proposed for the pro-atherogenic effects 

of LDL on the vasculature including; higher entrance and retention into the 

subendothelial space, greater affinity for binding to proteoglycans, and higher 

susceptibility to oxidation.  Other risk factors associated with vascular disease are 

hypertriglyceridaemia, low HDL cholesterol, obesity, hyperglycaemia and insulin 

resistance [36]. 

The density of HDL is between 1.063 and 1.210 g/mL, the molecular masses are 

in the range of 1.7 and 4.0 × 10
5
 g/mL and the protein content is between 45 and 55% 

[40].  HDL are heterogenous particles that are distinguished by their apolipoprotein 

composition including: only apo A-I (LP-A-I), both apo A-I and apo A-II (LP-A-I: A-

II), both apo A-I and apo A-IV (LP-A-I: A-IV), and both apo A-I and apo E (LP-A-I: E) 

[41].  The major protein components (~ 90%) are apo A-I and apo A-II, with apo A-I 

three times more abundant than apo A-II based on mass. The remaining proteins (10%) 

include apo C-I, apo C-II, apo C-III and apo D [41].  

HDL can be subdivided in to classes H5-H1 (with H5, H4 and H3 as the larger 

particles) as assessed by nuclear magnetic resonance [39]. HDL can also be divided into 

two major classes reported to possess different roles in protecting against 

atherosclerosis [42]. Apo A-I containing HDL particles (H5, H4 and H3 corresponding 

to HDL2, 1.063 < density < 1.125 g/mL) are negatively correlated with coronary artery 

disease. H2 and H1, that correspond to HDL3 (1.125 < density < 1.21 g/mL), are 

positively related with coronary artery disease [40]. HDL particles containing apoA-1 

appear to prevent or decrease atherogenesis [42,43].   
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Figure 1.1: Schematic diagram of the structure of LDL and apoB-100 on the 

surface of LDL particle.  

Spherical LDL (Panel A) and the proposed organisation of apoB-100 (Panel B) on the 

surface of LDL particle [41]. 

 

 

1.4 Pathogenesis of atherosclerosis 

Atheroma and atherosclerosis can be referred to as benign and malignant 

conditions, respectively. Atheroma denotes a benign wound healing in response to 

injury and fibrous change which can be resolved. Atherosclerosis denotes a malignant 

transformation and multifactorial progression of chronic inflammation, 

fibroproliferation and angiogenesis [44]. It involves a succession of responses which 

results in systemic damage to the endothelium and the arterial intima instigated by the 

retention of modified low-density lipoproteins, haemodynamic factors and reductive-

oxidative stress [44]. 

Atherosclerotic lesions develop and progress driven by an inflammatory 

response characterised by the release of numerous cytokines, increased proliferation of 

smooth muscle cells and their migration in to the intima, changes in connective tissue 

extracellular matrix and the accumulation of neutral lipid deposits principally in 

macrophages in the initial stages, but subsequently as large extracellular deposits [45].  

(A) (B) 
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Though the mechanism behind atherogenesis is not fully known, some 

hypotheses that are widely accepted are the ‘response to injury’ hypothesis, the 

‘response to retention’ hypothesis and the ‘oxidation’ hypothesis. These are outlined 

below.  Other hypotheses include: that platelets or fibrin are deposited on the intima in 

the initial stages of atherogenesis, and that the macroscopic gelatinous appearance may 

be an intimal thickening which may lead to the primary formation of atherosclerotic 

lesions [45,46]. 

The 'response to injury’ hypothesis, proposed by Russell Ross in 1973 focused 

on the notion that injury induced to the endothelial cells lining the artery walls caused 

endothelial dysfunction and disrupted the wall of the artery. This manifests in abnormal 

cellular interactions which are detailed below, chronic inflammation and plaque 

formation in the initial developmental stages of atherogenesis [47].  

The ‘response to retention’ hypothesis postulates that the sub-endothelial 

retention and successive accumulation of lipids by the extracellular matrix is main 

trigger for the initiation of atherogenesis [48]. This theory was later expanded in 1994 to 

incorporate the oxidation hypothesis which proposes that oxidatively-modified low-

density lipoproteins (ox-LDL) in the arterial wall generates a response that may be 

proinflammatory in terms of endothelial dysfunction as well as chemotactic, leading 

eventually to progression of atherosclerotic lesion formation [49].  

Common to all these hypotheses is the key event of endothelial damage or 

dysfunction and the subsequent triggering of downstream pro-inflammatory events. 

Damage to the endothelium leads to monocyte and platelet adhesion thought to be 

mediated, at least in part, by redox signalling pathways. These monocytes migrate into 

the subendothelial space and differentiate into pro-inflammatory macrophages which 

may contribute to the modifications to LDL as well as promoting foam cell and thus 

fatty streak formation.  

  

1.4.1 Stages of plaque formation 

The atherosclerotic plaque is identified by arterial intimal thickening and is 

characterised by increased populations of smooth muscle cells, macrophages and 

lymphocytes, cholesterol deposits and solid layers of connective tissue matrix (as shown 

in Figure 1.2).  
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In the developmental stages of atherosclerosis, the earliest discernible lesion of 

atherosclerosis is the fatty streak appearing as a yellow raised area in the lumen of the 

artery  arising from the accumulation of lipid-laden “foam cells” in the intimal layer of 

the artery [45]. These occur in medium and large-sized arteries and present as a fatty 

intramural thickening of the subintima that intrudes into the arterial lumen. This process 

may also affect the vascular network and the aetiology and clinical impact of 

atherosclerosis may differ from one vascular bed to another. The fatty streak comprises 

of three main segments. The first is the cellular segment predominately consisting of 

smooth muscle cells and macrophages. The second is the connective tissue matrix and 

extracellular lipid. The third segment is the intracellular lipid which accrues within 

macrophages and transforms them into foam cells [45].  

The inflammatory process is further exacerbated by the death of foam cells and 

is the stimulus for vascular smooth muscle cells (VSMC) migration into the intima. The 

affected sites are weakened and softened which result in the thickening of the intima by 

oedematous pads and an increase in extracellular matrix molecules and VSMC collagen. 

The continued uptake of accumulated LDL molecules by macrophages engenders the 

additional release of inflammatory cytokines and growth factors propagating a 

succession of inflammation, lipid deposition and lesion expansion, generating the 

“atheroma” which is the prelude to atherosclerotic plaque formation [48]. 

Advanced plaques can be segregated into two types; fibro-lipid and fibrous 

plaques. The fibrous plaques cause tension within the subendothelial wall and result in a 

compensatory extension of the muscular wall, as well as developing a fibrous cap 

concealing the atheromatous core. Necrosis due to tissue damage tends to occur in the 

atheromatous core generating more tissue debris, and accumulation of proteoglycans, 

collagen, and lipid laden cells [48]. In the advanced stages of coronary atherosclerosis, a 

great reduction in lumen diameter is observed due to increased thickening of the wall, 

loss of elasticity and hardening due to calcification [48]. Plaque rupture resulting in 

progressive or sudden occlusion of the lumen, as well as the formation of thrombo-

embolis, may lead to acute cardiovascular events and complications such as myocardial 

infarction, stroke and unstable angina.   
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Figure 1.2: Schematic diagram of atherosclerotic plaque formation.  

Adapted from reference [50].  

 

 

1.4.2 Classification of atherosclerosis  

There have been many attempts to establish and unify the developmental stages 

of atherosclerotic lesions.  There are slight differences and variations in definitions 

between systems, and the practical classification of human atherosclerotic lesions is still 

in the process of development [51]. The American Heart Association Committee on 

Vascular Lesions of the Council on Arteriosclerosis, has recommended dividing the 

progression of atherosclerotic lesions, with numbers corresponding to the chronological 

series of events as shown in Figure 1.3 [51]. The lesions are divided into three main 

forms; Early (Type I-II), Intermediate (III) and Advanced (IV-VIII) [46,51,52].  

Early lesions Type I and Type II represent small lipid deposits in the arterial 

intima, with Type II lesions often referred to as fatty streaks. Type I is known as the 

initial lesion consisting of macrophages, scattered foam cells and lipid deposits in the 

intima [52]. Type II lesions have thicker intracellular matrix mainly comprised of 

intimal macrophage foam cells in layers, and smooth muscle cells which also contain 

intracellular lipid droplets, with a lack of extracellular lipid. Type III lesions are known 

as the intermediate or transitional lesions between fatty streaks and more advanced 
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lesions. Type III lesions are also known as the preatheroma stage where some 

extracellular pools of lipid are observed which become confluent and pronounced in 

Type IV lesions [52]. 

The Type IV lesion is the first atheroma stage that may result in reportable 

symptoms, where the intimal structure and the arterial wall are deformed and 

disorganised. The earliest advanced lesion are characterised by the disruption of the 

well-defined intimal structure as the dense core of the lesion, consisting of accumulated 

extracellular lipid, forces the intima to protrude into the lumen of the artery. 

Macrophages, foam cells, lymphocytes become densely concentrated in the lesion 

leading to generation of a proteoglycan-rich layer within the intima. Smooth muscle cell 

migration and proliferation into the lesion may result in the lesion becoming fibrous, as 

these cells lay down extracellular matrix [46]. 

When the lipid core from Type IV becomes fibrous, this constitutes the 

transition to a Type V lesion, defined as fibroatheromas. In Type VI lesions, the arteries 

are considerably more narrowed than Type VI lesions, and may develop fissures, 

hematoma and thrombus.  In Type VII, calcified regions are seen within the fibrotic 

lipid core. [46]. The last lesion in this classification is Type VIII. The lumen of the 

artery is narrowed to a great degree obstructing the blood flow. These lesions are prone 

to unstable surface defects causing rupture leading to serious complications such as 

haemorrhage, thrombosis, unstable angina, myocardial infarction, stroke, and sudden 

death [46,51].  
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Figure 1.3: Pathological classification of atherosclerotic lesions 

Thick and thin arrows represent the relative progression with which lesions develop at 

specific sites, or they show the relative incidence and magnitude of a pathway segment. 

Image modified from [53]. 

 

 

1.4.3 Current hypolipidaemic-agents for cardiovascular diseases 

Statins are the most effective and widely used treatment for cardiovascular 

diseases accompanied with hypercholesterolaemia. Many forms of statins are available 

such as atorvastatin (Lipitor and Torvast), fluvastatin (Lesol), lovastatin (Mevacor, 

Altocor, Altoprev), pitavastin (Livalo, Pitava), pravastin (Pravachol, Selektin, Lipostat), 

rosuvastatin (Crestor) and simvastatin (Ezetimibe, Zocor, Lipex).  Statins reduce 

cholesterol levels by inhibiting the enzyme HMG-CoA reductase, which restricts 

cholesterol synthesis and increases cellular LDL uptake.  Statins have also shown to be 
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effective against atherosclerosis via enhancing endothelial function, sustaining 

inflammatory responses, preserving plaque stability and preventing thrombus formation. 

A major side effect is the increased risk of developing diabetes, with greater dosages 

leading to a more pronounced manifestation.  

Fibrates (bezafibrate, cipofibrate, clofibrate, gemfibrozil and fenofibrate) are a 

class of amphipathic carboxylic acids commonly administered to treat various 

hyperlipidaemic disorders, predominantly hypercholesterolaemia. They have also been 

shown to be effective in metabolic syndrome by counteracting dyslipidaemia, lowering 

LDL and triglyceride levels, increasing HDL, improve insulin sensitivity, and reducing 

the incidence of Type 2 diabetes (T2D) and hypertension. Fibrates activate peroxisome 

proliferator-activated receptors-α (PPAR), influencing carbohydrate and fat metabolism 

and adipose tissue differentiation. They are structurally closely related to the 

thiazolidinediones (TZDs) which specifically activate PPAR-γ. 

 

1.5 Diabetes mellitus  

Diabetes mellitus (DM) embodies a range of metabolic disorders characterised 

by hyperglycaemia occurring from defects and deficiency in the secretion and / or 

action, of the hormone insulin. This results in either an absolute deficiency in insulin or 

a failure of the target organs to respond to increased insulin secretion (“insulin 

resistance”).  

The word diabetes mellitus arises from two Greek words. The first part, 

diabainein meaning “siphon” or “passing through” refers to the characteristic polyuria 

(increase in the urinary frequency and volume) of this syndrome. The second part 

mellitus relates to honey referring to the high glucose levels in the urine. In addition to 

polyuria, other characteristic symptoms are a compensatory polydipsia (increased thirst) 

and polyphagia (increased hunger). Chronic hyperglycaemia in people with diabetes 

mellitus affects the function of many organs; in particular long-term damage to the eyes 

(causing potential blindness), kidneys, nerves, heart and blood vessels [54]. People with 

diabetes are at an elevated risk for cardiovascular, peripheral vascular and 

cerebrovascular disease [24].  
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1.5.1 Classification and prevalence of diabetes  

According to the World Health Organisation, 171 million people across the 

globe had diabetes in the year 2000 which accounts for 2.5% of the world population. It 

is estimated that by 2030 this number will almost double, to affect 366 million people 

corresponding to 4.4% of the world population [55]. In 2012, it was reported that 

approximately 4.8 million people died from diabetes, more than 371 million people 

were living with diabetes worldwide with approximately 50% of these people left 

undiagnosed [56,57].  The economic cost of diabetes in 2013 has been estimated at 

approximately 471 billion US dollars [56].   

The increase in incidence of diabetes in developing countries follows the trend 

of increasing urbanisation and the accompanying adoption of Western style diets and 

more sedentary lifestyles [57].  Indigenous populations have a higher prevalence than 

their corresponding non-indigenous populations in countries like Australia. The 

incidence of diabetes is four fold higher amongst indigenous Australians than non-

indigenous populations [33].  

There are three major types of diabetes: Type I, Type II and gestational diabetes 

[33]. Type I diabetes (T1DM), previously known as insulin-dependent diabetes, is an 

autoimmune disease where the immune system destroys the insulin-producing beta cells 

in the pancreas resulting in a failure to produce and secrete insulin. As a result, 

replacement insulin via injection is constantly required. T1DM accounts for 5 - 10% of 

total cases globally, and 10 - 15% in the Australian population, and may appear at any 

age but is commonly seen before 40 [33]. This type of diabetes may be activated by 

environmental factors such as viruses, diet or chemicals in people who are genetically 

susceptible [33,58].   

Type II diabetes (T2DM), previously termed as non-insulin dependent diabetes 

ranges from insulin resistance to an absolute insulin deficiency. It is the most common 

form of diabetes affecting 90 - 95% of people with diabetes worldwide and 85 - 90% 

[33] in Australia. This type of diabetes has also been previously termed as late-onset 

diabetes, however nowadays the occurrence of T2DM has become relatively common in 

young people [33]. Familial and genetic factors as well as lifestyle factors such as 

excess weight, inactivity, high blood pressure and poor diet are major risk factors for its 

occurrence and progression [33].  Thus modification of diet and pattern of physical 

activity are the principal components of the treatment of T2DM [33]. Pharmaceuticals 
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are commonly used to treat people with T2DM. The initial stage of T2DM is 

characterised by hyperinsulinaemia. However, the disease may progress to a stage 

where there is an absolute insulin deficiency, and where insulin injections may be 

needed.  

For some women, gestational diabetes mellitus occurs during pregnancy and 

these women are prone to develop type 2 diabetes.  It occurs in 1 - 14% of pregnancies 

depending on the population investigated, and in Australia 5.5 - 8.8% of pregnant 

women develop gestational diabetes [33]. Risk factors for gestational diabetes may 

include a family history of diabetes, increased maternal age, obesity and being a 

member of a socio-economic or ethnic group with an increased likelihood of developing 

T2DM. Complications from gestational diabetes include babies which are large for their 

gestational age making vaginal delivery more difficult, hypertension, pre-term birth, 

uterine bleeding, foetal distress, pre-eclampsia, neonatal hypoglycaemia, respiratory 

distress and jaundice [33]. The carbohydrate intolerance usually stabilises after giving 

birth, however the mother has a greater risk of developing T2DM later in life, and the 

baby is more prone to develop obesity and impaired glucose tolerance later in life [58].   

Other causes of diabetes, which are uncommon, include genetic mutations which 

lead to defects in beta cell function, insulin processing or actions; exocrine pancreatic 

defects; infections; drugs impairing insulin secretion and some toxins that damage 

pancreatic beta cells [33]. 

 

1.5.2 Pathophysiology and complications of hyperglycaemia leading to micro- 

and macrovascular disease 

Hyperglycaemia is a hallmark of DM and drives an array of changes in the cells 

of the vasculature, which may be linked to the development and progression of 

microvascular complications in the retina, renal glomeruli and peripheral nerves. Thus 

chronic complications may lead to retinopathy and loss of vision, nephropathy leading 

to renal failure, peripheral neuropathy problems such as ulcers and amputations, as well 

as autonomic neuropathy causing gastrointestinal, genitourinary, and cardiovascular 

problems. As well as these microvascular complications, the risk of macrovascular 

disease, including atherosclerosis in the heart, arms and leg, is higher for people with 

diabetes [58,59].  
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1.5.3 Current pharmaceutical agents for diabetes  

Anti-diabetic medications and anti-hyperglycaemic agents aim to treat diabetes 

mellitus by lowering blood glucose levels. Insulin injections used to treat the insulin 

deficiency of T1D. Oral hypoglycaemic agents such as insulin sensitisers are used to 

alleviate T2D in people that have insulin resistance. The main types of insulin 

sensitisers are biguanides (e.g. metformin, phenformin and buformin), the 

thiazolidinedones (TZD) (e.g. rosiglitazone, pioglitazone and troglitazone) and the 

sulfonylureas (tolbutamide, acetohexamide, tolazamide and chlorpropamide). 

Biguanides decrease hepatic glucose output and increase uptake of glucose by 

peripheral skeletal muscles [60]. TZD bind to PPARγ, a transcription factor mediating 

the transcription of genes regulating glucose and fat metabolism [61]. Sulfonylureas 

work by activating the endogenous release of insulin by pancreatic beta cells by 

inhibiting the potassium ATP channel [61]. Although the action of these compounds is 

fast, the main side effect is hypoglycaemia accompanied with weight gain and higher 

risk of death compared to biguanides and TZDs [62]. There are many reported side 

effects of these drugs including undesirable body weight gain, gastrointestinal 

discomfort, oedema, anaemia, cardio- and hepatotoxicity and as a result some 

medications like phenformin, buformin, rosiglitazone and troglitazone have been 

suspended or withdrawn from use [62]. Metformin is the most commonly prescribed 

anti-diabetic medication with this reducing the levels of LDL and triglycerides without 

effects on weight gain or blood pressure [63]. However there are contraindications for 

these species including renal disease or heart failure due to the risk of lactic acidosis, 

gastrointestinal disorders, and vitamin B12 deficiency [63,64].  

 

1.6 Obesity: definition 

Obesity is characterised by abnormal or excessive fat accumulation in adipose 

tissue and other organs leading to reduced life expectancy and detrimental health 

problems [65]. Obesity is related to multiple morbidities, including elevated risk of 

diabetes, cardiovascular disease, sleep apnoea, and cancer. The body fat level for 

healthy female is typically 20 - 27% of the total body mass, with the corresponding 

value healthy males being 15 - 22%. An overweight person generally has 10 - 20% 

more body mass than normal, with this comprised mostly of fat. Obesity is defined as 
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greater than 20% more than the normal body mass and morbid obesity is defined as 

greater than 40% above the ideal weight for one’s age and height.  

The body mass index (BMI) is a simple index that has been widely accepted by 

health organisations and health professionals to identify overweight and obese adults. It 

has been widely used in epidemiological investigations due to its simplicity and is 

advocated as a screening criterion in the initial clinical assessment of obesity [66]. The 

BMI is calculated by mass in kilograms divided by the square of the height in metres. 

A BMI value less than 18.5 is underweight and is associated with greater health 

risks with lower BMI readings. A higher BMI than 25 is overweight and increases the 

risk of health impairment and in particularly greater than 30 is classified obese and is 

associated with greater health risks with excess fat-related disorders [67]. The severity 

of obesity is graded into classes I to III, as presented in Table 1.2.  

 

Category BMI (kg/m2) Health Risk 

 

Very severely underweight < 15.0 Extremely high risk 

 

Severely underweight 15.0 – 16.0 High risk 

 

Underweight 16.0 – 18.5 Moderate risk 

 

Normal (healthy weight) 18.5 – 24.9 Most healthy weight 

 

Overweight 25 – 29.9 Moderate risk  

 

Obese Class I  

(Moderately obese) 

30 – 34.9 High risk 

 

 

Obese Class II  

(Severely obese) 

35 – 39.9 Very high risk  

 

 

Obese Class III  

(Morbidly obese) 

≥ 40 Extremely high risk 

 

 

 

Table 1.2: Health risk according to body mass index (BMI) 
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1.6.1 Prevalence and causes of obesity 

Obesity has become one of the core threats to global health and its  prevalence 

has doubled since 1980 [68]. This occurred in almost every continent is parallel with 

industrial and economic development that has occurred across the globe (Figure 1.4). In 

countries like Australia and the United States, the majority of adults now considered to 

be overweight [67,69], and more than 10% of the world’s adult population is obese. 

Being overweight and obesity now kills more people than undernourishment for the 

majority of populations [68]. The treatment of obesity continues to set a huge economic 

burden on the health care system [5].  

Childhood obesity is becoming a serious medical and social concern worldwide 

[70,71]. In 2011, about 40 million children aged five years and under were overweight 

with more than 30 million children that live in developing countries, along with 10 

million children in developed countries judged to be overweight [68]. Type 2 diabetes 

and cardiovascular diseases once thought to only appear in adults are now observed in 

obese children [68,70,71,72]. 

Obesity is the fifth leading risk factor for global deaths, and causes at least 2.8 

million deaths in adults annually. Of these, 44% are also burdened with diabetes, 23% 

with ischemic heart disease and approximately 7% and 41% of cancers are attributed to 

being overweight or obese respectively [68]. The largest growth in obesity since 1980 

has appeared in developing countries, particularly in urbanised groups in Oceania, Latin 

America and North Africa [65].  

The primary cause of obesity is an energy imbalance between the consumption 

and expenditure of calories. While body fat content can be significantly modulated by 

genetics and maternal as well as peri-natal factors, the current global rise in obesity is 

predominantly due to a change to a diet consisting of energy-dense foods. These foods 

tend to be rich in fat and sugars, low in vitamins and other micronutrients, relatively low 

cost and widely available [65,68]. Thus, over the past two decades, there has been a 

global escalation in total calorie intake. In addition to this, epidemiological studies show 

that chronic consumption of high fat diets, high fructose levels (particularly from soft 

drinks) and regular consumption of fast food elevates the risk and severity of obesity, 

along with diabetes mellitus and cardiovascular disease [73,74,75]. The impact is 

particularly seen in indigenous populations as traditionally, indigenous diets are 
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abundant in vegetables, fruits and fish in contrast to the cheaper, easily accessible and 

energy-dense Western-style diets [76,77].  

 

 

Figure 1.4: Global trends in obesity from 1980 and 2008. 

Worldwide obesity prevalence between 1980 (blue) and 2008 (red) in men (A) and 

women (B). Adapted from reference [65]. 

 

 

1.6.2 Pathogenesis of obesity 

Adipose tissue is an active endocrine organ, which primarily consists of cells 

(adipocytes) that are filled with triglycerides, adipocyte precursors and other stromal 

cells and resident and infiltrating immune cells, all embedded in collagen network with 

a rich blood supply [78,79]. The increase in body fat characteristic of obesity may be 

due to either increases in adipocyte number or cell size. In adipogenesis, mesenchymal 

stem cells commit to the formation of preadipocytes which undergo a series of cell 

divisions before proceeding to terminal differentiation and mature adipocytes. Turnover 

of adipocytes continues into adult life. However, in adult obesity the increase in fat 

mass is principally attributed to adipocyte hypertrophy rather than hyperplasia (the latter 

is more typical of pre-pubescent obesity). Adipokines are proteins that are secreted by 

adipocytes, which work closely to regulate adipose tissue growth and signal other 

organs to control feeding, energy balance, and other functions.  
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Lipid droplets are intracellular organelles covered with proteins of the perilipin 

family, which store neutral lipids in cells [80]. Excess accumulation of intracellular 

lipids within these organelles has been associated with obesity, diabetes, atherosclerosis 

and other organ dysfunction [80]. Dysfunction of adiposity in obesity is accompanied 

with ectopic fat deposition (steatosis), hyperlipidaemia, insulin resistance, diabetes, 

endothelial dysfunction, cardiovascular complications and other metabolic diseases 

[78,81]. 

Monogenic syndromes, rare chromosomal abnormalities, complex molecular 

interactions between the brain and other organs, and eating disorders have all been 

proposed as causal agents of obesity [82]. In addition to these, the discovery of leptin 

was a significant breakthrough in understanding energy homeostasis and its 

dysregulation in obesity [83].  Leptin is an adipokine which acts on the hypothalamus to 

inhibit food intake, increases energy expenditure and decreases body fat. Leptin can also 

modulate blood pressure, heart rate, immunity, sympathetic activities, intermediary 

metabolism, reproduction, and bone biology. In addition it is considered to be pro-

inflammatory agent [83]. Obesity is associated with elevated serum leptin 

concentrations but also leptin resistance. Conversely, voluntary weight loss, in 

particularly where this leads to a decrease in adipose tissue mass, results in reduced 

circulating leptin levels [84]. When secretion of leptin increases, secretion of another 

adipokine, adiponectin declines. This suppression of adiponectin is believed to result in 

metabolic impairment. Reduced levels of adiponectin have been shown to contribute to 

insulin resistance, as adiponectin receptors in hepatocytes and muscle cells help control 

β-oxidation of fatty acids, glucose uptake, gluconeogenesis and peroxisome proliferator 

activated  receptor (PPAR)-γ activation [85,86]. Further, a decrease in adiponectin 

production may provide a mechanistic link between obesity and hypertension. 

Adiponectin stimulates the activity of endothelial nitric oxide synthase (eNOS), the 

product of which, nitric oxide (NO˙), is a key mediator of vascular tone, inflammation 

and smooth muscle cell proliferation. The activation of eNOS by adiponectin stabilizes 

eNOS mRNA and eNOS phosphorylation. Plasma adiponectin supplementation in 

adiponectin-deficient mice has been reported to restore endothelial NO˙ production and 

vascular wall tone, enhance smooth muscle cell proliferation and decrease leukocyte 

adhesion [86]. 
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Obesity can lead to a state of systemic, low-grade inflammation. Pro-

inflammatory mediators are able to interfere with insulin signalling pathways, thereby 

reducing responsiveness in insulin sensitive tissues, a key indication of Type 2 diabetes. 

The inflammatory responses are likely to  mediate: (i) infiltration of adipose tissue by 

inflammatory cells (including monocyte/macrophages and lymphocytes); (ii) the 

expansion of adipose tissue itself as this is a source of cytokines in addition to 

adipokines, and (iii) inflammation of the liver in response to either pro-inflammatory 

signals delivered by portal circulation or hepatic fat accumulation [87,88,89,90,91]. 

Adipose tissue macrophages are believed to be the major mediators of the 

chronic systemic inflammation of obesity as these cells are sources of cytokines (such 

as IL-6) and reactive oxygen species (ROS). Visceral adipose tissue typically contains 

greater macrophage numbers than subcutaneous adipose tissue, with this being of 

potential importance because of the key role accumulation of abdominal fat has upon 

metabolic dysfunction. A number of cytokines have been shown to invoke insulin 

resistance [85], and in addition cytokine IL-6 stimulates vascular smooth muscle cell 

production and secretion of angiotensin (AngII) which is as a potent vasoconstrictor, 

growth factor and stimulant for the generation of reactive oxygen species (ROS) and 

inflammatory cytokines [92,93]. Production of TNF-α and ROS can be further provoked 

by free fatty acids, the levels of which are increased during obesity [85,92]. The 

increase in vascular ROS and cytokine levels may cause endothelial dysfunction (for 

example by reducing NO˙ bioavailability) thereby exacerbating vascular inflammation. 

Furthermore adipokines (including resistin and possibly lowered levels of adiponectin) 

have been shown to activate the expression of monocyte adhesion molecules (e.g. 

intracellular adhesion molecule-1, ICAM-1) by the vascular endothelium, as well as 

monocyte / macrophage chemotactic protein-1 (MCP-1) and colony stimulating factor-1 

(CSF-1) which regulates monocyte-to-macrophage differentiation [85,94]. Oxidative 

stress in turn, suppresses adiponectin secretion and free fatty acid storage by adipocytes 

and augments the production of MCP-1 [92], thereby creating a vicious cycle of pro-

inflammatory changes.  

Resistin is a relatively recently discovered adipokine, the molecular properties of 

which are still in the process of elucidation [95]. The consequences of increased resistin 

levels in human obesity remain unclear. Resistin has been reported in in vitro studies, to 

impair endothelial function by reducing the expression of eNOS and enhancing the 

release of the potent vasoconstrictor endothelin-1 [96,97]. Elevated resistin levels, have 
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also been shown to induce insulin resistance in mice, with this accompanied by elevated 

blood pressure and hypertension [95]. Resistin is believed to be secreted mainly by 

adipose tissue macrophages with higher levels detected in obese humans [98,99]. 

However, the pathophysiological role of circulating resistin in metabolic disturbances in 

glucose and lipid metabolism its contribution to the progression of obesity-related 

hypertension is not well established [95].  

 

1.6.3 Current therapeutic agents and interventions for obesity 

Anti-obesity medications are used to decrease mass or reduce the rate of mass 

gain by suppressing appetite, increasing basal metabolism or reducing caloric 

absorption.  The main pharmaceutical drugs for treating obesity are orlistat, lorcaserin, 

sibutramine, rimonabant, exantide and pramlintide. These are not usually suitable for 

long term use due to life-threatening side effects such as elevated blood pressure and 

heart rate, palpitations, glaucoma, drug addiction, restlessness, depression and insomnia. 

Although orlistat (Xenical) has been recently authorised by FDA for long term use, it 

has reported side effects of steatorrhea, stomach pain, and flatulence. 

Persistent body mass management via lifestyle modifications (i.e. dietary and 

physical activity) are logical targets for preventing and treating obesity. However, many 

overweight or obese individuals report that it is very easy to gain but difficult to lose 

mass and it is known that anti-obesity drugs are not very effective [100]. Bariatric 

surgery and laparoscopic banding, initially deliver great and rapid weight reduction 

however many subjects are confronted with substantial weight regain over time. There 

is therefore a pressing need for a clearer understanding of the molecular pathways 

behind energy homeostasis and how obesity affects diabetes, atherosclerosis and other 

complications.  

 

1.7 Causational and mechanistic links (pathogenesis and manifestations) 

between obesity, diabetes and atherosclerosis 

The growing problem of obesity is linked with multiple morbidities, capable of 

impairing every body system. Obesity is presently the most prevalent cardiovascular 

risk factor in individuals with confirmed coronary heart disease [101]. Obese people 
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have a poor quality of life as well as a shorter life expectancy than individuals of 

healthy body mass [100,101].  

Epidemiological studies have revealed that obesity is a major risk factor for 

coronary heart disease, atherosclerosis, heart failure, atrial fibrillation, ventricular 

arrhythmias and sudden death [102,103,104]. It is also considered a predisposing causal 

factor in hypertension, diabetes mellitus type 2, osteoarthritis, obstruction sleep apnoea, 

dyslipidaemia, gastroesophageal reflux, non-alcoholic fatty liver disease, renal failure 

and various types of cancers [100,104].  

The association between obesity and different forms of cardiovascular disease is 

complex, due to the presence of a large cascade of interacting factors. Obesity can 

induce coronary atherosclerosis through well-established mechanisms, such as 

dyslipidaemia, hypertension, and diabetes [105,106,107]. However, recent evidence has 

shown that the association between obesity and cardiovascular disease may also include 

other factors including subclinical inflammation, neuro-hormonal activation with 

increased sympathetic tone, high leptin and insulin concentrations, obstructive sleep 

apnoea, increased release of saturated free fatty acids in addition to increases in the 

volume/mass of subepicardial and abdominal fat deposits. [107,108,109,110]. 

The mechanisms by which excess fat causes insulin resistance are complex, and 

are likely to involve several pathways encompassing cytokines, other inflammatory 

mediators and adipokines. Insulin resistance precedes type 2 diabetes mellitus which 

can initiate or accelerate atherosclerotic progression. People with diabetes have a 

substantially greater risk of atherosclerosis and this is true for both genders [111], the 

increased occurrence also manifests as an acceleration of the rate of disease progression, 

as well as increasing size and complexity of atherosclerotic plaques [59,112,113]. It is 

now accepted that this increase in the prevalence and severity of atherosclerosis in 

people with diabetes includes mechanisms that involve hyperglycaemia [111,112,114]. 

Four main mechanisms have been proposed to explain how hyperglycaemia invokes or 

accelerates diabetic vascular complications: increased glucose flux through polyol-

sorbital pathway; the hexosamine pathway; formation of advanced glycation end 

products (AGE); and activation of protein kinase C (PKC) [115]. Conceivably the four 

pathways may act together in response to common upstream events, most notably 

oxidative stress. 
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1.7.1 The poly-sorbitol pathway  

Aldose reductases (AR) catalyse the metabolism of glucose to sorbitol, which is 

then converted to fructose by sorbitol dehydrogenase in the polyol-sorbitol pathway. 

These reactions are accompanied by the oxidation of nicotinamide adenine dinucleotide 

phosphate (NADPH) to NADP
+
, and reduction of nicotinamide adenide dinucleotide 

(NAD
+
) to hydrogenated NAD (NADH) [48].  

 

 

Figure 1.5: Polyol (sorbitol) pathway; glucose-6-P, glucose 6-phosate.  

Adapted from reference [116]. 

 

High fluxes of glucose through this pathway lead to greater osmotic stress due to 

increased sorbitol accumulation and reduced radical scavenging capacity due to reduced 

production of NADPH (an essential co-factor of the antioxidant glutathione peroxidase / 

reductase system) but also an increase in the cytosolic NADH / NAD
+
 ratio and 

potentially an increase in reductive stress [117,118]. In support of this hypothesis 

sorbitol and fructose concentrations have been reported to be approximately 9-fold, and 

the NADH / NAD
+
 ratio nearly 4-fold, greater in diabetic hearts [119]. Increased polyol 

pathway flux may also decrease the production of the antioxidant glutathione by 

inhibiting glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and elevate triose 

phosphate concentrations which may leave the cells more prone to oxidative stress and 

thus promote vascular damage [117].  An in vivo study on LDL receptor-deficient 

diabetic mice showed increased atherosclerotic lesion size when human AR was over 

expressed in these mice [120]. Inhibition of AR in transgenic rats with over expressed 

http://pharmrev.aspetjournals.org/content/50/1/21/F1.large.jpg
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AR was shown to improve altered glucose metabolism and protect against the 

progression of long-term diabetic complications [121]. However at this current stage, 

there is no clinical evidence to support the hypothesis that AR inhibition ameliorates 

atherosclerosis in people with diabetes, and further studies are required to determine the 

pathological role of polyol pathway in diabetic atherosclerosis.  

 

1.7.2 The hexosamine pathway 

In the hexosamine pathway, fructose-6-phosphate is transformed to 

glucosamine-6-phosphate and then to uridine diphosphate (UDP)-N-acetyl glucosamine 

via the activity of L-glutamine: D-fructose-6-phophate amidotransferase (GFAT) [122], 

as shown below. Many substrates for the synthesis of proteoglycans and glycoproteins 

are generated subsequently.  

 

Fructose-6-phosphate    Glucosamine-6-phosphate+UDP-N-acetyl glucosamine 

          O-linked protein glycosylation 

             Altered enzyme function 

  

Metabolism of excess glucose via this pathway results in disruption in transcriptional 

activity and enzyme function. In bovine aortic endothelial cells, increased flux through 

the hexosamine pathway was found to increase N-acetyl glucosamine levels and 

transcription of pro-inflammatory cytokines, such as transforming growth factor-α 

(TGF-α), TGF-β1 and plasminogen activator inhibitor-1 (PAI-1) [123]. Although this is 

one pathway through which hyperglycaemia can initiate and promote atherosclerosis, 

intraperitoneal administration of glucosamine for 12 weeks to apo E
-/-

 mice was shown 

to lower atherosclerotic lesion size in the aortic root [124]. Thus the hexosamine 

pathway may be associated with microvascular diabetic complications but may not have 

a strong correlation with the development of atherosclerosis. Further studies may clarify 

the possible mechanistic link between diabetes and atherosclerosis through the 

hexamine pathway. 

GFAT 
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Figure 1.6: The hexosamine pathway.  

The glycolytic intermediate fructose-6-phosphate (Fruc-6-P) is converted to 

glucosamine-6-phosphate by the enzyme glutamine: fructose-6-phosphate 

amidotransferase (GFAT). Intracellular glycosylation by the addition of N-

acetylglucosamine (GlcNAc) to serine and threonine is catalysed by the enzyme O-

GlcNAc transferase (OGT). Increased donation of GlcNAc products to serine and 

threonine residues of transcription factors such as Sp1, often at phosphorylation sites, 

increases the production of factors as PAI-1 and TGF-β1. AZA, azaserine; AS-GFAT, 

antisense to GFAT. Adapted from reference [117]. 

 

 

1.7.3 Protein Kinase C Activation 

The protein kinases C (PKC) are a group of enzymes consisting of 12 isozymes. 

They are important in a variety of cellular activities such as proliferation, contractility, 

hypertrophy, signal transduction, growth factor transcription and apoptosis [125]. 

Activation of PKC in diabetes has been implicated in cardiovascular dysfunction by 

promoting extracellular matrix production, activation of an inflammatory response by 

cytokine expression and leukocyte adhesion, loss of vascular reactivity, increased 

endothelial permeability, vascular membrane thickening and angiogenesis [125]. The 

level of the PKC activator diacylglycerol (DAG) is increased by hyperglycaemia in 
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endothelial cells by de novo synthesis from dihydroxyacetone phosphate (DHAP) and 

glyceraldehyde-3-phosphate.  

 

    DHAP                                                    DAG                                                     PKC 

 

 

DAG may also be indirectly synthesised by the receptor for advanced glycation 

end products (RAGE) or via the polyol pathway. The activation of the PKCs may lead 

to numerous proatherogenic effects of these enzymes, such as dysfunction of vascular 

reactivity and fibrinolysis via elevated plasminogen activated inhibitor-1 (PAI-1) 

expression and increased redox stress by effects on NADPH oxidases [125]. In 

hyperglycaemic conditions, PKC also up-regulates adhesion molecules on endothelial 

cells which would stimulate an inflammatory response. PKC activation in VSMC has 

been shown to affect mitogenesis, DNA synthesis, and growth factor receptor turnover 

[126]. PKC activation increases the concentration of transforming growth factor-β 

which regulates extracellular matrix formation [126]. Inhibition of PKC has been shown 

to impede or stabilise many vascular abnormalities in diabetes in particularly 

endothelial dysfunction, a primary initiating factor in atherosclerosis [126]. 

 

1.7.4 Oxidative stress   

Ninety five percent of oxygen consumption occurs via tetravalent reduction by 

the cytochrome oxidase system of mitochondria, producing water and ATP. The 

remaining 5% oxygen is reduced univalently, with electrons added one at a time. This 

process results in a production of a range of reactive oxygen species (ROS) [48]. ROS 

consists of free radicals including superoxide, hydroxyl, peroxyl and hydroperoxyl 

radicals as well as non-radical species such as hydrogen peroxide and hypochlorous 

acid. Under physiological conditions, any increase in oxidant concentration brings about 

a compensatory response mediated by several antioxidant enzymes (e.g. superoxide 

dismutase, catalase, glutathione (GSH) peroxidases, GSH-S-transferases), thiols (e.g. 

GSH, cysteine, as well as protein-bound thiols) as well as a number of low molecular 

mass antioxidant compounds including urate, ubiquinol, tocopherol, ascorbate and 

carotenoids [45, 147].  

NADH               NAD+ α-Glycerol-phosphate 
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Oxidative stress can lead to damage to proteins, lipids, carbohydrates and 

nucleotides including DNA [125] leading to cell dysfunction. ROS may alter 

endothelial function by peroxidation of membrane lipids, modulated gene expression 

and by decreasing the bioavailability of NO˙. The latter may occur as superoxide can 

react with NO˙ (at rates comparable to the spontaneous dismutation of superoxide to 

hydrogen peroxide) and yield the potent oxidant peroxynitrous acid and consequently 

augmented peroxidation, oxidation of other molecules and protein nitration [127]. ROS 

are also capable of oxidising LDL [49,128,129,130].  Superoxide and peroxynitrous 

acid may be critical mediators of pancreatic cell death, potentially leading to 

atherosclerosis and heart failure [131]. In the context of diabetes, Brownlee has argued 

that increased mitochondrial production of superoxide under conditions of 

hyperglycaemia may represent a common underlying mechanism for increased activity 

of the aldose reductase, hexosamine and PKC pathways [115,117,132]. Thus if 

oxidative stress does play a key role in the diabetes-induced atherogenesis it would be 

expected that development and progression of the disease would be inhibited by 

antioxidant therapies. However, supplementation studies with vitamin C and E and β-

carotene have been unsuccessful in confirming the potential retardation of 

cardiovascular disease progression [133,134].  

 

1.7.5 Glycation, glycoxidation reactions and the formation of advanced glycation 

end products (AGE)   

One of the potentially most important effects of diabetes-induced 

hyperglycaemia is the non-enzymatic reaction between glucose and proteins leading to 

the production of advanced glycation end products (AGE) [120]. AGE are adducts that 

are formed on proteins, lipids or DNA bases after exposure to glucose or reactive 

aldehydes [135]. The non-enzymatic chemical reaction between glucose and proteins is 

known as the Maillard or browning reaction, and generates Schiff’s base (early 

glycation products), Amadori products and eventually AGE. Reactive aldehydes such as 

methylglyoxal, 3-deoxyglucosone and glyoxal, the levels of which are increased in 

people with diabetes, are key intermediates in the development of “carbonyl stress” and 

AGE formation [117].  

Wolff and Dean have shown that the non enzymatic reaction of sugars with protein 

entails three processes as follows [136]: 
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1) Glycation- the non-oxidative, covalent, addition of sugar to the protein; 

2) Auto-oxidative glycosylation- free radicals, arising from glucose auto-oxidation, 

interacting with proteins; and 

3) Auto-oxidation of protein-bound sugars produced as a consequence of glycation.  

The two auto-oxidative processes are known as glycoxidation and these processes lead 

to formation of AGE [115]. There is increasing evidence that AGE formation plays a 

major role in diabetes associated cardiovascular disease and particularly atherosclerosis.  

The accumulation of AGE is not just a hallmark of hyperglycaemia, as it also entails a 

combination of metabolic burden (both hyperglycaemia and hyperlipidaemia), oxidative 

stress and inflammation resulting in detrimental effects on vascular tissue [137]. 

Alteration of extracellular and intracellular proteins due to AGE formation may 

distort their role and function by a number of mechanisms including cross-linking of 

molecules (including these of the extracellular matrix, ECM) structural modifications or 

adduct formation which leads to a loss of enzyme activity and by binding to the 

receptors present on various cell types, such as endothelial cells, macrophages and 

vascular smooth muscle cells which are critical in atherogenesis [120].  

Accumulation of AGE has been demonstrated in both the microvascular and 

macrovascular complications of diabetes, and thus may contribute to progression of 

atherosclerosis [135]. AGE accumulate with increasing age of the vessel wall and have 

been noted to accelerate the development of DM, potentially engendering plaque 

formation by interfering with the function of endothelial cells which line the artery 

walls [125]. AGE formation can interrupt molecular communication and may modify 

enzymatic activity and may lead to damaging effects in accelerating atherosclerosis via 

both non-receptor mediated and receptor-mediated mechanisms [120].  

Cross-links may be formed between molecules in the basement membrane of the 

extracellular matrix and with the receptor for advanced glycation end products (RAGE) 

[135]. Activation of RAGE by AGE causes up-regulation of the pro-inflammatory 

transcription factor nuclear factor-κB and thus its target genes [135]. Soluble AGE 

activates monocytes, and AGE in the basement membrane may disrupt monocyte 

function and exacerbate the production of reactive oxygen species [132,138,139]. 

Because of the emerging evidence implicating AGE in damage to the vasculature of 
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patients with diabetes, a number of different therapies to inhibit AGE are under 

investigation [135,139].  

 

Figure 1.7: Reaction scheme for reactive carbonyl biogenesis. 

Adapted from reference [140]. 

 

 

1.7.5.1 Nature and mechanism of formation of AGE  

The rate of turnover of glycated or glycoxidised proteins, the extent of 

hyperglycaemia, the degree of oxidative stress and duration of exposure to these various 

stimuli, are all critical factors in the formation and accumulation of AGE 

[115,135,141,142].   

The initial step in AGE formation is the reduction of a carbonyl group on (or 

from a) sugar molecule with protein (or nucleic acid) amino groups, resulting in the 

formation of chemically-reversible, Schiff base adducts [135]. These Schiff bases can 

undergo a slow chemical reorganisation (Amadori rearrangement) into a chemically 

reversible, 1-amino-1-deoxy-2-ketose or ketamine (e.g. fructosyl-lysine or 

fructosamine). During the Amadori rearrangement, highly reactive species known as α-

carbonyls or oxoaldehyde products, such as 3-deoxyglycosone and methylglyoxal 

(MGO), are generated [143]. Similar reactive carbonyls can be generated as a result of 

lipid oxidation. The build up of these products is termed carbonyl stress. These α-
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dicarbonyls are also capable of reacting with amine, sulfhydryl, and guanidine, 

functional groups on proteins. Amino acid side chains that react with carbonyls include 

Lys, Arg, His, Trp and Cys with these reactions contributing to the functional 

impairment of proteins [144]. Collectively, these reactions lead to denaturation, 

browning and cross-linking of targeted proteins [141,145]. The reactions between α-

dicarbonyls with Lys and Arg functional groups on proteins, result in the production of 

stable fluorescent and non fluorescent AGE compounds such as N
ɛ
-(carboxymethyl) 

lysine (CML), pentosidine, hydroimidazolones, N
ɛ
-(carboxymethyl) lysine, a 

homologue of CML; and methylglyoxal lysine dimer (MOLD) [135,145,146]. AGE 

formation is poorly or non-irreversible due to the highly stable AGE-based crosslinks 

which are resistant to enzymatic degradation [135,141]. Crosslinking and denaturation 

of proteins triggered by glycation are common features implicated in aging linked with 

diabetic, vascular, renal, respiratory, rheumatoid and other chronic disorders 

[143,147,148]. 

 

Figure 1.8: Schematic representation of the complex Maillard reaction and 

formation of some advanced glycation end products.  

CEL = carboxyethyllysine; MOLD = methylgloxal lysine dimer; DOLD = 3-

deoxyglucosone lysine dimer; CML = carboxymethyllysine; GOLD = glyoxal lysine 

dimer. Adapted from reference [137]. 



33 
 

1.7.5.2 LDL glycation / glycoxidation 

Glycation of apolipoprotein component of LDL occurs via Lys, Arg and other 

residues [149]. The initial reactions result in the formation of  Schiff’s bases, that may 

react further to give a more stable fructosamine that is characteristic of early-stage 

glycated proteins [150]. Chemical modification of Lys residues of apolipoprotein B-100 

by the related process of acetylation is known to cause poor recognition by lipoprotein 

receptors including the native LDL receptor (LDL-R). In contrast these modified 

species are readily recognised by macrophage scavenger receptors resulting in rapid 

internalisation of glycated / glycoxidised LDL may further initiate various other 

processes that are involved in atherogenesis. Glycation of LDL may favour oxidative 

modifications as glycated LDL can augment inflammatory cell chemotaxis and 

formation of superoxide radicals by macrophages [150]. In endothelial cells, glycated 

LDL inhibits shear stress-mediated L-arginine uptake and NO˙ production, and 

stimulates secretion of plasminogen-activator inhibitor-1 and prostaglandins, whilst 

preventing the expression of tissue plasminogen activator [149,150].  

There is increasing evidence that AGE play a pivotal role in atherosclerosis and 

increased AGE accumulation is closely associated with the development of 

cardiovascular complications of diabetes [137]. AGE-forming reactions can cause 

modifications to the structure of LDL that are recognised by the scavenger receptors of 

macrophages. These processes can contribute to a build up of cholesterol and 

cholesteryl esters within macrophages and foam cell formation [151]. The LDL 

modifications required for cellular recognition and unregulated uptake are not 

completely understood and carbonyl stress may play a significant role in facilitating the 

formation of foam cells and vascular complications of diabetes.  

 

1.7.5.3 Inhibition of glycation and glycoxidation reactions  

A number of inhibitors of AGE formation have been identified and more are 

being developed, which act through preventing glycation / glycoxidation reactions, 

scavenging the reactive 1,2-dicarbonyls or reversing AGE modifications [135]. Some of 

these are in advanced clinical trials [152,153,154]. These potential AGE inhibiting 

drugs include: aminoguanidine, metformin, carnosine, homocarnosine, pyridoxamine, 

N-[2-(hydrazinoiminomethyl)amino)ethyl] acetamide monohydrochloride (ALT-946), 
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4-oxo-N-phenyl-4,5-dihydro-2-[(1-methylethylidene)hydrazino]-5-thiazoleactamide 

(OBP-9195), alagebrium chloride, and N-phenacylthiazolium bromide [155]. Anti-

inflammatory drugs such as tenilsetam and aspirin also exhibit AGE-inhibiting 

properties [154,156]. Antioxidants may also operate as AGE inhibitors, via metal-ion 

chelation and direct scavenging of free radical species. 

Inhibition of glycation and glycoxidation reactions can occur via multiple 

different modes of action such as: blocking free amino groups on proteins; blocking 

carbonyl groups on reducing sugars, Amadori products and dicarbonyl intermediates 

such as methylglyoxal; blocking Amadori products by antibodies with high specificity; 

chelation of transition metals to prevent glycoxidation; scavenging of free radicals 

derived from autoxidative glycoxidation; deglycation of Amadori products; reversing 

AGE accumulation by AGE-cross-link breakers; and inhibiting AGE interaction with 

RAGE by RAGE blockers [157,158].  In order to carry out such actions, these 

compounds would require long plasma or tissue half-lives, and minimal side effects, to 

be of therapeutic use as they would need to be prescribed for long periods due to the 

slow and chronic progression of the targeted reactions [157]. Inhibition of AGE may be 

therapeutic significance in numerous diseases and attempts to block the deleterious 

effects of AGE are still in an experimental phase. Some of the current drugs have 

harmful side effects as well as beneficial actions [158,159,160,161]; these actions are 

discussed in greater detail below. 

 

1.7.5.3.1 Aminoguanidine  

Aminoguanidine (Pimagedine) has been investigated as a potential therapeutic 

therapy for the  treatment of microvascular complications of diabetes and also as an 

effective scavenger of methylglyoxal [157].  It removes toxic 1,2 dicarbonyl compounds 

via conversion to their respective 1,2,4-triazines, which are less toxic compounds. 

Aminoguanidine has other potential effects in suppressing oxidative stress, via 

peroxynitrite scavenging and transition metal ion chelation [156]. Several clinical trials 

have demonstrated the capacity of aminoguanidine to reduce AGE accumulation and the 

development of the complications of diabetes [158,162]. However the drug has a 

relatively short half life of four hours which restricts its effectiveness and requires 

administration in multiple doses over a day. Severe toxicity and adverse reactions were 

reported in Phase III clinical trials in diabetic recipients, and this material is therefore 
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unlikely to undergo further trials [163]. A small percentage of the patients developed flu 

like symptoms, headaches and nausea in human trials.  However after a longer duration, 

macrocytic anaemic was observed in a significant proportion of the patients and 

antinuclear cytoplasmic antibodies were developed with high doses of aminoguanidine 

[158].   

 

1.7.5.3.2 Carnosine   

Carnosine (β-alanyl-L- histidine) is a naturally occurring dipeptide that contains 

the β-isomer of alanine (3-aminopropanoic acid) and histidine (2-amino-3-(1H-

imidazol-4-yl)propanoic acid). A number of in vitro studies have suggested that 

carnosine has anti-oxidant, anti-ageing, buffering and immune regulation properties 

[164]. It is synthesised endogenously and is present in high concentrations in skeletal 

muscle at approximately 5 - 8 mM [165]. Carnosine and associated dipeptides are 

highly expressed in skeletal muscle, and are detectable in cardiac muscle and brain 

(particularly in the olfactory lobe). However, it has not been found in the lung, spleen, 

kidney, adrenal, prostate and thyroid glands, colon or pancreas [166]. In humans  

intestinal hydrolysis is readily saturated so that a significant proportion of the intact 

dipeptide is absorbed [167]. Plasma levels of the intact dipeptide are however low or 

undetectable due to its rapid degradation by the plasma enzyme carnosinase [166]. 

Carnosine has been proposed to have a number of actions. It is an effective 

physiological buffer, neuroprotective and neuromodulatory agent, regulates Ca
2+

 

sensitivity, has antioxidant activity, and may prevent and or reverse Malliard reaction-

type modifications to cell and tissue proteins [168,169,170]. Carnosine has been also 

detected in the eye lens [171] and potential carnosine-supplementing strategies, via 

lubricant eye drops containing N-acetylcarnosine (NAC), have been reported to 

alleviate vision impairment due to Type 1 and 2 diabetes [172,173,174]. NAC eye drops 

are currently available commercially [175], however the evidence as to whether 

carnosine delays or attenuates cataractogenesis is preliminary.  

 

1.8 Removal of glycation and glycoxidation products 

The maintenance of cellular homeostasis requires cellular organelles to be 

synthesised and assembled when required, but it is especially critical for these cellular 



36 
 

components to be degraded when they are in excess or damaged. Autophagy is a 

lysosomal process involved in sustaining cellular homeostasis and it is responsible for 

the turnover of long lived proteins and organelles that are functionally redundant or 

damaged. Consequently if the degradation process does not occur efficiently, cellular 

metabolism may be perturbed and cells may die or transform into a cancerous cell in 

which growth progresses uncontrollably. Chaperone-mediated autophagy is another 

lysosomal protein degradation system which is responsible for eliminating cytosolic 

proteins holding a lysosomal targeting code. This involves detection by a specific 

chaperone in the cytosol that transports the cytosolic proteins to the lysosomes to be 

engulfed and degraded [176]. Research on macro autophagy is beginning to highlight 

the significance of this process in cellular homeostasis in many diseases such as cancer; 

infectious, neurodegenerative, metabolic and cardiovascular diseases [176].   

 

1.8.1 Proteasomes 

The ubiquitin-proteasome pathway is involved in the degradation of short-lived 

proteins. Proteasomes are very large protein complexes which can be observed in the 

nucleus and the cytoplasm of eukaryotes [177]. The major role of the proteosome is to 

degrade unrequired or damaged proteins by proteolysis, with a particular role in 

degrading short-lived proteins. Proteasomal degradation is the main mechanism by 

which cells regulate the concentration of specific proteins and degrade misfolded 

proteins.  Proteins targeted for degradation are tagged with ubiquitin, a small protein. A 

polyubiquitin chain is formed as the initial bound ubiquitin recruits other ligases to 

append additional ubiquitin molecules [178]. Proteasomes generate peptides of 

approximately seven to eight amino acids in length, which are further degraded by other 

peptidases into single amino acids that are utilised in producing new proteins.  

The structure of the proteasome is a large complex tube consisting of four 

stacked rings around a central axis, with each ring comprised of seven separate proteins. 

The inner two rings are composed of seven β subunits which contain six protease active 

sites, directed towards the central axis [178].  The outer top and bottom two rings 

consist of seven α subunits which control the gate by which proteins enter the tube. The 

regulatory components on the α subunits identify the polyubiquitin tags connected to the 

protein substrates and initiate the degradation progress [178]. The ubiquitination and 

proteolytic degradation is known as the ubiquitin-proteasome system (UPS) which is 
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responsible for the regulation of many essential cellular processes, such as the cell 

cycle, regulation of gene expression and responses to oxidative stress [178]. 

 

 

Figure 1.9: The structure of proteasomes and the protein degradation pathway.  

In the ubiquitin-proteasome pathway, energy from ATP is used to tag an unwanted 

protein with a chain of ubiquitins marking it for destruction. The protein is then 

hydrolyzed into small peptide fragments by the proteasome. Adapted from reference 

[179]. 

 

 

1.8.2 Lysosomes 

Lysosomes are single membrane-bound organelles synthesised by the Golgi 

apparatus that contain, amongst other agents, a large range of hydrolases that degrade 

endocytosed materials and cellular debris. The approximate size of the lysosome is 

between 0.1 and 1.2 μm. The name lysosome is derived from the Greek word ‘lysis’ 

means to separate and ‘soma’ defining to the body, indicating this organelles’ 

proficiency in degrading a number of biological macromolecules and particles.  
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The core role of the lysosome is in autophagy as they digest excess or exhausted 

organelles, food particles, engulfed viruses and bacteria. This occurs as lysosomes fuse 

with particle-containing vacuoles and discharge their contents into the vacuoles. The 

digestive enzymes of the lysosomes are optimal at a pH of ~4.5 which is considerably 

more acidic than the cytosol (pH 7.2). This shift in pH is brought about by the activation 

of proton pumps that acidify the enclosed compartment leading to the generation of 

secondary lysosome that degrade the particles. The membrane of the lysosomes protects 

the cytosol from leakage of hydrolases, peptidases (such as the cathepsin family) and 

other degradative enzymes as these enzymes are pH sensitive and do not function 

properly in neutral to alkaline environment. 

Cathepsins are lysosomal peptidases categorised in four main classes; aspartic, 

metalloprotease, serine, and cysteine proteases [180]. Cathepsin D and E are aspartyl 

proteases, cathepsin III is a metalloprotease, cathepsins A and G are serine proteases, 

and cathepsin B, C, F, H, I, J, K, L, M, O, P, Q, R, S, T, U, V, W, X, Y and Z are 

cysteine proteases [181,182,183,184]. Cathepsin B, L and the aspartyl protease cathepin 

D are the most abundant lysosomal proteases with lysosomal concentrations as high as 1 

mM [140].  

The main mechanism of action of these proteases involves nucleophilic reaction 

at the carbonyl-carbon of the amide bond. In the serine and cysteine proteases HO- and 

HS- side chains, respectively behave as nucleophiles. While in aspartic and metallo-

proteases, aspartate residues or metal ions, bind and polarise a water molecule in which 

the oxygen atom functions as the nucleophile [140,182,185]. 

 

1.8.2.1 Lysosomal cysteine proteases 

Cysteine-dependent cathepsins have been reported to play a major role in the 

development and progression of cardiovascular disease. They are implicated as having 

major roles in ECM remodelling and lipid metabolism [180,181]. Cathepsins have the 

capability to degrade LDL and decrease cholesterol efflux from macrophages, 

exacerbating foam cell formation. In vitro studies have shown that cathepsins V, K, S, 

K, L and B possess high elastolytic activity [180,186,187]. Human macrophages secrete 

cathepsins B, L and S which are found to be localised in macrophage-, smooth muscle 

cell- and lipid-rich areas in advanced stages of atherosclerosis [180,188]. Cathepsin L 
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and S were also highly expressed in both human and murine atheroma 

[187,188,189,190]. Cathepsin B protein levels were increased in atherosclerotic lesions 

of apo E
-/-

  mice [190], and in vivo cathepsin-knockout studies has shown that 

deficiency of cathepsin K or S reduces atherosclerosis [180,187,191,192,193]. A 

suppression of cathepsin S was shown to arrest and stabilise atherosclerotic plaque in 

apo E
-/-

 and LDL-R
-/-

 mice that were fed a high fat diet [192,193,194]. Cathepsin K has 

been shown to be heavily involved in the turnover of ECM proteins in organs, and this 

enzyme has been reported to play a significant role in cardiovascular disease, 

inflammation and obesity [195]. Although the data is still preliminary, cathepsins B, L 

and S may serve as important biomarkers or imaging tools in the diagnosis of 

atherosclerosis [180,182].  

 

 

Figure 1.10: Overview of cathepsin expression and activity in atherosclerotic 

plaque.  

Cathepsins are observed in endothelial cells (EC), smooth muscle cells (SMC) and 

macrophages (M). The ECM consisting of elastin and collagen, is degraded by 

cathepsin L, K, S and V. Cathepsin S may engender plaque rupture. Cathepsin F and S 

may influence macrophage foam cell formation by decreasing cholesterol efflux which 

is counteracted by cathepsin K due to elevation of lipid uptake. Adapted from reference 

[180]. 
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1.8.2.2 Lysosomal aspartic proteases  

The lysosomal aspartic protease Cathepsin D is the major endopeptidase of the 

lysosomal compartment [184,196]. Cathepsin D has been postulated to play a role in 

many diseases such as cancer, Alzheimer’s disease, and atherosclerosis [197]. A number 

of studies have found that cathepsin D levels represent an independent prognostic factor 

in many forms of cancers, and this enzyme is a potential target of anti-cancer therapy 

[197,198].  It has been shown that expression of cathepsin D is decreased in 

macrophages of low HDL cholesterol subjects, and thus it may be associated with 

intracellular metabolism and transport of phospholipids and cholesterol [199]. 

Cathepsin D may also be significant in LDL degradation. Smooth muscle cells and 

macrophages generate cathepsins that are able to degrade native but not modified LDL 

resulting in an accumulation of modified LDL in the vessel wall, engendering foam cell 

formation and accelerated atherosclerosis [200]. 

Macrophage lysosomal dysfunction may result from the inactivation of 

lysosomal cysteine and aspartic proteases with this resulting in impaired degradation of 

modified proteins and LDL. Hyperglycaemia may also inhibit lipases, rendering these 

unable to degrade cholesterol esters from the lipoproteins causing accumulation of LDL 

derived material within the lysosomes. This could lead to cellular cholesterol 

accumulation generating macrophage foam cells and thus contributing to plaque 

development due to hyperglycaemia.  

 

1.9 Animal models of macrovascular complications of diabetes and obesity   

While T1DM accounts for only around 5% of all DM cases, many of the animal 

models of diabetes associated atherosclerosis resemble this condition. These animals are 

produced either by treatment with drugs such as streptozotocin (STZ) or a genetic 

modification to induce T1DM [201]. T2DM is the main form of DM as it accounts for 

approximately 95% of DM cases. Most of these T2DM mice have been generated by 

either a genetic approach or via the use of high fat / sucrose diets [201].  

Hyperglycaemia and hyperinsulinaemia are two hallmarks arising from insulin 

resistance commonly seen in T2DM animal models. Another important manifestation of 

insulin resistance is dyslipidaemia, marked by an elevation of VLDL, triglyceride levels 

and a reduction of HDL cholesterol levels, collectively known as the metabolic 
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syndrome. T1DM have very similar hyperglycaemic complications to T2DM. Therefore 

a suitable mouse model that closely resembles both types of diabetes in humans and 

atherosclerosis are required to study mechanistic links and allow the development of 

strategies to prevent and effectively treat hyperglycaemic complications.  

 

1.9.1 The apolipoprotein E knockout mice   

Apolipoprotein E (apo E) is one of several lipoprotein transfer proteins. The 

main role of this protein is the mediation of receptor-mediated lipoprotein elimination 

from the blood. Human apo E consist of 317 amino acids, with an 18-amino acid signal 

peptide arrangement that when cleaved produces the 299-amino acid mature apo E 

detected in plasma [202].  Apo E is a glycoprotein with a molecular size of around 34 

kD that is synthesised in the liver, brain and other tissues in both humans and mice.  It 

serves as the principal ligand for the LDL receptor mediated removal of lipoprotein 

remnants from the circulation [203]. Apo E was the first lipoprotein transport gene to be 

deleted via gene targeting in mice. The apo E
-/-

 mouse is amongst the most intensely-

expressed phenotypes seen in lipoprotein transport transgenic and gene knockout mice, 

providing 100% viability of animals lacking apo E [202]. 

Many studies have used apo E
-/-

 mice to study the pathogenesis and anti-

atherogenesis potential of pharmacological interventions. The lesions seen in these mice 

when fed a high fat Western style diet mimic morphologically the atherosclerotic 

lesions observed in humans [204,205,206]. Other mouse models of atherosclerosis fail 

to show the progression of atherogenic stages seen in humans. Significant 

hypercholesterolaemia develops in apo E
-/-

  mice when fed a low fat chow diet [203]. 

This finding implies that apo E
-/-

 results in increased sensitivity to dietary fat and 

cholesterol. Atherosclerosis in the murine aorta was reported to almost have a linear 

relationship with growth of plaque area and time [207]. Hence the apo E
-/-

 mouse offers 

many desirable attributes for studying genetic diseases and currently is one of the most 

appropriate models for atherogenesis. 

Many studies have shown that the apo E
-/-

  mice treated with STZ have aortic 

lesions that are increased in area by greater than fivefold due to the presence of diabetes, 

which increases serum glucose and cholesterol by up to three fold 

[205,208,209,210,211]. Similarly, STZ treatment of apo E
-/-

 mice has been shown to 
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increase the occurrence of premature calcified cartilaginous areas [212].  The use of 

STZ treatment in apo E
-/-

 mice has also been reported to accelerate atherosclerosis and 

macrophage-derived foam cell formation via a glucose-dependent mechanism [213]. 

The STZ-induced atherosclerotic apo E
-/-

 mouse model displays three common 

features which serve as a useful model in diabetes-associated atherosclerosis.  These 

include the maintenance of hyperglycaemic condition, the presence of accelerated 

atherosclerosis with increased atherosclerotic regions, and dyslipidaemia with elevated 

levels of lipoproteins LDL, VLDL, and triglycerides irrespective of feeding chow or a 

high fat diet. 

 

1.9.2 Animal models of obesity and related metabolic disorders 

T2D and insulin resistance are one of the most predominant forms of metabolic 

disease, and many animal models have been used to examine the pathogenesis of insulin 

resistance and diabetes-associated metabolic complications.  

Models of obesity with T2D are mainly divided into two groups; a mutation in 

the leptin or leptin receptor gene and polygenic models. Rodents with a mutation, in or 

deficiency of, the leptin receptor such as the Zucker rats, ob/ob mice, and db/db mice 

are widely used for T2D research [214]. Db/db mice are the most widely used mice for 

T2DM research. These mice have a leptin receptor mutation (Lepr (+/+ C57BL/KsJ) 

that develop T2D, along with increased systolic blood pressure, obesity and 

hyperlipidaemia, which are also manifested in humans. The db/db mice tend to over 

consume and do not develop T2D until approximately weeks 9 - 10 and develop more 

advanced T2D by week 14 with severe hyperglycaemia, requiring insulin injections for 

survival [215]. By week 20, these mice develop advanced renal dysfunction with 

declining glomerular filtration rate (GFR) and proteinuria.  

The leptin-deficient (ob/ob) or obese mouse develops even more severe renal 

structural damage and function [216]. However, the db/db mice do not develop 

atherosclerotic lesions regardless of the manifestations of obesity, hyperlipidaemia, 

hyperglycaemia, advanced kidney disease and cardiomyopathy [210]. These mice are 

relatively resistant to the development of atherosclerosis unless they are cross-bred with 

a vulnerable genetic background, such as the apolipoprotein E-deficient (apo E
-/-

) and 

LDL receptor (LDL-R) deficient mouse strains [209,210]. Hence, the db/db and ob/ob 
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leptin deficient mouse models may be more appropriate models for diabetic 

nephropathy disorders and obesity resulting from T2D.  

Obesity models due to leptin signalling abnormalities display microvascular 

complications that are commonly observed in humans, such as diabetic retinopathy and 

nephropathy [215,216].  However the major problem with leptin insufficiency or 

dysfunction, is that this corresponds to only a minority of the obese / diabetic 

population. This model does not therefore provide the same conditions or circumstances 

that occur in the majority of T2D [217,218] and obesity cases, and is therefore unable to 

adequately model obesity-related metabolic disorders.  

Polygenic models of obesity with diabetes present a much clearer perspective to 

the human condition [219]. Particular inbred strains of mice when fed a high fat diet 

(HFD) show significant obesity, while others experience gene-diet interactions and stay 

lean [220]. Some strains develop obesity with severe insulin resistance and glucose 

intolerance, whilst some are obese and resistant to the onset of diabetes. In contrast, 

some are very susceptible to T2D but do not become morbidly obese [221,222,223]. 

Polygenic models in rodents fed on a HFD or crossed with other obesity strains, allow 

access to various diabetic phenotypes, similarly to those detected in humans 

[219,221,222,223].  

The use of a HFD is the most common approach in inducing obesity as it 

provides a non-leptin-deficient model, a better representation of the current worldwide 

obesity epidemic [219,224]. Amongst the range of C57 strains, C57/BL/6 mice are the 

most extensively used to study HFD-induced obesity [220,225,226,227]. This is due to 

metabolic manifestations which closely resemble the human metabolic syndrome 

caused by a high HFD consumption [220,221,225]. Sprague Dawley rats are also widely 

used as a rodent model of HFD-induced obesity, which also mimics the metabolic 

disorders observed in humans [221].  

 

1.10 Summary and concluding remarks   

Cardiovascular-related metabolic disorders are a substantial economic and 

personal burden in the developing world. Atherosclerosis is the most prevalent type of 

cardiovascular disease, with a risk of plaque rupture and life-threatening cardiovascular 

events. Obesity and diabetes exacerbate this risk with perturbations in glucose and lipid 
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metabolism causing deleterious manifestations in cell and vascular function. The role of 

hyperglycaemia and hyperlipidaemia in diabetic- and obesity-exacerbated 

cardiovascular diseases are not yet completely elucidated.  Most of the anti-diabetic, 

anti-lipidaemic and anti-obesity drugs have severe side effects, particularly when these 

medications are prescribed concurrently over long periods in patients who suffer from a 

cluster of metabolic disorders. These medications may be effective initially but may 

cause other effects or lose responsiveness with long term use. Therefore a better 

understanding and knowledge of the processes which may be occurring in cell culture 

and animal models are required in order to improve clinical interventions, treatment 

outcomes and develop suitable pharmaceutical compounds.  

 

1.11 Thesis aims and outline    

The research undertaken in this project attempts to investigate some of the 

molecular mechanisms linking diabetes with atherosclerosis, as well examining 

potential anti-glycative and antioxidant compounds, which may improve cardiovascular 

related diseases induced by hyperglycaemia and hyperlipidaemia.  

Therefore the aims of this project are: 

1) To investigate the impact of high glucose concentrations on macrophage 

lysosomal function and populations, in a murine macrophage-like cell line 

(J774A.1) and human monocyte-derived macrophages (HMDM).   

2) To examine the potential impairment of lysosomal enzymatic activity and 

protein levels induced by high glucose during the maturation of human 

monocytes to HMDM. 

3) To assess the possible anti-atherogenic properties of carnosine in a murine type 

1 model of diabetes-accelerated atherosclerosis using streptozotocin-treated apo 

E
-/-

 mice. 

4) To examine the potential anti-atherogenic, anti-lipidaemic and anti-

inflammatory properties of the stable nitroxide radical TEMPOL in a murine 

model of obesity and hyperlipidaemia using high fat fed apo E
-/-

 and C57BL/6 

mice.  
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5) To assess the impact of TEMPOL upon macrophage lysosomal function under 

normal and high glucose concentrations, and assess the potential anti-

inflammatory and anti-glycaemic properties of TEMPOL on cytokine expression 

in hyperglycaemic macrophages.  

Chapter 2 describes the experimental materials and methods used in this project. 

In Chapter 3, the effect of high glucose concentrations upon lysosomes from cell lysates 

of J774A.1 murine macrophage-like cells and HMDM cell is examined. Chapter 4 

extends this work by monitoring the effects of high glucose upon lysosomes during the 

monocyte to macrophage development in the HMDM cells. The potential anti-

atherogenic properties of carnosine and TEMPOL were assessed in in vivo animal 

models in Chapters 5 and 6, respectively. In Chapter 7 the potential protective effects of 

TEMPOL were examined in hyperglycaemic HMDM cells with lysosomal dysfunction. 

Finally, a general discussion of the key findings and the prospective future directions 

for the studies reported in Chapters 3 - 7 is presented in Chapter 8. 
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CHAPTER 2: 

MATERIALS AND METHODS 
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This chapter describes the overall material and methods used throughout the 

studies. Each results chapter describes methods relevant to its individual content.  

 

2.1 Materials 

Fatty acid free bovine serum albumin (BSA), ethylendiaminetetraacetic acid 

(EDTA), sodium pyruvate, dimethyl sulfoxide (DMSO), polyoxyethylene 23 lauryl 

ether (Brig 35), benzamidine, pepstatin A, sodium acetate, triton X-100, E64, sodium 

dodecyl sulfate (SDS), β-mercaptoethanol, D-mannitol, Tween 20 were from Sigma-

Aldrich Pty. Ltd. (Castle Hill, NSW, Australia). Diploma Instant skim milk powder for 

blocking buffer was purchased from Coles (Parramatta, NSW, Australia). D-(+)-glucose 

and bromophenol blue sodium salts were obtained from ICN Biomedicals (Aurora, OH, 

USA).  Copper sulfate was purchased from ICN (Seven Hills, NSW, Australia).  

Sodium chloride, Tris hydrochloride, Tris base, sodium carbonate, glycerol, phosphate 

buffered saline (20x concentrate, pH 7.5) and glacial acetic acid were from Amresco 

(Solon, OH, USA).  NADH and complete Mini protease inhibitor tablets were 

purchased from Roche Pty. Ltd (Castle Hill, NSW, Australia).  Dithiothreitol (DTT) 

was purchased from Astral Scientific Pty. Ltd. (Gymea, NSW, Australia).  

The substrates used for lysosomal enzyme activities included: Z-Arg-Arg-AMC 

(for cathepsin B), Z-Phe-Arg-AMC (for cathepsin L) and Z-Val-Val-Arg-AMC (for 

cathepsin S) which were obtained from Bachem AG, Bubendorf, Switzerland; 7-

methoxycoumarin-4-Acetyl-Gly-Lys-Pro-Ile-Leu-Phe-Phe-Arg-Leu-Lys-DNP-D-Arg-

amide (for cathepsin D) was purchased from Sigma-Aldrich.  Substrates for cathepsins 

B, L and S were prepared at a concentration of 40 mM in DMSO; while cathepsin D 

was made up at 8 mM concentration, also in DMSO. These were all stored at -20 ºC. 

Agarose gels (1% (w/v) were purchased from Helena laboratories (Mt. Waverly, 

VIC, Australia). 

All solutions were prepared using nanopure water from a Milli Q system 

(Millipore-Waters, Lane Cove, NSW, Australia) and if necessary treated with washed 

Chelex-100 resin (Bio-Rad, Reagent Park, NSW, Australia). 

All other chemicals were of analytical grade and all solvents were HPLC grade.  

Methanol, and isopropanol are purchased from EM Science (Gibbstown, NJ, USA) and 
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hexane was from Sigma-Aldrich. Hydrochloric acid was Analar® grade and purchased 

from Merck Pty. Ltd. (Kilsyth, Vic, Australia). 

 

2.2 Tissue culture materials 

RPMI-1640 medium (with L-glutamine, without glucose and sodium 

bicarbonate), Dulbecco’s phosphate-buffered saline (PBS) pH 7.4 and Dulbecco's 

modified Eagle's medium (DMEM) were purchased from Sigma-Aldrich.  Two mM 

glutamine was obtained from Thermo Electron (Melbourne, VIC, Australia), 1% (v/v) 

PenStrep containing 100 units/mL penicillin and 0.1 mg/mL streptomycin from 

BioWhittaker (Radnor, PA, USA), and 10% (v/v) heat activated (30 min at 60 ºC) 

human serum (HS) from the Australian Red Cross (Clarence St Blood Bank, Sydney, 

NSW, Australia) or fetal calf serum (FCS) from JRH Biosciences (Lenexa, Kansas, 

USA) were added to all media where appropriate.  To prepare normal to high glucose 

conditions, D-glucose (molecular mass = 180.16 g/mol) was added to (glucose-free) 

media at 5.5, 10, 20 or 30 mM concentrations and then the medium was  filter-sterilised 

by the Bottle Top Vacuum Filter; 0.2 µm pore size, PES Membrane (Corning, NY, 

USA).   

 

2.2.1 Cell culture 

All cells were cultured in 12 well (22 mm diameter wells) or 6 well (35 mm 

diameter wells) tissue culture plates (Corning, NY, USA), or in Falcon (Becton 

Dickinson, Franklin Lakes, NJ, USA) 175 or 75 cm
2
 tissue culture flasks, in humidified 

incubators at 37 ºC and 5% (v/v) CO2. 

 

2.2.2 J774A.1 Mouse macrophage cells grown under normal to high glucose 

conditions 

J774A.1 mouse macrophages (ATCC # TIB-67 and purchased from ATCC™, 

Manassas, VA, USA) were grown in normal DMEM media (with 5.5 mM glucose 

content) and used as the control (or normal) glucose condition. Alternatively they were 

grown in DMEM (with 10% v/v FCS) supplemented with extra 4.5 mmol/L (thus final 
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glucose concentration was 10 mM), 14.5 mmol/L (20 mM glucose) and 24.5 mmol/L 

glucose (30 mM glucose) for high glucose conditions.  J774A.1 mouse macrophages 

were incubated in these conditions for 11 days and cells were split every 2 - 3 days.  

Cell morphology was checked under the microscope then cell pellets were prepared and 

treated as required. 

 

2.2.3 J774A.1 Mouse macrophage cells for investigation of lysosomal activity  

J774A.1 mouse macrophages were grown in 175 cm
2
 flasks and supplemented 

with glucose as previously described.  Cells were harvested by scraping using a 

disposable cell scraper (Greiner Bio-One; Frickenhausen, Germany) and the cell 

suspension was replated at 1:15 dilution every 2 - 3 days.  In order to prepare the cell 

extracts for lysosomal activity measurements, J774A.1 cells were scraped at confluency 

and replated into 75 cm
2
 Falcon flasks at 0.5 × 10

6
 cell/mL (1 mL/ well) and incubated 

overnight (16 hr). Cells were washed three times with PBS. Cells were scraped and 

transferred into a 15 mL Falcon tube. Cell pellets were obtained by centrifugation 

(Beckman Coulter™, Allegra® X-15R Centrifuge; Palo Alto, CA, USA) at 524 g for 5 

min at 4 ºC.  The supernatant was discarded and the undisturbed cell pellets were snap 

frozen in liquid nitrogen and stored at -80 ºC for subsequent determination of lysosomal 

acid lipase (LAL), lysosomal cathepsin B, L, S and D activities.  

 

2.2.4 Human monocyte-derived macrophages (HMDM) 

Monocytes were isolated by Mr Pat Pisansarakit from white cell concentrates 

(provided by the Australian Red Cross), within 24 hrs of collection. The elutriation 

system consisted of a Beckman Avanti J20-XPI centrifuge equipped with a JE-5.0 

elutriation rotor and a 4.2 mL elutriation chamber with a Masterflex (Barrington, IL, 

USA) peristaltic pump.  The elutriation media was pyrogen-free HBSS (Sigma-Aldrich) 

with phenol red and 0.01% (v/v) EDTA but without Ca
2+

 and Mg
2+

.  First of all the 

system was rinsed with about 250 mL 70% (v/v) ethanol followed by water, 30% (w/w) 

H2O2, water and finally HBSS.  The white cell concentrates were diluted 1:2 in HBSS.  

Next 30 mL aliquots of diluted white cell concentrate was underlaid with 15 mL 

Lymphoprep (Fresenius Kabi Norway) and centrifuged at 1900 rpm (2060 g), with the 

brake off, at 21 °C for 40 min.  Thereafter, peripheral blood mononuclear cells were 
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isolated from the Lymphoprep interface, washed once with HBSS and resuspended in 

30 mL HBSS.  The mononuclear cell suspension was loaded at a rotor speed of 2020 

rpm with an initial flow rate of 9 mL/min at room temperature.  The flow rate was 

increased by 1 mL/min every 10 min and the cell fractions from 15, 16, 17, 18 and then 

a final flow rate of 40 mL/min were collected.  The purity of each fraction was routinely 

determined on smears of the cell suspension prepared using the Cytospin
®
 system 

(Shandon; Astmoor, Runcorn, England).  Cells were stained using Diff Quick staining 

kits (LabAids Pty. Ltd.; Narrabeen, NSW) according to the manufacturer’s instruction.  

Fractions that were largely pure monocytes were pooled.  A viable cell count was 

subsequently performed using Trypan blue 0.4% (w/v) (Sigma-Aldrich).  Cells were 

diluted to 1×10
6
 cells/mL in X-VIVO 10 media (without phenol red or gentamicin; 

Lonza Australia Pty. Ltd., Mount Waverley VIC, Australia) with no serum and 1 mL 

was added to each well of 12 well, or 2 mL per well was added to 6 well tissue culture 

plates.  After 1 - 2 hr incubation, the media was replaced with 1 or 2 mL RPMI at the 

required glucose concentration with 10% v/v HS as previously mentioned.  The media 

was changed 3 days after the elutriation and then every second day afterwards.  The 

health of cells was always checked under the microscope after each media change. 

 

2.2.5 Preparation of human monocyte-derived macrophages (HMDM) matured 

in normal to high glucose conditions for determination of lysosomal enzyme 

activities 

Monocytes were prepared as previously noted and incubated for 10 - 11 days in 

RPMI containing normal (5.5 mM) to high (10, 20 and 30 mM) glucose concentrations.  

This time period results in differentiation into human monocyte-derived macrophages 

(HMDM) [228]. The health of cells was checked under the microscope before cell 

harvesting.  

Cells were washed three times with PBS. Cells were scraped using the cell 

scraper and transferred into a 15 mL Falcon tube. Cell pellets were obtained by 

centrifugation (Beckman Coulter™, Allegra® X-15R Centrifuge) at 931 g for 15 min at 

4 ºC.  The supernatant was discarded and the undisturbed cell pellets were snap frozen 

in liquid nitrogen and stored at -80 ºC for the determination of LAL, lysosomal 

cathepsin B, L, S and D activities.  



51 
 

2.3 Lysosomal enzyme activity 

2.3.1 Lysosome isolation 

Cell pellets (J774A.1 cells or HMDM incubated in normal to high glucose 

concentrations as previously noted) were resuspended and lysed in 250 µL of nanopure 

water.  The lysate was centrifuged 13.4 x 1000 g for 5 min at 4 °C to remove unlysed 

cells and membrane fractions that may interfere with the assay [229]. The supernatant 

was transferred to fresh Eppendorf tubes, placed on ice and used immediately for 

quantification of LAL, cathepsin B, L, S and D activities followed a protein assay.   

 

2.3.2 Determination of cathepsin B and L activity 

Cathepsin B activity was measured by continuously monitoring the release of 

AMC from the peptide substrate Z-Arg-Arg-AMC. Cathepsin L activity was measured 

by the initial linear increase in fluorescence following the cleavage of AMC from the 

peptide substrates Z-Phe-Arg-AMC (10 μM). Prior to running the assay, the stock 

solution was diluted 1000-fold with nanopure water.   

20 μL of the lysate was combined with 180 μL of 0.1 M phosphate buffer (NaH2PO4 / 

Na2HPO4: pH 5.5) containing 0.005 % (w/v) Brij 35, 2.5 mM EDTA, 2.5 mM DTT, 1 

μM pepstatin and 5 mM benzamidine and the cathepsin substrate (10 μM).  

The plate was shaken for 30 s prior to analysis to ensure a homogenous mix of the 

components. Assays were performed in triplicate on 96-well plates at 21 °C with 

fluorescence changes measured using  λexcitation 360 nm and λemission 460 nm.  

The change in fluorescence was monitored over 10 cycles, with changes in cathepsin B 

activity monitored every 2 min for 20 min and cathepsin L monitored every minute for 

10 min. Fluorescence changes were monitored on either a Cytofluor II fluorescence 

plate reader or a M2e spectroflurometer. 
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2.3.3 Determination of cathepsin S activity 

To measure cathepsin S activity, a similar procedure to that used for cathepsins 

B and L was employed except that Z-Val-Val-Arg-AMC was used as the substrate.  

Before running the assay, the substrate was diluted 50-fold in nanopure water  

Cell lysate (50 μL) was added to wells containing 100 μL of 0.2 M phosphate 

buffer (NaH2PO4 / Na2HPO4: pH 5.5) containing 5 mM EDTA, 5 mM DDT, 1 μM 

pepstatin A, 5 mM benzamidine and incubated for 1 hr at 40 ºC in an incubator to 

inactivate other cathepsins.  The plate was then placed on the plate shaker for 5 min at 

21 °C. Fluorescence changes were measured immediately after addition of 50 μL of 

substrate (0.2 mM) using a M2e spectrometer, with measurements made every 5 min for 

50 min  with λexcitation 360 nm and λemission 460 nm at 21 °C [229]. 

 

2.3.4 Determination of cathepsin D activity 

To measure cathepsin D activity, cell lysate (25 μL) was added to wells 

containing 100 μL of 0.1 M acetate buffer (CH3CO2Na / CH3COOH, pH 4.2) containing 

2.5 mM EDTA, 0.005% (w/v) Brij 35, 5 mM benzamidine and 10 μM E64 (irreversible 

inhibitor of cysteine proteases) in a 96 well plate.  After 5 min activation at room 

temperature of 21 °C, 50 μL of 7-methoxycoumarin-4-acetyl-Gly-Lys-Pro-IIe-Leu-Phe-

Phe-Arg-Leu-Lys-DNP-D-Arg-amide (stock solution 8 mM in DMS0 stored at -20 ºC) 

at 2 μM was added.  Changes in fluorescence were monitored using a M2e Plate Reader 

spectrometer with λexcitation 328 nm and λemission 393 nm with measurements made every 

30 s for 6 min. 

 

2.3.5 Analysis of lysosomal cathepsin activity data 

Activity of cathepsins was quantified by the initial linear change in fluorescence 

over time.  Nanopure water was used for dilutions, and as negative control (no cell 

lysate fraction) as this did not result in any change in fluorescence over time. The 

protein concentrations were determined with other aliquots of the same samples using 

the Bio-Rad protein assay as described in Section 2.4.1, thereby allowing the lysosomal 

activity to be expressed relative to the protein concentration. 
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2.3.6 Determination of lysosomal acid lipase (LAL) activity 

LAL activity was quantified using a procedure based on a previously method 

published [230]. 4-Methylumbelliferone (4-MU) and 4-methylumbelliferyl oleate (4-

MUO) were purchased from Sigma-Aldrich. A stock concentration was constituted by 

dissolving 4-MU (5.676 μM) in hexane and this was further diluted in 4% (w/v) Triton 

X in order to generate a standard curve from 0 - 2.8 μM of 4-MU. 4-MUO (2.3 μM) was 

similarly dissolved in hexane and further diluted in 4% (w/v) Triton X (1:100). 

 In order to determine LAL activity in the J774A.1 cells and HMDM, 25 μL of 

cell lysate was added to each well followed by 50 μL of prepared 4-MUO in each well. 

One hundred and twenty five microlitres of prepared assay buffer (0.2 M Na₂Ac, 0.01% 

v/v Tween 80, pH 5.5) was added to both the standard and cell lysate wells and 

incubated for 30 min at 37 °C, covered in foil to protect from light. The reaction was 

stopped with 100 μL of stop buffer (0.75 M Tris, pH 8.0). The fluorescence signal was 

detected using an M2e plate reader spectrometer with λexcitation 360 nm and λemission 460 

nm. Fluorescence readings were converted to 4-MU concentrations using the standard 

curve and expressed as µM of 4-MU formed per min. The 4-MU concentrations were 

corrected for the protein concentration present in each sample.  

 

2.3.7 Osmotic control 

D-Mannitol was used as a control to account for any osmotic effects when cells 

were exposed to higher glucose levels during the incubation period. J774A.1 cells and 

HMDM were cultured for 11 days in their media containing 5.5 mM glucose plus 24.5 

mM D-Mannitol. Lysosomal activity of cathepsins B, L and LAL activities were 

determined as described above.  

 

2.4 Protein and enzyme assays 

2.4.1 Protein determination 

To determine the protein concentration of the cell lysates, the Pierce (Thermo 

Fisher Scientific, North Ryde, NSW) Bicinchoninic Acid (BCA) Protein Assay was 

used.  One part of Reagent B (4% (w/v) CuSO4) was mixed with 49 parts Reagent A 
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(sodium carbonate, sodium bicarbonate, BCA and sodium tartrate in 0.1 N NaOH).  

This method quantifies the reduction of Cu
2+

 by protein to Cu
1+

 under alkaline 

conditions (Biuret reaction) with colorimetric detection of the Cu
1+

: BCA complex.  Ten 

µL of sample along with 190 µL BCA working reagent was added in each well of a 96 

well plate and incubated  at 60 ºC for 30 min. The plate was cooled for 5 min before the 

absorbance was read at 562 nm on a Tecan Sunrise plate reader (Grödig, Austria).  A 

standard curve obtained using 0 - 50 µg BSA prepared in the same buffer as the 

samples, was used to calculate the protein concentration, with this expressed as µg/µL. 

   

2.4.2 Cell viability 

Lactate dehydrogenase (LDH) is a cytosolic enzyme that is released into the 

culture medium when plasma membranes are compromised. LDH catalyses the 

reversible reduction of pyruvate, with NADH as the cofactor. 

NAD
+
 + lactate ↔ NADH + pyruvate 

In this assay, excess substrate is added to ensure that the enzyme is the limiting 

factor.  NADH loss, which is the proportional to the amount of enzyme present either 

intracellularly (cell lysate) or extracellularly (cell media), was quantified at 340 nm.  

Two hundred microlitres of working reagent (0.15 mg/mL NADH and 2.5 mM sodium 

pyruvate in PBS) was added to 10 µL samples of cell lysate or cell media (after 

spinning at 353 g for 5 min at 4 ºC to remove cellular debris) in each well of a 96-well 

plate.  The absorbance was read every 5 min for 7 cycles on a Tecan Sunrise plate 

reader.  The linear change of absorbance per min was used in the following equation to 

determine cell viability: 

Viability (%) = [Δ340 nm cell lysate / (Δ340 nm cell lysate + Δ340 nm cell media)] × 

100 

Cells were considered viable if the percentage was > 80% and there was no decrease in 

the total activity (Δ340 nm cell lysate + Δ340 nm cell media). 
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2.5 Western blotting to determine protein levels of lysosomal cathepsins B, L, 

LAL and lysosomal associated marker glycoprotein-1 (LAMP-1) 

2.5.1 Antibodies for Western blotting 

Mouse polyclonal to LAL, mouse polyclonal antibodies to cathepsin L, rabbit 

polyclonal to LAMP-1 and rabbit polyclonal to β-tubulin (loading control) were 

purchased from Abcam (Cambridge, UK) and goat anti-cathepsin B was purchased from 

Santa Cruz Biotechnology (Santa Cruz, CA, USA).  Secondary antibodies of donkey 

anti-goat IgG-HRP and goat anti-mouse IgG-HRP was purchased from Santa Cruz 

Biotechnology; donkey anti-rabbit IgG-HRP was purchased from GE Healthcare, Life 

Sciences, Amersham Biosciences UK Ltd. (Buckinghamshire, UK). 

 

2.5.2 Cell lysis buffer 

Cell lysis buffer was premade containing 150 mM NaCl, 50 mM Tris pH 8.0. On 

the day of the experiment, 0.1% (v/v) Triton-X 100 was added and one mini protease 

inhibitor cocktail tablet was dissolved into the 7 mL of cell lysis buffer.  

Gel loading dye stock 5x was constituted with nanopure water (42.5%), 0.5M 

Tris pH 6.8 (12.5%), glycerol (20%), 10% w/v SDS (20%) and 0.5% w/v Bromophenol 

Blue (5%). The premade loading buffer (8 mL) was aliquoted into Eppendorf tubes and 

stored at -20 °C. 

 

2.5.3 Sample preparation for loading gels 

J774A.1 cells or HMDM were washed with PBS and lysed with 1 mL of cell 

lysis buffer and placed on ice for 15min. The protein concentration of the cell lysates 

was determined using the BCA protein assay using the cell lysis buffer to dilute the 

standards. The pre-prepared 5x gel loading dye stock was reconstituted with 5% (v/v) β-

mercaptoethanol. Then 5 × complete sample buffer was added to each cell lysate sample 

to give 1 × final concentration, mixed well and centrifuged briefly to remove particulate 

matter.  Samples were then heated at 95 °C for 5 min, centrifuged briefly to remove 

precipitated material and placed on ice until loaded onto gels.  For investigation of 
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protein levels of different lysosomal markers, 15 - 30 μL of cell lysate containing 20 - 

40 μg protein was loaded into each well. 

 

2.5.4 Gel loading and running to separate proteins by electrophoresis 

Four to fifteen percent Tris-HCl gradient SDS-PAGE gels or 4 - 20% mini 

protean TGX precast gels were purchased from Biorad (Gladesville, NSW, Australia). 

Two to four gels were assembled into the gel cassettes with these then firmly clamped 

and placed into a Mini-Protean 3 electrophoresis cell (2 gels) or Mini-Protean Tetra 

System (4 gels) tank (Biorad). Approximately 1 L of 1 × running buffer prepared from 5 

× running buffer (3% w/v Tris base, 14.4% w/v glycine and 0.5% w/v SDS) was 

inserted into tank and the tank was checked for leaks before filling up the entire tank 

with running buffer. Five μL of Precision plus protein Kaleidoscope molecular mass 

standards (Bio-Rad) were included in the first or last lane in each gel.  The loaded gels 

were then run at 125 V for at least 1 hr until the loading bands reached the bottom of the 

gel.  The gels were then separated from the glass and spacer plates, briefly washed in 

water and then processed further by transferring to nitrocellulose membranes. 

 

2.5.5 Protein transfer to nitrocellulose membranes 

Protein transfer from the gels to nitrocellulose membranes was achieved using 

an iBlot™ Dry Blotting System (Invitrogen Australia Pty Ltd, Mount Waverley, VIC, 

Australia) with a blotting area of 14 × 8.5 cm suitable for two mini gels.  The excess 

water was removed from gels by gentle shaking of gels and carefully holding the edge.  

Then two mini gels were placed on the nitrocellulose of an iBlot NC anode stack.  

Excess water and air bubbles between gel and membrane were carefully removed with a 

wet roller.  A wet filter paper was placed on the gels and excess water and air bubbles 

were removed as before.  On top of this was laid the iBlot cathode stack.  The complete 

apparatus was pressed together by rolling a few times with a dry roller.  An iBlot 

disposable sponge was placed on the lid of the iBlot apparatus and the sandwich 

assembly was then firmly closed.  The transferring of proteins from gels to 

nitrocellulose membrane was accomplished in 7 min. The sponge, top cathode stack and 

the wet filter paper were carefully removed and discarded.  Any excess of nitrocellulose 
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membrane around the gels was trimmed and membrane was placed in Tris-buffered 

saline containing Tween 20 buffer (TBST) with tweezers until Western blotting.  

 

2.5.6 Western blotting 

Nitrocellulose membranes with transferred proteins were initially blocked for 

one hour, using 5% w/v skim milk powder in TBST. This was followed by overnight 

incubation with the primary antibody (LAMP-1, LAL, cathepsin B or L).  For J774A.1 

cells the antibodies were used at 1:500 dilution. For HMDM the dilutions for LAMP-1, 

LAL, cathepin B or L were 1:1000, 1:500, 1:250 or 1:500, respectively.  

On the following morning, the membranes were then washed with TBST (5 × 5 

min) followed by incubation with the appropriate secondary antibody at 1:2000 dilution 

in blocking buffer for 1 hr.  The membrane was then washed with TBST (4 × 5 min). 

Donkey anti-rabbit IgG-HRP was used for LAMP-1, goat anti-mouse IgG-HRP was 

used for LAL or cathepsin L, and donkey anti-goat IgG-HRP was used for cathepsin B. 

Freshly prepared ECL Western blotting detection reagent (0.125 mL/cm
2
) was added to 

the membrane and incubated for 1 min at 21 °C.  Surface tension holds the reagent on 

the membrane.  The excess of reagent was removed by gentle shaking of the membrane 

and holding it with tweezers touching the edge against a Kimwipe.  Then the membrane 

was wrapped in polyethylene wrap (Glad wrap™) with bubbles carefully removed.  The 

chemiluminescence was acquired using a Molecular Imager ChemiDoc XRS System 

(Bio-Rad laboratories, Segrate, Milan, Italy) and Quantity One software, with the 

focused recorded frozen when a satisfactory image was acquired.  The raw images were 

saved as TIFF files. A blank image was also taken using normal white light exposure. 

The acquired images of the scanned membrane were opened using Photoshop 

and the image adjusted (brightness and contrast) to visualise the bands. LAMP-1 (120 

kDa), LAL (45 kDa), procathepsin L (55 kDa), mature cathepsin L (25 kDa), 

procathepsin B (25 kDa) and mature cathepsin B (20 kDa) were identified by 

comparison with the manufacturer’s guidelines. 
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2.5.7 Stripping of membrane 

The membrane was stripped for 10 min using a Restore PLUS Western Blot 

Stripping buffer (Thermo Fisher Scientific), and subsequently washed with TBST (4 × 5 

min). The stripped membrane was then blocked with blocking buffer for 1 min then 

probed for β-tubulin (1:1000 in blocking buffer) for 3 hrs. The membrane was then 

washed with TBST (5 × 5 min), and probed with donkey anti-rabbit IgG-HRP (1:2000 

dilution in blocking buffer) for 1 hr. This was followed by washing with TBST (4 × 5 

min), addition of the ECL reagent and recording of the membrane image reading as 

described previously.  β-Tubulin was detected by mass at 51 kDa based on the 

manufacturer’s guidelines.  

 

2.5.8 Molecular band analysis 

The intensity of each band was quantified using Image J Software (NIH, USA). 

Briefly, a box was plotted around each band and the same box was copied and pasted 

for relevant bands on each raw scan of the membrane.  For each band the adjusted 

volume (intensity × mm
2
) was calculated.  This was the volume (sum of the intensities 

of the pixels inside the volume boundary × area of a single pixel) minus the local 

background volume. LAMP-1, LAL, cathepsin B and L levels were expressed relative 

to β-tubulin. 

 

2.6 In vivo animal studies 

Histology was conducted on three animal models reported in Chapters 5 and 6. 

 

2.6.1 Materials and solutions for histology 

Xylene, Harris’ Haematoxylin solution, Eosin Alcoholic 1%, Histolene (100%), 

and Scott’s Blueing Solution were purchased from Fronine Lab Supplies (Riverstone, 

N.S.W., Australia). DPX Mountant for cover-slipping was purchased from Sigma-

Aldrich. Formaldehyde was purchased from Analar
®
 Merk Pty. Ltd. (Kilsyth, Vic, 

Australia).   
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2.7 Preparation of tissue samples from diabetic mice 

Samples of aortae and brachiocephalic arteries were provided by Dr David van 

Reyk. The animals were supplied by the Biological Facility of the Heart Research 

Institute and were maintained and monitored in accordance with the guidelines of 

Sydney South West Area Health Service Animal Welfare Committee (Protocol number: 

2007/002B). Animal housing and care were carried out by Drs. van Reyk, Bronwyn 

Brown and the staff of the Biological Facility. 

Diabetes was induced in male apo E
-/-

 mice at six to seven weeks of age by 

intraperitoneal injection of streptozotocin dissolved in citrate buffer (pH 4.5) with daily 

injections of 55 mg/kg for 5 days. Control mice were injected with citrate buffer. These 

procedures were modified from a previously published method [231].  

 

2.7.1 Animal groups 

Mice (n = 80) were maintained for twenty weeks, post-induction of diabetes, 

with half of the animals receiving carnosine (2 g/L) in their drinking water. Food and 

water were available ad libitum. The groups comprised of control-non supplemented, 

control-carnosine (β-alanyl-L-histidine) supplemented, diabetic and diabetic-carnosine 

supplemented as shown in the figure below.   
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Figure 2.1: Animal model for the carnosine project. 

The animal study consisted of 80 apo E
-/-

 mice. The first two comprised of control mice 

groups (outlined in blue) with and without carnosine in the water. The third and fourth 

groups comprised of diabetic mice (outlined in orange) that were induced by 

streptozotocin with and without carnosine in the water.   

 

 

2.7.2 Sample collection 

The mice were sacrificed at approximately 20 weeks after the induction of 

diabetes by exsanguination via cardiac puncture following anaesthesia using 

methoxyflurane.  

The heart and entire arterial tree were collected for histological analysis based 

on a method previously published [232]. The arterial tree was flushed by perfusion 

through the left ventricle, at physiological pressure, with PBS, containing 2 mM EDTA 

and 20 µM butylated hydroxytoluene, for 4 min followed by fixation by perfusion with 

4 % (w/v) paraformaldehyde (pH 7.5) for 6 min. The heart and arterial tree were 

carefully dissected out and stored in paraformaldehyde. The samples were rinsed in PBS 

and stored in 70% v/v ethanol. The tissues was then analysed for the plaque areas in the 

brachiocephalic and the aortic sinus regions with the identity of the samples being 

coded, to avoid bias by another researcher.  
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Blood obtained by cardiac puncture was immediately transferred to Eppendorf 

tubes containing a cocktail of protease inhibitors to prevent clotting and sample 

degradation (1 μL/mL aprotinin, 0.04 μM D-phenylalanyl-L-prolyl-L-arginine 

chloromethyl ketone [PPACK; a rapid thrombin inhibitor], 20 μg/mL soybean trypsin 

inhibitor and 2mM EDTA). Blood glucose concentration were determined using a True 

Track™ Smart System glycometer (Nipro Diagnostics Inc., Fort Lauderdale, FL, USA), 

and HbA1c (as a measure of glycated haemoglobin) was determined using AlcNow+ 

kits (Metrika Inc., Sunnyvale, CA, USA). The remaining blood was spun at 800 g for 10 

min at 4 °C. The recovered plasma was snap-frozen in liquid N₂ and stored at -80 °C for 

further analyses, as were the resultant and remaining cell pellets. 

 

2.7.3 Preparation of formalin fixed, paraffin-embedded mouse tissue  

The aortic sinus was dissected making a cut perpendicular to the aorta halfway 

through the heart. The brachiocephalic artery was separated from the aortic arch by 

dissecting diagonally across the vessel where the artery meets the arch, and embedded 

in agarose gel. The dissected samples were enclosed in Tissue TEK cassettes and placed 

in 70% v/v ethanol and taken over the Pathology Department at the University of 

Sydney for tissue processing overnight through a Tissue-TEK VIP automatic tissue 

processor (Miles Scientific, Naperville, IL, U.S.A) to dehydrate samples before infusing 

with paraffin wax. Samples were embedded in paraffin blocks in the desired orientation 

using a stainless steel mould (Tissue-TEK Dispensing Console, Miles Scientific). These 

paraffin blocks were taken back to the Heart Research Institute. 

 

2.7.4 Dissection and paraffin embedding of the aortic sinus and the 

brachiocephalic artery 

The whole aortic tree with the heart was carefully removed for morphological 

and immunohistochemical analyses of the aortic sinus and the brachiocephlic artery. 

The brachiocephalic artery was separated from the aortic arch dissecting diagonally 

across the vessel where the artery meets the aortic arch, embedded in agarose gel and 

cut in a pentagonal shape as shown in Figure 2.2a. The embedded sample in agarose 

was carefully positioned in between two sponges that were inserted within the top and 

bottom of the cassette. The dissected samples that were enclosed in cassettes were 
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labelled with pencil and immersed in 70% ethanol for overnight tissue processing. On 

the following day the artery was embedded in paraffin blocks with the beginning of the 

brachiocephalic artery facing the bottom and the right common carotid artery and the 

right subclavian artery facing the top.   

For the aortic sinus, the arterial tree along with the aorta was removed, leaving 

behind the two atriums attached on top of the whole heart. The second cut was made 

perpendicular to the aortic root, approximately halfway through the heart and parallel to 

the two atriums as illustrated in Figure 2.3. The dissected top half of the heart was 

processed and embedded in paraffin blocks the next day with the aortic opening and the 

atrium facing the top and the cut end of the heart facing the bottom.  

 

2.7.5 Tissue Sectioning 

Plaque area was estimated for the brachiocephalic artery and the aortic sinus. 

Five micrometer sections of tissue were initially cut on a rotary microtome and floated 

on a 42 °C water bath. Sections were lifted on to a Superfrost Plus positively-charged 

glass slides (Menzel-Glaser, Braunschweig, Germany) and air dried before placing in 

racks to dry overnight at 37 °C. 

The first cross section slide of the brachiocephalic artery was taken from the 

appearance of a complete circular section at the region proximal to the arch. The first 

section of the aortic slide was taken at the first appearance of the three valve leaflets. 

A set of six duplicate (A - F) cross sections were counted and taken at every 100 

µm along the brachiocephalic artery and the aortic sinus (refer to Figures 2.2 and 2.3). 

One set of six duplicate sections (A - F) were stained with Haematoxylin and Eosin (H 

& E) and photographed using the appropriate magnification (10x for brachiocephalic 

and 4x magnification for sinus) for plaque area. Total plaque area was calculated across 

the six sections using Adobe Photoshop CS5 (v12.0). 

The other replicate sections were used for immunohistological analysis for α-

actin for smooth muscle cells (Slide B), F4/80 for macrophages (Slide C) and 

picrosirius red for collagen (Slide D).  
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Figure 2.2a: Dissection and tissue sectioning of the brachiocephalic artery. 

The brachiocephalic artery was incised from the aorta, fixed in an agarose gel.  After the 

agarose gel had cooled, the sample was cut around the sample in a pentagonal outline as 

shown in the middle diagram. Two triangular cuts are made on top of the right common 

carotid artery and the right subclavian artery whilst two parallel cuts are made along the 

brachiocephalic artery. This allowed the starting point for tissue sectioning to 

commence from the base of the pentagon. The far right diagram indicates where the 

duplicate slides of A to F were taken. Slide A was taken where the first full 

circumference of the artery appeared.  

 

 

 

Figure 2.2b: Dissection of the aortic sinus. 

The arterial tree was removed and separated from the heart. The second cut was parallel 

to the first cut and also perpendicular from the aortic opening. The tissues were 

processed and embedded with the larger cross-section facing the bottom. The sample 

within the block was sectioned until the leaflets were detected. The first duplicate slide 

of A was taken at the appearance of all three leaflets of the sinus.  
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Figure 2.3: Aortic sinus dissections. 

This is an anatomical position of the heart in 2D, where two imaginary lines meet 

perpendicularly from the aortic opening and between the left and the right atriums. The 

critical dissection (indicated by the broken blue line) takes place midway into the heart, 

perpendicular to the aortic opening and parallel to the left and right atriums. The first 

cross section is taken at appearance of three valve leaflets, as outlined in green.  

 

 

2.7.6 Dewaxing and re-hydration of paraffin-embedded sections 

Dewaxing of slides was performed by immersing slides in two changes of 

xylene for at least 10 min each. Sections were progressively re-hydrated through two 

changes of 100% ethanol for 2 min each, followed by two changes in 95% v/v ethanol 

(2 min each) and finally 2 min in 70% v/v ethanol. Sections were then washed in 

running tap water for at least 2 min. 

 

2.7.7 Haematoxylin and eosin staining (H&E) 

Sections were stained in Harris’ Haematoxylin for 2 - 3 min. Sections were then 

washed well under tap water until the water colour was clear. The sections were 

subsequently dipped three times quickly in an acid alcohol differentiator (conc. HCl 
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diluted at 1:400 in 70% v/v ethanol) to remove excess blue colouration. After washing 

in tap water sections were submerged in Scott’s Blueing Solution for 30 s. Sections 

were then checked under the microscope, to determine whether the nuclei were clearly 

differentiated. If not, the sections were rinsed with water, and re-stained with Harris’s 

Haematoxylin for 30 s, washed under tap water until the water colour was clear, and 

then submerged in Scott’s Blueing Solution for 20 s, washed with water and re-checked 

under the microscope.   

When staining was such that the nuclei were clearly differentiated, the sections 

were then stained with eosin. Sections were washed in tap water then dipped in 70% v/v 

ethanol for 30 s and subsequently in two changes of eosin (30 s each). The sections 

were then washed in two changes of 95% v/v alcohol (30 s each) followed by two more 

washes in 100% alcohol (30 s each). Slides were then submerged in two changes of 

histolene (at least 10 min each) before they were mounted with DPX and coverslipped. 

 

2.8 Immunohistochemistry materials and methods 

Alkaline phosphatase substrate was purchased from Vector Laboratories Inc. (CA, 

U.S.A.) One drop from Reagent 1, 2 and 3 were added to 2.5 mL of 100 mM Tris-HCl 

(pH 8.2 - 8.5) prior to use. PBS 20x conc. (Amresco) was re-constituted to 1x PBS with 

nanopure water to which PBST 0.1% v/v Tween 20 was added (PBST).  

Normal rabbit serum was purchased from Abacus (East Brisbane, Qld, Australia) 

The powder was reconstituted with 5 mL of nanopure water (as suggested by the 

product information) in order to yield 100% normal rabbit serum and aliquoted and 

stored at -20°C.  Normal rabbit serum working solution (10% v/v in PBS) was made 

fresh on the day of experiment.  

For the antigen retrieval buffer 5.46 g of sodium citrate tribasic dihydrate (Sigma-

Aldrich) was dissolved in 1.5 L of nanopure water. The pH of the solution was 

measured using a pH meter (PHM 220, Meter Lab®) and adjusted to 6 with 37% w/v 

HCl (Astral Scientific). The solution was then topped up to 2 L with nanopure water. 
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2.8.1 Antibodies for immunohistochemistry 

Mouse monoclonal α-SM-actin was purchased from Sigma-Aldrich. Rat 

monoclonal Anti-F4/80 antibody [Cl:A3-1],  mouse polyclonal (Alkaline Phosphatase)- 

IgG isotype control  and rat IgG2b, kappa monoclonal [RTK4530]- isotype control were 

purchased from Abcam.  

 

2.8.2 Plaque composition 

Macrophages (Anti-F4/80), smooth muscle cells (α-SM-actin), and collagen 

(Picrosirius Stain) were identified in paraffin-embedded sections of the brachiocephalic 

artery and the aortic sinus (refer to Section 2.7.5) taken at 100 μm, 200 μm and 300 μm, 

from the first complete cross-section of the brachiocephalic and the appearance of three 

valve leaflets of the sinus. Negative controls without the primary antibody were used for 

each staining to screen for nonspecific binding which was not evident.  

 

2.8.3 Smooth muscle-α-actin staining 

Sections were embedded and deparaffinised as described above. The sections 

were then rinsed in PBS. Antigen retrieval was achieved by placing the slides in citrate 

buffer and heating them in the microwave on high power for 15 min. The slides were 

then rapidly cooled in running tap water and immersed in PBST for 4 min. Sections 

were encircled with a ImmEdge™ hydrophobic barrier pen (Vector Laboratories Inc., 

Burlingane, CA, U.S.A.) to reduce the volume of reagents required. Normal rabbit 

serum working solution was added to the samples which were incubated for 4 hr at 21 

°C in a closed slide sorter. The slides were then briefly rinsed in PBST. The alkaline 

phosphatase-conjugated anti-α-SM-actin monoclonal antibody (1/100 dilution in TBS, 

Sigma-Aldrich) was applied overnight at 4 °C with damp paper towels inside the slide 

sorter.  

The following day samples were rinsed in Tris-HCl (200 mM Tris, pH 8.3) for 5 

min. The samples were recircled with the hydrophobic barrier pen. The Vector Red 

Substrate (Alkaline Phosphatase Substrate Kit, Vector Laboratories Inc.) was freshly 

prepared in Tris-HCl buffer at room temperature as previously described. The prepared 

substrate was added to the samples and incubated for 10 min. The colour development 
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was halted by immersing the slides in Tris-HCl buffer for 5 min. Sections were rinsed 

briefly in water before counterstaining in Harris’ Haematoxylin and Scott’s blueing 

solution as previously described.  

 

2.8.4 De-hydration of paraffin-embedded sections for immunohistochemistry 

After the completion of counterstaining with Harris’s Haematoxylin and Scott’s 

blueing solution, the sections were then taken through two changes of 70% v/v ethanol 

(30 s each), followed by 95% v/v (2 min each) and 100% absolute alcohol (5 min each) 

and submerged in histolene for at least 10 min each. Slides that were cleared with 

histolene and mounted with aqueous mounting medium (Aquamount, BDH Laboratory 

Supplies, Poole, England, U.K.). 

 

2.8.5 F4/80 macrophage staining 

Paraffin embedded sections were prepared as described above, however no 

antigen retrieval was performed. Normal rabbit serum working solution was added to 

the samples which were incubated for 4 hrs at 21 °C with the slide sorter closed. The 

samples were then briefly rinsed in PBST. The anti-F4/80 antibody [Cl:A3-1] (1:100 

dilution in PBS, Abcam) was applied overnight at 4 °C with damp paper towels inside 

the slide sorter.  

The following day the samples were rinsed with TBS for 1 min. The samples 

were then recircled with the PAP-pen and incubated for 1 hr at 21 °C with goat anti-Rat 

H & L (AP) secondary antibody (Abcam) diluted 1:200 in PBS. The slides were then 

immersed in Tris-HCl buffer for 5 min.  

The Vector Red Substrate was freshly prepared in Tris-HCl buffer at room 

temperature 21 °C as described above. The prepared substrate was added to the samples 

and incubated for 20 min. The colour development was halted by immersing the slides 

in Tris-HCl buffer for 5 min. The sections were then rinsed briefly in water before 

counterstaining, dehydration and mounting as described. 
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2.8.6 Cholesterol clefts 

Lipid filled areas appeared white as a result of the sample delipidation. These 

delipidated areas were clearly differentiated from macrophages that were stained pink. 

The quantification of these areas was carried out using a modification of previously 

published methods [233,234]. 

 

2.8.7 Determination of plaque lipid  

The lipid content was measured from the F4/80 stain (Slide C), which were used 

to quantify the area occupied by macrophages. The lipid content was assessed as 

extracellular lipid pools which appeared as white areas within atherosclerotic plaque 

sections following the F4/80 staining with graded ethanol concentration, which 

solubilises the lipid. These delipidated white areas were clearly differentiated from 

macrophages that were stained pink as shown in Panel A in Figure 2.4. The images for 

the aortic sinus were retaken one valve leaflet at a time, at a higher magnification of 10x 

as the program could not accurately detect the specific areas of interest. 

All the images were colour deconvoluted and filtered, as previously described. 

The area of interest was saturated with red as indicated in Panel B in Figure 2.4. The 

total area of interest within the plaque was outlined and calculated as displayed in Panel 

C in Figure 2.4. The amount of red marked within the plaque equates to the extracellular 

lipid pool quantified.  
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Figure 2.4: Estimation of extracellular lipid content of atherosclerotic plaques. 

Extracellular lipid content of atherosclerotic plaques was estimated by measuring the 

white area on a section stained with F4/80 as shown on Panel A. The image was filtered 

via the Image J program in order to quantify the lipid areas. The white areas were 

selected and saturated with red, leaving the remaining segments white as seen in Panel 

B. The plaque area was carefully outlined as shown in Panel C.  The amount of red 

corresponds to the original extracellular lipid pool, which was calculated and expressed 

as a percentage of total plaque area.  

 

 

2.9 Materials for picrosirius staining 

2.9.1 Picrosirius for collagen staining 

Paraffin embedded sections were dewaxed and taken through rehydration as 

previously described. The sections were stained using picrosirius red solution (0.5 g of 

Sirius Red (Sigma-Aldrich) dissolved in 500 mL of saturated aqueous solution of picric 

acid (Sigma-Aldrich) for 1 hr). The slides were then washed in two changes of acidified 

water (glacial acetic acid 1:400 in nanopure water; Astral Scientific) by vigorous 

shaking to remove any excess red dye from the sections. The slides were dehydrated in 

three changes of 100% ethanol (2 min each). The sections were cleared with histolene 

and coverslipped as previously described. 

 

2.9.2 Compositional analysis of atherosclerotic plaques 

Duplicate images obtained from each slide were captured digitally using an 

IX71 Olympus microscope (North Ryde, NSW, Australia).  Measurements of smooth 

muscle cell, macrophage, lipid and collagen areas were quantified using the Image J 

program (NIH, Bethesda, MD, USA).  
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All the images that were taken for smooth muscle cells, macrophages and 

collagen, were initially separated into three colours (blue, green and pink) using the 

“Colour Devolution” function within the Image J program. The pink deconvoluted 

image was then filtered by the “Multi-thresholder” function in order to detect the 

specific stain of interest, which was marked with red. The amount of red marked 

equates to the area of interest that was quantified.  The α-actin, F4/80, lipid or collagen 

content were expressed as a percentage of total plaque area for each image produced.  

 

2.10 Preparation of tissue and plasma samples from high fat diet fed mice for the 

4-hydroxy-2,2,6,6-tetramethylpiperidin-1-oxyl (TEMPOL) study 

Heart and plasma samples were obtained from Prof. Jim Mitchell (Radiation 

Biology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MS, 

U.S.A.) from C57/B6 (n = 28) and apo E
-/-

 (n = 38) mice. The two animal types each 

comprised of four groups. In each case two groups were fed a chow diet with or without 

TEMPOL (10 μg/g) supplemented into the food. The remaining two groups were fed a 

high fat diet (refer to Figure 2.4) with and without TEMPOL placed into the food. The 

chow diet consisted of 5% kcal of fat whilst the high fat diet consisted of 60% kcal from 

fat (refer to Table 2.1 below).  

 

 Chow High Fat Diet 

Protein 0.936 0.82 

Fat 0.405 3.28 

Carbohydrate 1.96 1.43 

Total (kcal/g): 3.301 5.49 

Table 2.1: Caloric profile between chow and high fat diet in terms of protein, fat 

and carbohydrate in kcal/g. 
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Figure 2.5: Animal model for TEMPOL study.  

C57B/6 wild type and the apo E
-/-

 mice were each divided into four groups comprising 

of Chow control mice with and without TEMPOL included in the food or high fat diet 

fed mice with and without TEMPOL included in the food.   

 

 

2.10.1 Tissue processing and dissection for TEMPOL project 

The heart was sampled for histological analysis based on a previously method 

published [233]. The heart was dissected out and stored in paraformaldehyde. The 

samples were rinsed in PBS and stored in 70% v/v ethanol. The aortic sinus was 

dissected as described above by making a cut perpendicular to the aorta halfway 

through the heart. The dissected samples were enclosed in cassettes and placed in 70% 

ethanol and then processed at the Pathology Department, University of Sydney, where 

the tissues were embedded in paraffin blocks. These paraffin blocks were then sectioned 

and stained with haematoxylin and eosin as previously described for plaque area.  

 

2.10.2 Histological sectioning for TEMPOL project 

The glass slides were pre-labelled from 1 - 25 for each sample. The sections for 

slide 1 were taken at the appearance of the first valve leaflet, and the rest of the 
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remaining sections were taken in sequentially labelled 2 - 25. Each slide consisted of 

three sections.  

 

2.10.3  Analysis of plaque for TEMPOL project 

Three slides arbitrarily labelled A, B and C were taken for plaque analysis. The 

first appearance of all three leaflets was chosen for Slide A and the first disappearance 

of all three leaflets were taken for Slide C. Slide B was taken in the middle of Slide A 

and C.  

Figure 2.6: Representative images of 3 cross-sections (A - C) taken from the aortic 

sinus.  

The first appearance of three leaflets was chosen for Slide A. The first disappearance of 

all three leaflets was taken for Slide C. Slide B was taken in the middle of Slide A and 

C.  

 

 

2.11 Lipid analysis in plasma for TEMPOL animal work 

The frozen plasma samples were obtained by the National Cancer Institute and 

stored at -80°C until analysis at the Heart Research Institute. Plasma samples were then 

given to a blinded observer for determination of triglycerides (TG), total cholesterol 

(TC), low-density lipoprotein-cholesterol (LDL-C) and high-density lipoprotein 

cholesterol (HDL-C).  
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2.11.1 Triglyceride determination 

A standard curve (0 to 300 mg/mL) was generated using materials supplied with 

the Triglyceride kit from Wako Diagnostics (Osaka, Japan). The plasma was diluted in 

1 in 5 with TBS. Initially 10 μL of prepared standards, along with 190 μL of colour 

reagent was applied to a 96-well plate in triplicate. The plate was incubated at 37 °C for 

5 min in the M2e Spectrometer, shaken for 5 s before reading the absorbance at 600 nm. 

Values were read from the standard curve for each sample and converted to mmol/L.  

 

2.11.2 Cholesterol determination 

A standard curve for cholesterol (0 to 200 mg/mL) was generated using the 

materials supplied with the Total Cholesterol kit (Wako Diagnostics). The standards and 

the samples (1 in 5 dilutions in TBS) were prepared as described in the previous section 

with the absorbance measured at 505 nm. Values were calculated from the standard 

curve generated for each sample.  

For HDL analysis, low density lipoproteins were precipitated from the plasma 

prior to analysis. Specifically 25 μL of undiluted serum from each mouse to be tested 

along with 25 μL of polyethylene glycol (PEG) solution (200 mg/mL in nanopure 

water; Sigma-Aldrich) were added to each Eppendorf tube and vortexed. The solution 

was allowed to stand for 20 min to allow the apolipoprotein B protein to precipitate then 

centrifuged at 13 000 rpm (15 700 g) for 20 min in a microcentrifuge. The supernatant, 

which contained the HDL-C, was quickly transferred to a fresh tube. The precipitate 

(LDL-C) was discarded. The HDL-C was measured for total cholesterol and then 

corrected for the dilution by the PEG solution.  

LDL-C (mmol/L) levels were determined as shown in the formula below. 

LDL-C = Total Cholesterol - {HDL-C + (Triglycerides/5)} 

 

2.11.3 Materials for mouse cytokine, chemokine and adipokine measurements 

Mouse Quantikine ELISA kits were purchased from R & D systems 

(Mineapolis, MN, U.S.A) for determining tumour necrosis factor-alpha (TNF-α), 

monocyte chemostatic protein-1 (MCP-1), leptin and resistin levels in mouse serum. 
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The murine MPO ELISA kit was purchased from Hycult Biotech, Inc. (Uden, 

Netherlands). The mouse IL-6 ELISA kit was purchased from Ray Biotech, Inc. 

(Norcross, GA, U.S.A.). The AssayMax mouse Adiponectin Kit was purchased from 

AssayPro (St. Charles, MO, U.S.A.). The mouse serum amyloid A (SAA) ELISA kit 

was purchased from Tridelta Development Ltd. (County Kildare, Ireland). Reagents 

supplied by the manufacture were brought to 21 °C before the commencement of the 

specified procedure. 

For the Quantikine ELISA kits, mouse plasma was diluted as required by the 

assays: TNF-α (no dilution), MCP-1 (1:2), leptin (1:10), resistin (1:30) with the 

Calibrator Diluent specific to serum/ plasma samples. Standards were also prepared 

according the manufacturer’s guidelines; TNF-α (0 - 700 pg/mL), MCP-1 (0 - 1000 

pg/mL), leptin (0 - 4000 pg/mL) and resistin (0 - 2000 pg/mL).  

Initially 50 μL of assay diluent was inserted in each well with 50 μL of the 

prepared samples / standards and incubated for 2 hrs at 21 °C, on the plate shaker. Each 

well was then manually aspirated and washed 4 - 5 times with 400 μL of washing 

buffer. 100 μL of conjugate was added and incubated for 1 to 2 hrs at 21 °C.  The wells 

were washed again 4 - 5 times and 100 μL of substrate solution prepared by mixing 

equal volumes of Colour Reagent A and B from the kit. The plate was mixed and 

incubated for 30 min in darkness. The appearance of the blue-green colour reaction was 

stopped by adding 100 μL of Stop Solution. The optical density of each well was read 

by the spectrometer at 450 nm and 570 nm. The subtraction of the two measurements 

corrected for optical imperfections in the plate.  

For the determination of MPO, IL-6, adiponectin and SAA levels in the plasma, 

enzyme linked immunosorbent assays were used in a similar manner to the Quantikine 

ELISA kits. The cytokine of interest within the standards and mouse plasma was 

determined using a sandwich ELISA in which the material was immobilized antibody 

and biotinylated polyclonal antibody of interest, which in turn is recognised by a 

streptavidin-peroxidase conjugate. The unbound material was then washed away and the 

peroxidase enzyme substrate tetramethylbenzidine (TMB) added. Colour development 

was stopped by the addition of oxalic acid. The absorbance was then measured with a 

spectrometer at 450 nm and 570 nm. The subtraction of the two measurements corrected 

for optical imperfections in the plate.  
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A standard curve was generated by plotting the absorbance (linear) versus the 

corresponding concentrations of the mouse MPO standards. The mouse plasma was 

diluted as required (MPO (1:4), IL-6 (1:6), Adiponectin (1:400), SAA (1:200)) with the 

supplied Diluent Buffer in Eppendorf tubes and vortexed. 50 – 100 μL of reconstituted 

standard, plasma samples and controls were transferred into appropriate wells and 

incubated for 1 to 2.5 hrs at 21 °C. After the first incubation, the wells were washed 4 to 

5 times in a similar manner as previously described. 50 – 100 μL of Biotinylated Tracer 

Antibody was added to each well and further incubated for 1 hr at 21 °C. After the 

washing step, streptavidin-peroxidase conjugate (50 – 100 μL) was added to each well 

and incubated for 30 – 60 min at 21 °C. The solution was then discarded from the wells 

and washed, then 50 – 100 μL of TMB was added to each well and incubated for 10 – 

30 min at 21 °C protected from light. The stop solution (50 – 100 μL) was then added to 

stop colour development.  The absorbance was then read at 450 nm and 570 nm to 

correct for optical imperfections.  

 

2.12 TEMPOL in vitro work  

Human monocytes were matured into macrophages in media containing 5.5 or 20 

mM glucose as previously described with and without the addition of 100 μM 4-

hydroxy-2,2,6,6-tetramethylpiperidin-1-oxyl (Sigma-Aldrich). Lysosomal acid lipase 

(LAL) and cathepsin B and L activities enzymatic assays were assessed as described in 

Sections 2.2 and 2.3. 

 

2.12.1 Cytokine expression 

To examine cytokine expression by normal and hyperglycaemic cells, HMDM 

was stimulated with lipopolysaccharide (LPS; Sigma-Aldrich) from Escherichia coli in 

order to induce cytokine secretion. On day 10 of the maturation period, the cells were 

stimulated with 0, 25 and 50 ng/mL of LPS and further incubated for 24 hrs. On the 

following day cell media was collected and transferred to Eppendorf tubes and 

centrifuged at 2000 rpm (400 g) for 5 min at 4 °C to remove cell debris. The supernatant 

was then transferred to fresh Eppendorf tubes, aliquoted and stored at -80 °C. Each well 

was washed 3 times with PBS and 1 mL of nanopure water was added to each well and 
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the plate placed on ice to induce cell lysis.  The cells were then scraped and transferred 

to Eppendorf tubes and stored at -20 °C before protein analysis.  

 

2.12.2 ELISA for human C-Reactive Protein (CRP), TNF-α and Macrophage 

Inhibitory Protein (MIP-1α) 

The levels of C-Reactive Protein (CRP), TNF-α and Macrophage Inhibitory 

Protein (MIP-1α) secreted into the media were determined by using Quantikine Human 

ELISA sandwich kits (R and D systems). Media samples were diluted with the supplied 

Calibrator Diluent specific for cell culture; 1:100 for MIP-1α, 1:200 for CRP and 1:10 

for TNF-α.   

Standards were prepared according to the manufacturer’s guidelines. 50 – 100 

μL of assay diluent was added to each well, then 50 – 100 μL of the reconstituted 

samples and standards was added and incubated for 1 – 2 hrs at 21 °C. Each well was 

then manually aspirated and washed 4-5 times with 400 μL of washing buffer. 200 μL 

of conjugate was added and incubated for 1 – 2 hrs at 21 °C.  The wells were then 

washed 4 to 5 times and 200 μL of substrate solution prepared by mixing equal volumes 

of Solution A and Solution B from the kit. The plate was mixed and incubated for 20 – 

30 min in darkness. The colour reaction was stopped by adding 50 μL of stop solution.  

The optical density of each well was read by the spectrometer at 450 nm and 570 nm, 

with subtraction used to correct for optical imperfections in the plate.  

  

2.13 Statistical analyses  

Data are expressed as mean ± standard error of the mean (SEM) in this thesis 

and results are from at least 4 - 6 separate experiments, consisting of samples assayed in 

triplicate.  

Statistical analyses were undertaken using Prism 5.03 (GraphPad software, San 

Diego, CA, USA).  For pair comparisons, paired or unpaired t tests were employed.  For 

multiple comparisons, one way analysis of variance (ANOVA) with Tukey’s Multiple 

Comparison test was used to assess differences. Two-way ANOVA with Bonferroni’s 

post hoc test was applied when two different conditions were applied such as glucose 

and time intervals. Differences were considered statistically significant when p < 0.05. 
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3.1 Introduction 

 Atherosclerosis is a progressive vascular disorder leading to cerebro- and 

cardiovascular diseases and still remains the principal cause of mortality and morbidity 

in the world [235]. People with diabetes have a 2 to 4 fold elevated risk of 

cardiovascular disease compared to people without diabetes. Multiple studies indicate 

that this enhanced disease incidence cannot be solely explained by well-established 

cardiovascular risk factors, and are consistent with chronically elevated blood glucose 

levels contributing to an increased incidence of atherosclerosis [236].  

 In atherosclerosis macrophages are present within the inflamed artery wall and 

utilise multiple pathways including scavenger receptor mediated endocytosis, to remove 

damaged cells and tissue components, including modified low-density lipoproteins 

[237]. These materials are trafficked through the endo-lysosomal system for 

degradation, but under circumstances where the LDL are resistant to degradation, and / 

or lysosomal degradative function is impaired, they could accumulate with pathological 

consequences [238]. Thus altered lysosomal function is a potential route to lipoprotein-

derived intracellular accumulation of lipid and protein, and the generation of lipid-laden 

(“foam”) cells. Foam-cells are a major contributor to atherogenesis and atherosclerotic 

progression. Earlier onset and the rate of atherosclerotic progression are enhanced in 

DM along with chronically elevated level of AGE, glycated proteins and glucose.  

 Evidence from both cellular and in vivo studies, is consistent with lysosomal 

lipid accumulation [239,240]. Modified and native proteins are catabolised by the 

proteasomal and lysosomal systems, with the former primarily responsible for 

degradation of intracellular species, whereas the latter handles both extra- and intra-

cellular materials [241]. The lysosomal system of human monocyte-derived 

macrophages utilises multiple proteases including cysteine- (e.g. cathepsins B, L and S) 

and aspartate dependent (e.g. cathepsin D) enzymes. Both proteasomal [242] and 

lysosomal [243] enzyme activities can be modulated by in vitro incubation of cell 

lysates or proteasomal fractions with reactive aldehydes or pre-glycated proteins. For 

the lysosomal enzymes, the cysteine proteases were most markedly affected with this 

attributed to modification of the active site cysteine [243].  
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In the light of this data, we hypothesised that maturation of human monocytes 

into macrophages in, or exposure of a murine macrophage-like cell line to, elevated 

glucose would result in altered lysosomal function.  

 

3.2   Aims 

The aim of the studies reported here was to investigate whether high glucose 

concentrations alter enzymatic activities associated with lysosomal protein and lipid 

metabolism.  The impact of high glucose concentrations upon macrophage lysosomal 

function and population was examined in murine macrophage-like cell line J774A.1, 

and human monocyte derived macrophage (HMDM) cells incubated in normal (5.5 

mM) and higher (10, 20 and 30 mM) glucose concentrations, with the activities of 

lysosomal cathepsin enzymes (cathepsins B, L, S and D), lysosomal acid lipase activity 

(LAL) and lysosomal number quantified. 

 

3.3 Methods 

Murine J774A.1 macrophage-like cells were incubated, and primary human 

monocytes were matured into macrophages in the presence of 5.5, 10, 20 or 30 mM 

glucose for 11 days as detailed in Section 2.2. The activity of lysosomal cysteine 

proteases B, L and S, and the aspartic protease cathepsin D, along with lysosomal acid 

lipase (LAL) were quantified by fluorescence spectroscopy as described in Section 2.3 

to 2.4. Lysosomal numbers were quantified by Western blotting for LAMP-1 protein 

(relative to tubulin) levels as detailed in Section 2.5 to 2.5.8. 

The lysosomal activities were corrected for the protein concentration in the 

lysates for each sample.  The data (mean ± SEM, from 5 to 6 independent experiments 

each with triplicate samples) for the lysosomal activities from higher glucose treatments 

(10 to 30 mM) was expressed as a percentage of the 5.5 mM glucose condition.  

For multiple comparisons one-way ANOVA with Tukey’s multiple comparison 

tests were used. Gel analysis was carried out using Image J analysis software. 

Significance was assumed at p < 0.05.  

 



80 
 

3.4   Results 

3.4.1  Effects of incubation of J774A.1 and HMDM in high glucose concentrations 

for 11 days on cell viability 

The cell viability was measured as a marker for potential cytotoxicity in the 

J774A.1 and HMDM cells incubated in the normal 5.5 mM and 30 mM glucose 

conditions as outlined in Section 2.4.2, as elevated glucose levels might cause damage 

to the cells.  

Initial experiments examined the minimum and maximum concentrations of 

glucose used: 5.5 mM and high 30 mM. The overall cell viability observed was greater 

than 90% in both the J774A.1 (90.6 ± 0.9%) and HMDM (98 ± 0.8%) cells as shown in 

Figure 3.1. There were no statistical differences noted between the two glucose 

treatment groups for the J774A.1 or HMDM cells using Student’s t- tests. These results 

indicated the absence of cytotoxicity in either case. In the light of these data 

intermediate concentrations of glucose were not investigated.  

 

 

Figure 3.1: Cell viability of J774A.1 and HMDM cells incubated in normal (5.5 

mM) and high (30 mM) glucose conditions for 11 days.  

Measurement of cell viability for J774A.1 cells (Panel A) and human monocyte-derived 

macrophages (HMDM) (Panel B) in the normal 5.5 and high 30 mM glucose 

concentrations of glucose.  Data (mean ± SEM) are expressed as a percentage from 6 

independent experiments using separate cell donors (HMDM) or separate cultures of 

J774A.1 cells.  
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3.4.2  Protein content of J774A.1 and HMDM cells incubated in varying glucose 

concentrations for 11 days 

Protein levels were assessed to confirm the cell viability results and to establish 

that high glucose levels did not affect cell confluency in the case of the J774A.1 and 

HMDM cells. The protein levels of the cells incubated in the normal (5.5 mM) to high 

(10 to 30 mM) glucose concentrations were determined by the BCA protein assay by 

use of a standard curve generated using BSA as discussed in Section 2.4.1.   

There were no statistical differences in protein content observed across the 

glucose treatments for either J774A.1 or HMDM cells using a repeated measures one-

way ANOVA with Tukey’s post hoc multiple comparison’s test (Figure 3.2). These 

results suggest that high glucose conditions do not affect the protein levels or cell 

confluency in the J77A.1 or HMDM cells.  

 

 

 

 

Figure 3.2: Protein levels in J774A.1 and HMDM cells incubated in various 

concentrations of glucose (5.5, 10, 20 and 30 mM) for 11 days.  

Measurement of protein levels in J774A.1 cells incubated (Panel A), and maturation of 

human monocytes to macrophages (HMDM) (Panel B), in various concentrations of 

glucose (5.5, 10, 20 and 30 mM glucose). Data (mean ± SEM) are expressed in μg/μL 

equivalent of BSA protein from 6 independent experiments using separate cell donors 

(HMDM) or separate cultures of J774A.1 cells.  
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3.4.3 Effect of high glucose concentrations on activity and level of lysosomal 

cathepsin enzymes 

Lysosomal activity was determined in cell lysates prepared from J774A.1 cells 

and HMDM cells that were incubated in normal 5.5 mM and higher glucose 

concentrations (10, 20 and 30 mM) for 11 days (see Sections 2.2.2, 2.2.4, 2.2.5). The 

cell extracts for lysosomal activity measurements were collected and snap frozen in 

liquid nitrogen and stored at -80°C as described in Section 2.2.3 for J774A.1 cells and 

Section 2.2.5 for HMDM cells.   

The cell lysates obtained were then resuspended in nanopure water followed by 

centrifugation at 13 400 g for 5 min at 4°C to remove unlysed cells and membrane 

fractions that may interfere with the assay as described in Sections 2.2.3 and 2.3.1. The 

supernatant was then transferred to fresh tubes to measure the activity of lysosomal 

enzymes, and protein content by use for the BCA protein assay (see Section 2.4.1). 

To determine the activity of lysosomal cathepsin enzymes, release of AMC from 

the peptide substrates was monitored using a fluorescence plate reader (λexcitation 360 nm 

and λemission 460 nm) as discussed in Sections 2.3.2 to 2.3.5. The substrates for cathepsin 

B, L, S and D were Z-Arg-Arg-AMC, Z-Phe-Arg-AMC, Z- Val-Val-Arg-AMC and 7-

methoxycoumarin-4-acetyl-Gly-Lys-Pro-IIe-Leu-Phe-Phe-Arg-Leu-Lys-DNP-D-Arg-

amide, respectively.  The buffer pH used to achieve maximum activity for each 

cathepsin was 6, 5.5, 7.5 and 4.2 for cathepsin B, L, S and D, respectively. To ensure 

that the activities measured were specific to particular enzymes, specific assay inhibitors 

were included in the buffer to suppress the activities of other cathepsins. For example, 

in buffers for assessment of cysteine protease activity, pepstatin A was added to inhibit 

aspartate proteases such as cathepsin D, and in buffers for determination of cathepsin D 

activity, E64 was added to inhibit cysteine proteases.  

In order to determine lysosomal cathepsin activities, the initial linear region of 

plots of florescence against time were used as shown in Figure 3.3a and b. Nanopure 

water was used for dilutions, and served as the negative control (no cell lysate fraction) 

in each case. In these cases there was no change in fluorescence over time as shown by 

the black squares in Figure 3.3a and b.  

The protein concentration was determined in remaining portions of the same cell 

lysate samples as described in Section 2.4.1, thereby allowing the lysosomal activity to 
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be corrected for the protein concentration (μg/μL) of the cell lysate used for each 

measurement. The corrected data were expressed as a percentage of the lysosomal 

activities determined for the normal (5.5 mM) glucose condition. 

 

 

 

 

 

Figure 3.3: Changes in fluorescence in cell lysate fractions of HMDM matured in 

normal 5.5 mM or 10, 20 and 30 mM glucose concentrations followed by addition 

of cathepsin B substrate.  

Representative data are presented for cells matured in normal 5.5 mM and higher (10 - 

30 mM) glucose concentrations.  The changes in fluorescence emission followed a 

linear relationship as shown on the bottom graph.  The black squares represent the 

negative control (no cell lysate) which showed no change in fluorescence over time. 
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3.4.3.1  Effects of lysosomal cathepsin activity in J774A.1 cells incubated in 

normal and high glucose concentrations 

The lysosomal cathespsin B, L, S and D enzymatic activities were investigated 

in the J774A.1 cells to examine the impact of high glucose concentrations upon 

lysosomal function. Incubation of J774A.1 cells in high glucose concentrations for 11 

days modulated the activities of all of the lysosomal cathepsin enzymes examined 

(Figure 3.4).  Cells incubated in elevated glucose concentrations showed significantly 

less cathepsin B activity for the 10 mM condition (73.2 ± 6.6%, p < 0.01), the 20 mM 

condition (58.2 ± 8.5%, p < 0.001) and the 30 mM condition (50 ± 6.4%, p < 0.001) 

than cells incubated in 5.5 mM glucose (activity taken as 100%) using repeated 

measures one-way ANOVA with Tukey’s post hoc multiple comparison’s test. A 

statistical significance was also observed between the 10 and 30 mM glucose conditions 

(p < 0.05). 

  Cathepsin L activity also showed a significant decrease in cells incubated in 10 

mM (68.6 ± 7.6%, p < 0.05), 20 mM (53.9 ± 7.6%, p < 0.01) and 30 mM (37.1 ± 6.7, p 

< 0.001) glucose as compared to the 5.5 mM glucose concentration (values taken as 

100%). A statistical significance was also observed between the 10 and 30 mM glucose 

conditions (p < 0.05). 

Cathepsin S activity was significantly decreased in cells incubated in 10 mM (67 

± 4.3%, p < 0.001), 20 mM (47.8 ± 5.8%, p < 0.001) and 30 mM (23.4 ± 2.5%, p < 

0.001) glucose when compared to the 5.5 mM glucose condition (100%). Differences 

were also observed for the 20 and 30 mM glucose conditions (p < 0.001) versus the 10 

mM glucose condition, and also between the 20 and 30 mM glucose conditions (p < 

0.01). 

Cathepsin D activity was significantly lower in cells incubated in 10 mM (75.1 ± 

4.1%, p < 0.01), 20 mM (64.6 ± 3%, p < 0.001), 30 mM (42.5 ± 5.6%, p < 0.001) 

glucose compared to the 5.5 mM glucose concentrations (100%). Lower cathepsin D 

activity was detected for the 30 mM when compared with 10 mM (p < 0.01) and 20 mM 

(p < 0.05) glucose conditions.  
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In summary the results showed decreased cathepsin B, L, S and D activities in 

the J774A.1 cells incubated in high concentrations of glucose when compared to the 

normal glucose concentration.  

 

 

 

Figure 3.4: Lysosomal cysteine and aspartic cathepsin activities in J774A.1 cells 

incubated in various concentrations of glucose (5.5, 10, 20 and 30 mM) for 11 days. 

Data (mean ± SEM, from n = 5 independent experiments using different passages) are 

reported  as the linear change in fluorescence intensity with time, as a percentage of the 

5.5 mM glucose condition, corrected for protein levels. Panels A, B, C and D represent 

cathepsin B, L S and S activities, respectively. Statistical significant differences were 

carried out by one-way ANOVA followed by Tukey’s post-hoc test.  * p < 0.05, ** p < 

0.01 and *** p < 0.001 when compared to the 5.5 mM glucose condition.  # p < 0.05, ## 

p < 0.01 and ### p < 0.001when compared to the 10 mM glucose condition. + p < 0.05 

and +++ p < 0.001 when compared to the 20 mM glucose condition.  
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3.4.3.2 Effects of lysosomal cathepsin activity in HMDM incubated in normal and 

high glucose concentrations  

As inhibition of lysosomal cathepsin activities was observed in the murine 

J774A.1 cells that were treated with high glucose levels, the potential detrimental 

impact of high glucose levels upon lysosomal cathepsin activity was also investigated in 

the HMDM cells that were matured in the normal (5.5 mM) and high 10, 20 and 30 mM 

glucose conditions.   

HMDM incubated with elevated glucose concentrations showed significantly  

less cathepsin B activity  in the 10 mM (49 ± 3.4%, p < 0.001), 20 mM (43.1 ± 8.9%, p 

< 0.001)  and 30 mM (36.9 ± 9.5, p < 0.001) glucose conditions, than cells incubated in 

5.5 mM glucose (100%) using repeated measures  one-way ANOVA with Tukey’s post 

hoc multiple comparison’s test.  

Cathepsin L activity also showed a significant decrease in cells matured in 10 

mM (71 ± 4.1%, p < 0.05), 20 mM (50.5 ± 11.1%, p < 0.01) and 30 mM (35.5 ± 9.3%, p 

< 0.001) glucose concentrations as compared with 5.5 mM glucose (100%). A statistical 

significance was also observed between the 10 and 30 mM glucose conditions (p < 

0.05). 

Cathepsin S activity was decreased significantly in cells matured in 10 mM 

(61.3 ± 9.9%, p < 0.01), 20 mM (31.6 ± 8.6%, p < 0.001) and 30 mM (27.5 ± 8.8%, p < 

0.001) glucose when compared to the 5.5 mM glucose concentration (100%). Statistical 

significance were also observed between the 20 (p < 0.05) and 30 mM (p < 0.01) 

glucose conditions versus the 10 mM condition.  

Cathepsin D activity showed a significant decrease in cells matured in 20 mM 

(55.2 ± 11.3%, p < 0.01) and 30 mM (47.5 ± 8.6%, p < 0.01) glucose concentrations as 

compared with normal glucose concentrations (100%). Although there was lower 

cathepsin D activity in the 10 mM glucose (80.1 ± 7%) condition, this was not 

statistically significant when compared to the 5.5 mM condition. 

Overall, maturation of HMDM in high glucose concentrations for 11 days 

suppressed the activity of lysosomal cathepsin B, L, S and D enzymes (Figure 3.5) 

when compared to the normal glucose concentrations with this effect seen even at 10 

mM glucose for cathepsins B, L and S.  
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Figure 3.5: Lysosomal cysteine and aspartic enzyme activities in HMDM cells 

matured in various concentrations of glucose (5.5, 10, 20 and 30 mM) for 11 days. 

Data (mean ± SEM, from n = 5 independent experiments using different donors) are 

reported  as a percentage of the 5.5 mM glucose condition, corrected for protein levels. 

After incubation for 11 days the cells were lysed and cathepsin activity quantified using 

specific pro-fluorescent substrates as described in Section 3.4. Panels A, B, C and D 

represent cathepsin B, L S and S activities, respectively. Statistical significant 

differences were carried out by one-way ANOVA followed by Tukey’s post-hoc test.  * 

p < 0.05, ** p < 0.01 and *** p < 0.001 when compared to the 5.5 mM glucose 

condition.  # p < 0.05 and  ## p < 0.01 when compared to the 10 mM glucose condition.  
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3.4.4  Effects of normal and high glucose concentrations on lysosomal acid lipase 

activity (LAL) in J774A.1 and HMDM cells 

LAL is the sole lysosomal hydrolase for endocytosed cholesteryl esters and 

triglycerides [230]. Given the role of lipoprotein-derived cholesterol and triglycerides in 

foam cell formation it was therefore of interest to determine whether cells incubated in 

high glucose concentrations also demonstrated impaired LAL activity. Using cell 

lysates from HMDM and J774A.1 cells that were exposed to varying glucose levels, 

LAL activity was assessed by using the pro-fluorescent probe, 4-methylumbelliferyl 

oleate (4-MUO) which is cleaved to the fluorescent species 4-methylumbelliferone (4-

MU); this material was subsequently quantified as described in Section 2.3.6.  

Incubation of J774A.1 and HMDM cells in high glucose concentrations for 

11days modulated the activities of the lysosomal acid lipase (LAL) activities within the 

macrophages examined (Figure 3.6). J774A.1 cells incubated in high glucose 

concentrations for 11 days showed significantly lower levels of LAL activity for the 10 

mM (77.1 ± 4.3%, p < 0.05), 20 mM (63.3 ± 7.9%, p < 0.001) and 30 mM conditions 

(51.6 ± 8%, p < 0.001) than cells incubated in 5.5 mM glucose (activity set as 100%) 

using repeated measures one-way ANOVA with Tukey’s post hoc multiple 

comparison’s test. A statistical significance was also observed between the 10 and 30 

mM glucose conditions (p < 0.01). 

Maturation of HMDM in elevated glucose concentrations also suppressed LAL 

activity (Figure 3.6) when compared to the 5.5 mM glucose concentrations. Thus 

HMDM incubated in high glucose concentrations showed significantly less LAL 

activity  in the 10 mM (54.3 ± 5.6%, p < 0.001), 20 mM (49.9 ± 5.3%, p < 0.001)  and 

30 mM glucose condition (41.7 ± 5.7%, p < 0.001)  than cells incubated in 5.5 mM 

glucose (100%) using repeated measures  one-way ANOVA with Tukey’s post hoc 

multiple comparison’s test. A statistically significant difference was also observed 

between the 10 and 30 mM glucose conditions (p < 0.05). 
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Figure 3.6: Lysosomal acid lipase (LAL) activity in J774A.1 and HMDM cells 

incubated in various concentrations of glucose (5.5, 10, 20 and 30 mM) for 11 days.  

The effect of incubation of murine macrophage-like J774A.1 cells (Panel A) and 

maturation of human monocytes to macrophages (HMDM) (Panel B) in various 

concentrations of glucose (5.5, 10, 20 and 30 mM glucose) on the activity of LAL is 

presented. Data (mean ± SEM) are reported as a percentage of the 5.5 mM glucose 

condition, corrected for protein levels from 6 independent experiments using separate 

cell donors (HMDM) or separate cultures (J774A.1 cells). Statistically significant 

differences were assessed by one-way ANOVA followed by Tukey’s post-hoc test.  * p 

< 0.05 and *** p < 0.001 when compared to the 5.5 mM glucose condition.  # p < 0.05 

and  ## p < 0.01 when compared to the 10 mM glucose condition.  

 

 

3.4.5  Effect of high concentrations of mannitol on J774A.1 and HMDM 

incubated for 11 days 

High levels of glucose may induce osmotic stress upon cultured cells and this 

may explain the results presented above. In order to differentiate between the effects of 

higher osmotic pressure and other effects of high glucose levels, J774A.1 or HMDM 

cells were exposed to the normal (5.5 mM) or high (30 mM) glucose conditions, or 5.5 

mM glucose with 24.5 mM mannitol (as a high osmotic pressure treatment) for 11 days 

as stated in Section 2.3.7. Cells were collected and lysed, and the activities of lysosomal 

cathepsins B, L and LAL were measured as described in Sections 2.3, 2.3.1, 2.3.2, 2.3.5 

and 2.3.6.  
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There was a significant reduction in cathepsin B (48.6 ± 4%, p < 0.001), L (67.6 

± 5.5%, p < 0.001) and LAL (75.5 ± 5.9%, p < 0.01) activities in the 30 mM glucose 

condition treated J774A.1 cells when compared to the 5.5 mM condition (100%) 

consistent with the data reported earlier. Significantly greater cathepsin B (90.1 ± 2.9%, 

p < 0.001), L (101.2 ± 4.5%, p < 0.01) and LAL (97.6 ± 4.1%, p < 0.01) activity was 

observed in the glucose + mannitol-treated cells when compared to the 30 mM glucose 

treated J774A.1 cells. There were no statistically significant changes in lysosomal 

activities observed between incubation with 5.5 mM versus the cotreatment with 5.5 

mM glucose and 24.5 mM mannitol (Figure 3.7).  

For the HMDM cells a reduction in cathepsin B (37 ± 10.3%, p < 0.001), L (35.7 

± 9.7%, p < 0.001) and LAL (38.4 ± 10.6%, p < 0.001) activities were observed in the 

HMDM that were incubated with high glucose conditions compared to cells matured in 

5.5 mM glucose consistent with the data reported in Figure 3.5. However, no significant 

difference in lysosomal enzyme activity was found for the glucose + mannitol treated 

cells when compared to the cells matured in 5.5 mM glucose. However, significantly 

greater cathepsin B (95.5 ± 1.4%, p < 0.001), L (93.1 ± 1.1%) and LAL (99.8 ± 7.5%, p 

< 0.001) activities were detected in the osmotic control when compared to the high 

glucose condition in the HMDM cells. 

The addition of mannitol at a concentration which gave an equivalent osmotic 

pressure to 30 mM glucose did not result in a reduction of lysosomal activities as there 

were no statistically significant changes in the lysosomal activities when compared with 

the cells incubated with 5.5 mM glucose. In contrast with this, cells exposed to 30 mM 

glucose (positive control) clearly showed the expected inhibition of lysosomal 

cathepsins B, L and acid lipase activities based upon the results presented earlier. 
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Figure 3.7: Lysosomal enzymatic activities in J774A.1 and HMDM cells incubated 

in the normal (5.5 mM), high (30 mM) glucose and 5.5 mM glucose + 24.5 mM 

mannitol (osmotic control) conditions for 11 days.  

Macrophages were exposed to 5.5 mM glucose, 30 mM glucose or 5.5 mM glucose + 

24.5 mM mannitol (osmotic control). Panel A) J774A.1 and Panel B) HMDM. Each 

panel displays the lysosomal enzymatic activities of cathepsins B, L and LAL. 

Statistical significant inhibition of lysosomal activities were observed for the 30 mM 

glucose conditions at ** p < 0.01, and *** p < 0.001 against the normal glucose 

conditions and ## p < 0.01, ### p < 0.001 versus the osmotic control. No differences 

were detected between the 5.5 mM and 5.5 mM glucose + 24.5 mM mannitol 

conditions.    
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3.4.6 Western blot analysis of lysosomal associated marker protein-1 (LAMP-1) 

levels  

Exposure to high glucose decreased the activity of multiple lysosomal enzymes 

critical for the metabolism of low-density lipoproteins (LDL). This decrease in 

lysosomal activities observed in the macrophages incubated with high glucose 

conditions could be due to (i) inhibition of enzyme function or inactivation of the 

enzymes; (ii) a reduction in lysosomal population; or (iii) changes in protein expression. 

To examine the potential differences in lysosomal number in cells incubated in high 

glucose concentrations, LAMP-1 expression was assessed in macrophages that were 

incubated/matured in the normal 5.5 mM or 10 - 30 mM high glucose conditions.  

Cell lysates were collected from J774A.1 and HMDM cells after 11 days and 

subjected to Western blotting for the determination of LAMP-1 levels under various 

glucose concentrations as detailed in Sections 2.5 - 2.5.8. The LAMP-1 protein was 

detected at 120 kDa and β-tubulin was used as a loading control (band detected at 51 

kDa) and the data was expressed relative to β-tubulin and as a percentage of the data for 

the 5.5 mM glucose condition.  

J774A.1 cells incubated in high glucose concentrations for 11 days showed 

significant decreases in LAMP-1 levels for the 20 mM (61.6 ± 7%, p < 0.05)  and 30 

mM glucose concentration (47.7 ± 7.5%, p < 0.01)  when compared to cells incubated in 

5.5 mM glucose (values taken as 100%) using repeated measures  one-way ANOVA 

with Tukey’s post hoc multiple comparison’s test. A statistical significance was also 

observed between the 10 (86.7 ± 9.3%, p < 0.05) and 30 mM glucose conditions. 

Maturation of HMDM in elevated glucose decreased LAMP-1 protein levels 

(Figure 3.8) when compared to the normal glucose concentrations. HMDM incubated 

with high glucose showed significantly less LAMP-1 protein in the 20 mM (66.2 ± 

10.9%, p < 0.05)  and 30 mM (48.8 ± 11.4, p < 0.001) glucose conditions when 

compared to cells incubated in 5.5 mM glucose concentrations (100%) using repeated 

measures  one-way ANOVA with Tukey’s post hoc multiple comparison’s test. A 

statistical difference was also observed between the 10 mM (79.9 ± 6.6 %, p < 0.05) and 

30 mM glucose conditions. 

LAMP-1 protein levels were significantly diminished in the 20 and 30 mM 

glucose conditions, for both the J774A.1 and HMDM cells (Figure 3.8). Decreased 
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LAMP-1 protein expression at higher glucose concentrations may be indicative of a 

decrease in lysosomal population which may be a potential contributing factor for the 

loss of lysosomal activity observed in macrophages incubated under the highest (20 and 

30 mM) glucose concentrations.   

 

 

 

Figure 3.8: Quantification of LAMP-1 levels by Western blotting for J774A.1 and 

HMDM cells incubated in various concentrations of glucose (5.5, 10, 20 and 30 

mM) for 11 days.  

The top panels represent representative Western blots of LAMP-1 and corresponding β-

tubulin (loading control) from Panel A) J774A.1 and, Panel B) HMDM cells, incubated 

in (left to right) 5.5, 10, 20 or 30 mM glucose. The lower panels display the ratio of the 

band intensities of LAMP-1 relative to β-tubulin for the different glucose conditions as 

a percentage of the 5.5 mM glucose control. Data in lower panels are mean ± SEM from 

5 passages of J774A.1 cells or 5 individual donors (HMDM). Statistical analyses were 

carried out using one-way repeated measures ANOVA with Tukey’s post-hoc test. * 

Indicates p < 0.05, ** p < 0.01 relative to the 5.5 mM glucose condition. # p < 0.05 

between the 10 and 30 mM glucose conditions. 
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3.4.7 Pilot studies on aryl sulfatase activity, visualisation of lysosomes with 

LysoTracker and cathepsins B, L, S and D protein levels in J774A.1 and 

HMDM that were incubated in 5 and 30 mM glucose.  

Freshly isolated human monocytes were incubated in 5 and 30 mM glucose for 

11 days to allow maturation into macrophages J774A.1 cells were cultured in a similar 

manner in order to determine: the aryl sulfatase activity levels, lysosomal numbers 

using LysoTracker® Red DND-99; and the protein levels of cathepsins B, L S and D. 

The studies reported in this section were carried out by Dr Fatemeh Moheimani as 

reported in her PhD thesis and the result were subsequently published in Atherosclerosis 

[244].  

Western blot analyses were carried out to examine potential differences in 

cathepsin B, L S and D protein levels, using the 5 and 30 mM conditions; intervening 

levels were not examined in these pilot studies. For cathepsin B from HMDM, two 

bands at 25 (mature single chain) and 21 kDa (two-chain active form) were detected 

(Figure 3.9). For the J774A.1 cells a single band was detected at 25 kDa. The 

proenzyme (45 kDa) was not detected in either case. No significant differences were 

detected between the two conditions for either the individual species, or the total 

protein.  

For cathepsin L from HMDM, three bands were detected at 24 kDa (two-chain 

form), 30 kDa (single chain form) and 42 kDa (procathepsin) (Figure 3.9). A significant 

decrease of approximately 50% in the 30 kDa band was detected for the 30 compared to 

5 mM glucose condition, but the intensities of the other two bands individually and the 

sum of all three forms, were not significantly different. No bands were detected for the 

J774A.1 cells, with a wide range of antibody dilutions, consistent with a low level of 

this enzyme being present.  

A single band was detected for cathepsin S with both cell types at 24 kDa (active 

single side chain). For the HMDM cells exposed to 30 mM glucose, the intensity of the 

band was significantly less (by around 90%) compared to the 5 mM condition. For the 

J774A.1 cells no significant differences were detected between the two conditions. 

For HMDM cells and cathepsin D, three bands were detected at 22 (light chain), 

29 (heavy chain) and 50 kDa (dimer). A significant decrease in band intensity of 
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approximately 50% was detected for the 50 kDa for the 30 mM condition, but no 

significant differences were detected for the other two bands, or the total protein. 

For the J774A.1 cells two bands were detected at 31 kDa and 25 kDa. The 

former was invariant whereas the much weaker 25 kDa band showed a significant 

increase (approx. 80%) for the 30 versus 5mM condition. The total protein was 

significantly lower for the 30 mM condition. 

 

 

Figure 3.9: Protein levels of cathepsins B, L, S and D in HMDM cells exposed to 5 

or 30 mM glucose as determined by Western blotting.  

For each cathepsin representative Western blots (Panel A) and image analysis of total 

protein levels (i.e. sum of all bands) (Panel B) are given. Data are mean ± SEM from 

three independent blots obtained from separate experiments. Silver stained gels (not 

shown) showed identical loading in each lane. For assignment of bands see text. 

Statistical analyses were carried out using Student’s t test, with * indicating significant 

differences at the p < 0.05 level. 

 

Aryl sulfatase activity is commonly used for monitoring lysosomal populations. 

The aryl sulfatase activity in lysates from HMDM and J774A.1 cells exposed to 30 mM 
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glucose was significantly decreased (p < 0.05) when compared to the 5 mM condition as 

shown in Figure 3.10, and this decrease is consistent with the LAMP-1 data reported 

earlier in Figure 3.8.  

LysoTracker Red is a weakly-basic cell-permeable fluorescent amine dye that 

accumulates in lysosomes; as such it can be used to assess lysosomal numbers. 

Fluorescent (λexcitation 577nm, λemission 590 nm) and bright field images of HMDM and 

J774A.1 cells stained with this dye under identical conditions, showed more intense red 

fluorescence in cells incubated in 5 versus 30 mM glucose (Figure 3.11). The reduction 

in arylsulfatase activity and visualisation of lysosomes by LysoTracker
®
 Red DND-99 

observed in the high glucose conditions in both cell types may indicate a decrease in 

lysosomal population.  

These preliminary data indicate that maturation of HMDM in high glucose 

concentrations results in a decrease of overall lysosomal number, a reproducible 

reduction in cathepsin (cysteine and aspartate) protein levels and a marked suppression 

of lysosomal cathepsin enzyme activities. These data complement and extend the results 

reported previously in Sections 3.4.3.2 and 3.4.4. 

 

Figure 3.10: Effect upon lysosomal aryl sulfatase activity of maturation of human 

monocytes to macrophages (HMDM) (Panel A) or incubation of murine 

macrophage-like J774A.1 cells (Panel B) in 5 versus 30 mM glucose.  

After incubation for 11 days in the stated level of glucose, the cells were lysed, and aryl 

sulfatase activity quantified. Data are mean + SEM, from n = 4 independent 

experiments using separate donors (for HMDM) or separate cultures (for J774A.1 cells), 

and are reported as the change in absorbance with time, arising from cleavage of the 

added substrate as a percentage of the value determined for the 5 mM glucose condition, 

corrected for protein levels in the lysates. Statistical analyses were carried out using 

paired Student’s t-test: ** p < 0.01 when compared to the 5 mM glucose condition. 
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Figure 3.11: Representative photomicrographs of HMDM (Panels A to F) and 

J774A.1 (Panels G to L) cells incubated under normal or high glucose 

concentrations and stained with LysoTracker
®

 Red DND-99.  

Photos A - C and G - I are of cells incubated in 5 mM glucose, and D - F and J - L cells 

incubated in 30 mM glucose for 9 to 11 days. DND-99 (50 nM) was added to cells for 

30 min and images were obtained using bright field (A, D, G, J), and a fluorescent filter 

(λ excitation 530 - 550 nm and λ emission 575IF) exposed for 1 - 2 s (B, E, H, K). The bright 

field and fluorescent images were used to generate the merged images in Panels C, F, I, 

and L. Data are representative of  3 independent experiments for each cell type, with 

~50 images captured from cells in 6-well plates. 
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3.5   Discussion 

This study shows that exposure of both HMDM and a murine macrophage-like 

cell line (J774A.1), to extended periods of high glucose concentrations results in 

significant reductions in lysosomal function as evidenced by changes in the activity of 

multiple cathepsin enzymes and lysosomal acid lipase. These enzymes play a critical 

role in protein catabolism (cathepsins) and hydrolysis of endocytosed neutral lipids 

(cholesteryl esters and triglycerides; LAL). Significant decreases in some of the enzyme 

activities were detected with 10 mM glucose, with a greater loss detected at higher 

levels. Glucose concentrations of this magnitude are commonly encountered in people 

with poorly controlled diabetes. Levels of up to 30 mM have been reported [245] but 

are not commonplace. Analogous changes were not detected in osmotic control 

experiments using a mixture of 5.5 mM glucose and 24.5 mM mannitol.  

The changes in enzyme activity that occurred at the highest glucose 

concentrations (20 and 30 mM) were accompanied by changes in LAMP-1 protein level 

as evidenced by Western blotting. These results confirm the earlier findings of 

Moheimani et al. [244] for 30 mM glucose as evidenced by reduced accumulation of 

LysoTracker® Red DND-99 and decreased arylsulfatase activity. Thus lysosomal 

enzyme activity was found to be sensitive to high glucose levels below those that lead to 

reductions in protein expression and lysosomal number. A previous study has also 

reported decreased cathepsin (but not D) activity in endothelial progenitor cells exposed 

to high glucose [246].  

Multiple mechanisms may act in parallel or synergistically to give these 

alterations. It has been reported that lysosomal cysteine protease activity can be 

decreased by exposure to reactive aldehydes and glycated proteins as a result of 

modification of the active site Cys of cathepsins B, L and S [243]. Reactive aldehydes, 

including methylglyoxal and glyoxal, are formed at elevated levels in cells exposed to 

high glucose, as a result of glucose autoxidation and increased triose phosphate pathway 

flux, with decomposition of the triose phosphates yielding methylglyoxal [247]. 

Oxidative stress and oxidised proteins arising from high glucose concentrations can also 

modulate lysosomal enzyme activities directly [229]. Although direct enzyme 

inactivation may explain the decreased activity of cathepsins B, L and S, this may be of 

lesser significance for cathepsin D, which has an active site Asp residue that is unlikely 

to be modified by glucose or reactive aldehydes. However, lysosomal protease activity 
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is dependent on a reaction cascade that generates the functional enzymes from 

proenyzmes, so alterations to cahtepsin B, L or S activity may subsequently modulate 

cathepsin D activation [229]. 

Exposure of cells to high glucose generates glycated proteins, advanced 

glycation end products (AGE) and protein aggregates [115]. The proteasome is the 

major complex that degrades most modified cytosolic proteins, and hence it might be 

expected that AGE-modified and aggregated proteins would be catabolised by this 

complex. However evidence exists for cross-talk between the proteasome and the endo-

lysosomal systems, as well as direct trafficking of modified proteins to lysosomes [241]. 

The presence of modified proteins in the lysosomes may affect enzyme function 

directly, and or lysosomal properties that result in changes in protein level and enzyme 

activities for example by increasing the fragility of lysosomal membranes [248], and 

changes in intra-lysosomal pH [249], as these enzymes typically require acidic pHs 

[250]. It is likely that multiple mechanisms are involved, as these processes may occur 

concurrently and be interdependent.  

Little previous data is available on changes in LAL activity.  Mononuclear 

leukocytes from newly-diagnosed subjects with Type 1 of Type 2 diabetes have been 

reported to have unchanged activity compared to controls [251]; LAL activity was 

decreased in the Type 1, but not Type 2, subjects after insulin therapy. An earlier study 

reported an increase in LAL activity in subjects with Type 2 diabetes after insulin 

treatment [252]. People with autosomal recessive genetic traits resulting in Wolman’s 

disease, and Cholesteryl Ester Storage Disease [253,254] have a deficit in LAL activity 

with this resulting in substantial cholesteryl ester (and to a lesser extent triglyceride) 

accumulation within cells [253], and accelerated atherosclerosis [255]. Whether this is 

due to the defect in lysosomal function, or associated hyperlipidaemia, is not known. 

Modified, including glycated, LDL particles may also directly modulate LAL activity 

and expression in human vascular endothelial and smooth muscle cells, with this 

occurring via the LXR signalling pathway [256]. 

Clinical studies have reported increased lysosomal activity in human 

atherosclerotic lesions. Thus subjects with atherosclerosis and diabetes have elevated 

levels of plasma cathepsin D and S [257], monocyte cathepsin D activity [258], 

neutrophilic lysosomal activity [259] and myocardial levels of cathepsin L [260]. 

However, these represent data from an expanded population of activated inflammatory 
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cells, and not lysosomal function on a per cell basis as examined here. Furthermore 

while increased intracellular levels of oxidised proteins can induce elevated lysosomal 

cathepsin expression and activity, this may not equate to an increase in modified protein 

degradation [241]. Increased cathepsin expression and activity may merely be (an 

unsuccessful) response to the accumulation of damaged materials.  

The changes in enzyme activity may result from a decreased clearance of both 

native and modified (glycated / glycoxidised / oxidised) proteins, including those 

internalised by endocytosis, or trafficked intracellularly. A previous study has reported 

that pyrraline-modified albumin is cleared by macrophage-like (P388D1) cells at a 

slower rate than unmodified protein [261], but no changes in lysosomal activity were 

detected. As cathepsin enzymes play a key role in the turnover of internalised LDL in 

arterial wall macrophages, the data obtained in the current study may be of significance 

in diabetes-induced atherosclerosis, with decreased cathepsin activity resulting in an 

accumulation of native or modified apolipoprotein B-100 protein [262] and cholesteryl 

esters and triglycerides. A decreased turnover may also result in a vicious cycle of 

increasing organelle dysfunction, as the level of modified material increases; the 

consequences of such accumulation have been reviewed [239,263]. 

 

3.6 Conclusions 

The studies reported in this chapter indicate that the maturation of human 

monocytes to macrophages over a period of 11 days in high glucose concentrations (20 

- 30 mM) resulted in a significant reduction in lysosomal number, as indicated by the 

LAMP-1, cathepsin protein levels and arylsulfatase activities. There was a marked 

inhibition of lysosomal cathepsin B, L S, D and an inhibition of acid lipase activities 

with increasing glucose concentrations (10 - 30 mM) versus the normal 5.5 mM glucose 

condition at the end of the maturation period. However it is not known when this 

disruption begins to impede lysosomal function during the maturation period, as only 

macrophages after complete maturation were assessed. Thus a major limitation to this 

study is the use of the single time point of 11 days. In the following chapter the time 

course of inhibition of lysosomal function in maturing monocytes incubated in 20 mM 

glucose was investigated at multiple time points.  
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4.1   Introduction 

 A number of studies have detected elevated levels of oxidised LDL in 

atherosclerotic plaques [264,265,266], however the mechanism by which this 

accumulation occurs is unclear. Changes in protease and possibly lipase activity may 

alter or inhibit the activity of the removal systems for damaged lipoproteins which may 

play a role in diabetes-associated cardiovascular diseases. Such accumulation may arise 

as a result of impairment of proteolysis and lipolysis processes such as those mediated 

by lysosomes [242,244]. Lysosomal enzymes have been shown to be susceptible to 

modulation by in vitro incubation with reactive aldehydes or preglycated proteins, both 

of which would be elevated in diabetes [243]. In the previous chapter, elevated glucose 

levels were shown to have a dose dependent inhibitory effect on lysosomal number, 

multiple cathepsins and acid lipase activities in fully-differentiated macrophages. These 

lysosomal functional changes may affect the capacity of macrophages to catabolise 

modified (lipo) proteins and enhance accumulation of lipids seen in diabetes associated 

atherosclerosis. In the light of this data, the aim of the studies reported in this chapter 

was to explore at what point during the maturation of monocytes to macrophages in 20 

mM glucose this perturbation in lysosomal function occurs.  

 

4.2   Aims 

To examine the impairment of lysosomal cathepsins and acid lipase activity and 

protein levels during the in vitro maturation of human monocytes to HMDM under 

conditions of high and normal glucose.  

 

4.3   Methods 

Human monocytes isolated from buffy coats of healthy donors were matured 

into macrophages over 10 days as detailed in Section 2.2.4. Maturation in 5.5 mM 

glucose was compared to that in 20 mM glucose. The cell pellets were obtained on days 

2, 4, 6, 8 and 10 as described in Section 2.2.5, to determine the lysosomal activities of 

cathepsins B, L and LAL as detailed in Sections 2.3, 2.3.2 and 2.3.6. 

In separate experiments, the cells were harvested on days 2, 4, 6, 8 and 10 and 

lysates prepared for Western blotting in order to quantify cathepsins B and L and LAL 
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protein levels as detailed in Sections 2.5 - 2.8. Lysosome numbers was estimated using 

lysosomal-associated membrane glycoprotein-1 (LAMP-1) expression. Lysosomal 

protein levels were quantified relative to β-tubulin as loading control. 

 

4.3.1  Statistical Analysis 

  Lysosomal activities from the cells of different donors were determined. The 

values were adjusted to the protein content of the sample and the results were then 

expressed as a percentage of that determined for cells incubated in 5.5 mM glucose after 

two days in vitro. Two-way ANOVA analysis was used followed by a Bonferroni’s post 

hoc test (against time points and glucose concentrations). Differences were assumed to 

be statistically significant at p < 0.05. 

 

4.4   Results 

4.4.1  Protein content in monocytes that were matured in normal and high glucose 

conditions  

The protein content was measured in monocytes as they were developing into 

macrophages to determine the rate of cell growth and examine whether this was 

different between the two glucose conditions.  This was determined by the BCA protein 

assay as detailed in Section 2.4.1. There was an overall increase in protein content as the 

monocytes developed into macrophages in both the normal (p < 0.001) and high glucose 

(p < 0.001) treated monocytes, using two-way ANOVA followed by Bonferroni’s post-

hoc test. However, there were no statistical differences in the protein content observed 

in the monocytes matured to HMDM in the normal 5.5 mM and high 20 mM glucose 

conditions during the maturation period.  

 

4.4.2 Lysosomal cathepsin B and L activity during maturation 

The data presented in the previous chapter is consistent with the inhibition of 

cathepsin B and L activities in human monocytes matured for 10 - 12 days in medium 

containing 20 mM glucose [244]. Whether this inhibition was also present at earlier 

time points during the maturation process was investigated in the current study.  
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Figure 4.1: Measurement of cellular protein levels during maturation of human 

monocytes in normal versus high glucose concentrations.  

Monocytes were matured in media with either 5.5 mM (blue line) or 20 mM (red line) 

glucose. Data (mean ± SEM) is expressed in μg/μL from 5 independent experiments 

using separate cell donors. φ indicates a significance (p < 0.001) by two-way ANOVA 

followed by Bonferroni’s post-hoc test in protein levels between day 2 and day 10. 

 

Cathepsin B activity (assessed as described in Chapter 3) was found to increase 

during monocyte maturation to macrophages. There was an overall increase in 

lysosomal cathepsin B activity as the monocytes developed into macrophages in both 

the normal (p < 0.001) and high glucose (p < 0.001) conditions (Figure 4.2; Panel A). 

At each time point cathepsin B activity was significantly lower for the cells matured 

under the high glucose condition. 

Cathepsin L activity was observed to increase during monocyte maturation to 

macrophages. The activity of lysosomal cathepsin L increased as the monocytes 

developed into macrophages in both the normal (p < 0.001) and high glucose (p < 

0.001) concentrations (Figure 4.2; Panel B). The cathepin L activity was significantly 

lower in the cells matured under the high glucose condition compared to 5.5 mM 

glucose for each time point assessed.  

Overall the monocytes incubated in high glucose showed lower levels of 

lysosomal cathepsin B and L activity at all the time points examined during the 

maturation process to macrophages. 
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Figure 4.2: Maturation of human monocytes in high glucose decreases the activity 

of cathepsin B (Panel A) and L (Panel B) compared to normal glucose 

concentrations.  

Lysosomal cathepsin B and L activities were measured in human monocytes that were 

matured in media with either 5.5 mM (blue line) or 20 mM (red line) glucose for up to 

10 days. Data (mean ± SEM) are expressed relative to the 5.5 mM glucose condition on 

Day 2. Samples were collected from 5 independent experiments using separate cell 

donors. Asterisks indicate a significant decrease in enzyme activity compared to control 

(5.5 mM glucose condition) by two-way ANOVA followed by Bonferroni’s post-hoc 

test; * p < 0.05,  p < 0.01,  p < 0.001. φ indicates a  significance (p < 0.001) in 

activity between day 2 and day 10.  
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4.4.3 Lysosomal acid lipase (LAL) activity during maturation 

LAL is the sole lysosomal hydrolase for endocytosed cholesteryl esters and 

triglycerides [230]. In the previous chapter it was demonstrated that there was an 

impairment of LAL activity in human monocytes matured for 10 - 12 days in medium 

containing 20 mM glucose [244]. The current study examined whether this inhibition 

was also present at earlier time points during the maturation process.  

LAL activity was measured, as described in the previous chapter, in the normal 

and high glucose conditions in the monocytes during the maturation period from days 2 

to 10. There was no statistical increase in LAL activity as the monocytes developed into 

macrophages in either the normal or high glucose treated cells. In the case of the cells 

incubated in 5.5 mM glucose there was an increase in LAL activity between day 2 and 4 

although this did not reach significance (p > 0.05). Between days 4 and 10, the LAL 

activity remained unchanged. In contrast for the cells treated with 20 mM glucose no 

increase in LAL was seen, and at each time point from day 4 to day 10 the LAL activity 

was significantly lower for the high glucose treated cells. 
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Figure 4.3: LAL activity during monocyte maturation at different time points. 

Lysosomal acid lipase (LAL) activity measured in human monoctyes that were matured 

in media with either 5.5 mM (blue line) or 20 mM (red line) glucose for up to 10 days. 

Data (mean ± SEM) are expressed relative to the activity detected for the 5.5 mM 

glucose condition on Day 2. Data was obtained from 5 independent experiments using 

separate cell donors. Asterisks indicate a significant decrease in enzyme activity 

compared to control (5.5 mM glucose condition) by two-way ANOVA followed by 

Bonferroni’s post-hoc test; * p < 0.05, ** p < 0.01. 
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4.4.4 Protein levels of cathepsin B 

The protein levels of procathepsin and mature cathepsin B were assessed to 

determine whether the changes in activity detected during the maturation process arose 

from changes in protein synthesis or processing during the maturation process. This was 

determined for monocytes that were incubated in the normal 5.5 mM and high 20 mM 

glucose concentrations and collected on every second day, by Western blotting (as 

described in Section 2.5.1 - 2.5.8). The cathepsin B proenzyme was detected at 37 kDa 

and the activated cathepsin B was observed at 25 kDa via Western blotting. Cathepsin B 

protein levels were expressed relative to β-tubulin levels, which was detected at 51 kDa.  

The total cathepsin B protein levels were calculated by the addition of 

procathepsin B and activated cathepsin B protein levels that were expressed relative to 

β-tubulin levels. When the ratio of procathepsin to activated cathepsin B protein levels 

were analysed, it was observed that the ratio of procathepsin B declined as the activated 

cathepsin B progressively increased. The normal and high glucose treated monocytes 

followed the same trend and ratio as shown in Figure 4.4.  

When the protein levels were assessed relative to β-tubulin levels, procathepsin 

levels declined as activated cathepsin B protein levels increased during monocyte 

maturation to macrophages in the normal glucose conditions only. There were no 

significant changes observed in the procathepsin and activated cathepsin B protein 

levels from days 2 to 10 in the monocytes that were incubated with high glucose. 

Treatment with high glucose resulted in decreased levels of procathepsin (p < 0.05) and 

activated cathepsin B (p < 0.01) protein with this difference being significantly lower at 

day 10 only (as shown in Figures 4.5 and 4.6 respectively).  

The activity values for cathepsin B that were reported in Section 4.4.2 were also 

assessed relative to activated cathepsin B protein levels to determine whether there was 

a change in lysosomal activity compared to the amount of protein present in the 

monocytes. Overall, there was a decrease in lysosomal activity when compared to 

protein levels expressed from days 2 and 4, which continued throughout the maturation 

process (refer to Panel B in Figure 4.6) though this was not statistically significant. 

However there were no differences in ratio of cathepsin B activity over protein levels in 

the two glucose conditions. 
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Figure 4.4: Procathepsin and activated cathepsin B over the total cathepsin protein 

levels during monocyte maturation at different time points. 

Procathepsin B (Panel A) and activated cathepsin B (Panel B) protein levels were 

measured and quantified over the total cathepsin B protein levels in human monocytes 

that were matured in media with either normal (5.5 mM; blue line) or high (20 mM; red 

line) glucose for up to 10 days. Pooled data (mean ± SEM; from 5 independent 

experiments using separate cell donors) for procathepsin and activated cathepsin B 

protein levels are presented in Panels A and B, respectively. Statistical analysis was 

carried out using two-way ANOVA followed by Bonferroni’s post-hoc test; φ indicates 

a significance (p < 0.001) difference between the values obtained at days 2 and 10.  
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Figure 4.5: Cathepsin B protein levels during monocyte maturation at different 

time points. 

Procathepsin B (37 kDa) and activated cathepsin B (25 kDa) protein levels were 

measured in human monocytes that were matured in media with either normal (5.5 mM; 

blue line) or high (20 mM; red line) glucose for up to 10 days. Panel A shows the results 

from one representative Western blotting experiment at the indicated time points from a 

total of five. Pooled data (mean ± SEM; from 5 independent experiments using separate 

cell donors) for procathepsin B protein levels (expressed relative to β-tubulin) is 

presented in Panel B. Statistical analysis was carried out using two-way ANOVA 

followed by Bonferroni’s post-hoc test; * p < 0.05 between the two glucose 

concentrations. φ indicates a significant (p < 0.001) difference between the values 

obtained at days 2 and 10.  
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Figure 4.6: Activated cathepsin B protein levels and cathepsin B activity versus 

protein levels during monocyte maturation at different time points. 

Activated cathepsin B (25 kDa) protein levels were measured in human monocytes that 

were matured in media with either normal (5.5 mM; blue line) or high (20 mM; red line) 

glucose for up to 10 days (as shown in Panel A). In Panel B the activity of lysosomal 

cathepsin B was assessed over the activated cathepsin B protein levels. Pooled data 

(mean ± SEM; from 5 independent experiments using separate cell donors) for activated 

cathepsin B protein levels (expressed relative to β-tubulin) and activity versus protein 

levels are presented in Panels A and B, respectively. Statistical analysis was carried out 

using two-way ANOVA followed by Bonferroni’s post-hoc test; ** p < 0.01 between 

two glucose concentrations. φ indicates a  significance (p < 0.001) difference between 

the values obtained at days 2 and 10.  
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4.4.5 Protein levels of cathepsin L 

The protein levels of procathepsin and mature cathepsin L were assessed to 

determine whether changes in activity detected during the maturation process affected 

the synthesis of cathepsin L and the conversion of the pro to active forms. This was 

examined via Western blotting (as detailed in Sections 2.5.1 - 2.5.8) from monocytes 

that were incubated in the normal 5.5 mM and high 20 mM glucose conditions and 

collected on every second day throughout the maturation period. The procathepsin L 

protein was detected at 55 kDa and the mature cathepsin L was observed at 25 kDa via 

Western Blotting. These protein levels were expressed relative to β-tubulin levels which 

were detected at 51 kDa.  

The total cathepsin L protein levels were calculated by the addition of 

procathepsin L and mature cathepsin L protein levels that were expressed relative to the 

β-tubulin levels. When the ratio of procathepsin and activated cathepsin L protein levels 

was analysed, the ratio of procathepsin L declined as the mature cathepsin L 

progressively increased as monocytes developed into macrophages, regardless of the 

different glucose conditions, as shown in Figure 4.7.  

When the protein levels were assessed relative to β-tubulin levels, procathepsin 

levels declined as the mature cathepsin L protein levels increased during monocyte 

maturation to macrophages in the normal glucose conditions only (as shown in Figure 

4.8 and 4.9 respectively). There were no significant changes observed in the 

procathepsin and mature cathepsin L protein levels from days 2 to 10 in the monocytes 

that were incubated with high glucose. There were no statistical differences in 

procathepsin L levels between the two glucose concentrations during the maturation 

period; however treatment with high glucose significantly lowered mature cathepsin L 

(p < 0.05) protein levels at day 10. 

The activities of cathepsin L that were reported in Section 4.4.2 were also 

assessed relative to the level of mature cathepsin L protein to determine whether there 

was a change in lysosomal activity compared to the amount of protein in the monocytes 

exposed to high glucose conditions. Overall, there was reduction in lysosomal activity 

relative to protein levels expressed for days 2 and 4 (p < 0.001) in the two glucose 

conditions, which continued throughout the maturation process (refer to Panel B in 

Figure 4.9). However there were no differences in the ratio of cathepsin L activity over 

protein levels between the normal and high glucose concentrations for the cells. 
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Figure 4.7: Procathepsin and activated cathepsin L over the total cathepsin protein 

levels during monocyte maturation at different time points. 

Procathepsin L (Panel A) and activated cathepsin L (Panel B) protein levels were 

measured and quantified over the total cathepsin L protein levels in human monocytes 

that were matured in media with either normal (5.5 mM; blue line) or high (20 mM; red 

line) glucose for up to 10 days. Pooled data (mean ± SEM; from 5 independent 

experiments using separate cell donors) for procathepsin and mature cathepsin L protein 

levels are presented in Panels A and B, respectively. Statistical analysis was carried out 

using two-way ANOVA followed by Bonferroni’s post-hoc test; φ indicates a 

significance (p < 0.001) difference between the values obtained at days 2 and 10.  
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Figure 4.8: Cathepsin L protein levels during monocyte maturation at different 

time points. 

Procathepsin L (55 kDa) and mature cathepsin L (25 kDa) levels were measured in 

human monocytes that were matured in media with either normal (5.5 mM; blue line) or 

high (20 mM; red line) glucose for up to 10 days. Panel A shows the results from one 

representative experiment from a total of five. Pooled data derived from procathepsin 

and mature cathepsin L (mean ± SEM; from 5 independent experiments using separate 

cell donors) are expressed relative to β-tubulin levels as presented in Panel B, 

respectively. Statistical analysis was carried out using two-way ANOVA followed by 

Bonferroni’s post-hoc test; φ indicates a significant difference (p < 0.001) between days 

2 and 10.  
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Figure 4.9: Mature cathepsin L protein levels and cathepin L activity versus 

protein levels during monocyte maturation at different time points.  

Mature cathepsin L (25 kDa) levels were measured in human monocytes that were 

matured in media with either normal (5.5 mM; blue line) or high (20 mM; red line) 

glucose for up to 10 days (as shown in Panel A). The activity of lysosomal cathepsin L 

was assessed over the activated cathepsin B protein level as shown in Panel B. Pooled 

data derived from procathepsin and mature cathepsin L (mean ± SEM; from 5 

independent experiments using separate cell donors) are expressed relative to β-tubulin 

levels as presented in Panels A and B, respectively. Statistical analysis was carried out 

using two-way ANOVA followed by Bonferroni’s post-hoc test; * p < 0.05 between the 

two glucose concentrations. φ indicates a significant difference (p < 0.001) between 

days 2 and 10. 
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4.4.6 Protein levels of LAL 

The protein levels of LAL were assessed to determine whether the changes in 

activity detected during the maturation process arose from changes in protein synthesis 

during the maturation process. Therefore LAL protein levels were assessed by Western 

blotting (as described in Sections 2.5.1 - 2.5.8) to determine whether high glucose 

affected synthesis of LAL during the maturation process. This was examined in 

monocytes that were incubated in the normal 5.5 mM and high 20 mM glucose 

concentrations, with samples collected every second day between days 2 to 10. The 

LAL protein was detected at 45 kDa and was expressed relative to β-tubulin levels 

which were detected at 51 kDa via Western Blotting.  

There were no changes in LAL protein levels during the maturation process for 

cells incubated in either 5.5 mM or 20 mM glucose. The protein levels of LAL were 

generally lower for cells matured under 20 mM glucose most notably at day 10 but this 

did not reach statistical significance (p > 0.05) (refer to Figure 4.10). 

The activity of LAL that was reported in Section 4.4.3 was also assessed relative 

to LAL protein expression to determine whether there was a change in lysosomal 

activity relative to the amount of protein that was present in the monocytes. Overall, 

there were no changes in the lysosomal activity relative to the protein levels during the 

maturation period (refer to Figure 4.11) and no differences between the two glucose 

treatments. 

 

 

 

 

 

 

 

 

 

 

 

 



116 
 

A 

 

 

 

B 

2 4 6 8 10
0.0

0.5

1.0

1.5

Day

L
A

L
 /
  
T

u
b

u
li
n

 

Figure 4.10: LAL protein levels during monocyte maturation at different time 

points. 

LAL (45 kDa) protein levels were measured in human monocytes that were matured in 

media with either normal (5.5 mM; blue line) or high (20 mM; red line) glucose for up 

to 10 days. Panel A shows the results from one representative experiment from a total of 

five. Pooled data (mean ± SEM; from 5 independent experiments using separate cell 

donors) for LAL protein levels (expressed relative to β-tubulin) derived from 5 

individual donors is presented in Panel B. Statistical analysis was carried out using    

two-way ANOVA followed by Bonferroni’s post-hoc test; no statistical differences 

were detected. 
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Figure 4.11: LAL activity relative to protein levels during monocyte maturation at 

different time points.  

The LAL activity and LAL (45 kDa) protein levels were measured in human monocytes 

that were matured in media with either normal (5.5 mM; blue line) or high (20 mM; red 

line) glucose for up to 10 days. Pooled data for LAL activity relative to protein 

expression (mean ± SEM; from 5 independent experiments using separate cell donors). 

Statistical analysis was carried out using two-way ANOVA followed by Bonferroni’s 

post-hoc test, and showed no statistical differences. 

 

 

4.4.7 Protein levels of LAMP-1 

The protein levels of LAMP-1 were assessed as a measure of any change in 

lysosomal number during the maturation process; the data presented in the previous 

chapter indicated that LAMP-1 levels were significantly reduced on treatment with high 

glucose (20 mM) for 11 days in HMDM [244]. The LAMP-1 protein band was detected 

at 120 kDa and expressed relative to β-tubulin which was detected at 51 kDa.  

There was an overall increase in LAMP-1 protein levels in both the normal 

glucose (p < 0.001) and high glucose conditions (p < 0.001) during the maturation 

period (Figure 4.8). There were no statistical differences in LAMP-1 levels between the 

two glucose concentrations during the maturation period from days 2 to 8, although the 

results for the high glucose-treated cells trended to lower values. However by day 10 the 

LAMP-1 levels were significantly lower for the high glucose-treated HMDM (p < 0.05). 
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Figure 4.12: LAMP-1 protein levels during monocyte maturation. 

LAMP-1 (120 kDa) protein levels were measured in human monocytes matured under 

normal (5.5 mM; blue line) or high (20 mM; red line) glucose concentrations for up to 

10 days. Panel A shows the results from one representative Western blotting experiment 

from a total of five. Pooled data (mean ± SEM; from 5 independent experiments using 

separate cell donors) for LAMP-1 levels (expressed relative to β-tubulin) are presented 

in Panel B.  Statistical analysis was carried out using two-way ANOVA followed by 

Bonferroni’s post-hoc test; * p < 0.05 between the two glucose concentrations. φ 

indicates a significant difference (p < 0.001) between the data obtained at days 2 and 10.  
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4.5  Discussion 

This study examined changes in lysosomal protease and lipase activity and 

protein levels as well as lysosomal number in human monocytes as these were matured 

in vitro to macrophages. It was found that exposure of human monocytes to chronic 

high glucose concentrations resulted in an impairment of protease activity as monocytes 

matured to macrophages. The magnitude of the glucose-induced changes was most 

pronounced at the final time point examined.  

The studies reported in the previous chapter showed a significant reduction in 

lysosomal cathepsin B, L and LAL activities in macrophages matured in 20 mM 

glucose compared to the 5.5 mM condition [244]. Significant reductions in cathepsin B 

and L enzymatic activities were detected for cells matured under the high glucose 

conditions from as early as two days in vitro. The high glucose condition also reduced 

the LAL enzymatic activity in the maturing monocytes from day six onwards.  

Independent of the glucose treatment, maturation in vitro was associated with a 

decline in pro-cathepsin enzyme levels, with a parallel increase in active enzyme levels 

for both cathepsins B and L both individually and when expressed relative to the total 

cathepsins. The impact of high glucose upon protein levels differed between the two 

cathepsins. With cathepsin B there was a trend towards lower levels from day 2 

although this was only statistically significant at day 10. In contrast to this a decline in 

cathepsin L protein levels in the high glucose-treated cells was discernible after day 6 

although it was also only statistically significant at day 10. When comparing these 

results with those for cathepsin activity, it would seem that impact of high glucose upon 

monocyte/macrophage proteolytic activity may involve both inactivation as well as a 

reduction in protein synthesis. However this was not seen in a previous study by 

Moheimani [244], where HMDM were incubated with 5 or 30 mM glucose 

concentrations and the differences were not statistically different. In the current study 

the procathepsin and the mature/ activated form of cathepsin B and L were investigated 

and were quantified relative to β-tubulin levels, commonly used as a loading control to 

account for differences in protein loading. This is important as the total protein levels 

steadily increased throughout the whole maturation process. 

In contrast to the cathepsins, there was no significant increase in LAL protein 

levels during the maturation process and exposure to high glucose did not have a 

statistically significant impact upon these levels. Here again these results are in contrast 
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to what was seen with the LAL activity levels where maturation under the high glucose 

condition had a significant inhibitory effect. These data therefore suggest that the major 

effect of high glucose levels is to inactivate LAL.  

There was reduction in activity relative to the amount of the protein expressed 

for cathepsin L, and to a lesser degree cathepsin B over the maturation period when the 

individual lysosomal activities were assessed relative to the corresponding protein 

levels in both glucose conditions. However the differing glucose treatments did not 

cause any changes in LAL activity when compared to protein expression during the 

maturation process. A similar loss in activity was detected on incubation of 

glyceraldehyde-3-phosphate dehydrogenase with reactive aldehydes and protein-bound 

carbonyls along with concurrent loss of thiol groups.  This loss in activity has been 

reported to be due to reaction of the free or protein-bound carbonyls with the thiol 

groups of the enzyme [267]. Reactive aldehydes and protein-bound carbonyls have also 

been shown to inhibit lysosomal cysteine proteases B, L and S due to the loss of the 

cysteine residue within the active site in a macrophage cell line [243]. Inactivation of 

these enzymes induced by oxidative/ carbonyl stress may contribute to the accumulation 

of modified proteins and lead to cellular dysfunction in a number of diseases. 

The significant increase in lysosomal number (as represented by a significant 

increase in LAMP-1 protein levels) during monocyte maturation paralleled the changes 

for the two cathepsins as well as the trend seen for LAL protein. Here again a 

significant impact upon LAMP-1 levels of the high glucose levels were only seen at day 

10. The decrease in LAMP-1 levels observed at the end of the maturation period was 

similar to that observed in the previous chapter for HMDM that were incubated in 20 

mM glucose [244].  

A number of previous studies have proposed a major role for lysosomes in 

diabetes-associated complications. A reduction in lysosomal proteolytic activity has 

been reported to be reduced by glycated proteins [229,242,243]. Lysosomal cathepsin B 

and L activity has also been reported to be impeded by proteins containing 

hydroperoxide groups with this ascribed to oxidation of the active site Cys residues of 

these enzymes [229,243]. Advanced glycation end products (AGEs) which are known to 

be elevated in diabetes have also been shown to have inhibitory effects on both 

proteasome activity [242] and on lysosomal cathepsin activities [268,269]. These 

deleterious effects of AGE products on proteasomal and lysosomal function may 



121 
 

influence the turnover of both intracellular and extracellular proteins [268]. A reduction 

in intracellular protein turnover was also shown by Xian et al [270]. Suppression of 

cathepsin mRNA expression may play a role in reduced lysosomal activities, with a 

previous study having reported time and dose dependent decreases in the activities of 

cathepsins B, L and H after incubation with AGEs [271]. The inhibitory effects of high 

glucose on mRNA levels were not assessed for the monocytes/ macrophages examined 

in the current studies. A study by Moheimani et al. has shown that macrophage 

scavenger receptor mRNA and protein levels can be perturbed by high glucose in 

HMDM, however these changes did not affect cholesterol and cholesteryl ester 

accumulation, or ester type in these human macrophages [272]. The studies reported 

above confirm that hyperglycaemia may be a contributory factor in the increased 

occurrence and the acceleration of atherosclerosis in people with diabetes. 

The degradation of a complex mixture of AGE-modified proteins might be a 

multifactorial process involving several proteases and peptidases and lysosomal 

activities [243,273]. In particular the proteasome and the endosomal lysosomal systems 

involved in the catabolism of modified and damaged proteins may act synergistically 

[243,269].  Lysosomal proteolytic enzymes appear to be essential for the survival of 

cells during the maturation of monocytes to macrophages which may provide insight 

into how accumulation of AGEs and their deleterious effects can be reduced by 

lysosomal enzymes [269]. In the circumstances of diabetes where the current studies 

have demonstrated impaired lysosomal function, and previous studies have shown the 

deleterious impact of AGE-modified proteins upon the same functions [243,269,274], 

one important contributor to the increased prevalence and rate of progression seen in 

people with diabetes could be impact of chronic hyperglycaemia upon macrophage 

function.  

Further investigations should be carried out to determine whether stimulation of 

lysosomal cathepsins or acid lipase activities modulates lipid cholesterol and cholesteryl 

ester accumulation, which may be a base for developing new pharmaceuticals for the 

prevention / alleviation of diabetes-associated cardiovascular diseases. Therefore, as to 

whether therapies designed to promote lysosomal function could have a synergistic 

effect to those that alleviate the hyperglycaemia of diabetes remains to be investigated.  

Given the current findings, agents that could reduce the hyperglycaemia and 

glycative damage that characterises diabetes mellitus may be protective of macrophage 
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degradative function and potentially anti-atherogenic in the case of diabetes-accelerated 

atherosclerosis. The following chapter presents an investigation as to whether carnosine 

(which has putative hypoglycaemic and anti-glycative activities) can prevent or inhibit 

atherosclerotic plaque development in a model of diabetes-accelerated atherosclerosis:  

apo E
-/- 

mice in which diabetes is induced by treatment with streptozotocin.  

 

4.6 Conclusion 

Increased lysosomal cathepsin and acid lipase activities, as well as protein levels 

and lysosomal number were observed during in vitro maturation of monocytes to 

macrophages. This has implications for clinical studies that generally rely on blood 

monocytes as a marker of tissue-dwelling macrophage function. Chronic exposures to 

high glucose during the maturation lead to impaired lysosomal proteolytic and lipase 

levels as well as total lysosome numbers. Shorter term exposure was found to inhibit 

lysosomal enzyme activity independent of any effect upon protein levels. These results 

suggest several mechanisms by which high glucose can lead to an impairment of 

macrophage degradative activity. These functional changes may affect the capacity of 

macrophages to catabolise modified (lipo) proteins during the maturation process and 

enhance the lipid accumulation seen in diabetes-associated atherosclerosis. 
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CHAPTER 5: 

INVESTIGATIONS OF THE POTENTIAL PROTECTIVE EFFECT 

OF CARNOSINE IN A MURINE APO E
-/-

 MODEL OF DIABETES-

INDUCED ATHEROSCLEROSIS 
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5.1  Introduction 

Cardiovascular disease is a major complication of diabetes and several studies 

have demonstrated that people with diabetes have 2 - 4 fold greater risk of 

cardiovascular disease compared to people without diabetes [111]. Diabetes has also 

been identified as an independent risk factor for cardiovascular- associated mortality 

[112]. Evidence suggests that the high incidence of cardiovascular disease amongst 

people with diabetes cannot be solely explained by well-established cardiovascular risk 

factors and that the chronically elevated blood glucose levels in diabetes contributes to 

the increased incidence of atherosclerosis [114,275]. 

The major impact of diabetes on cardiovascular health has led to extensive 

investigations of therapies designed to prevent, inhibit or reverse diabetes-associated 

atherosclerosis with many of these studies carried out in experimental animals such as 

mice.  Mouse models of this disease include the streptozotocin-treated apo E
-/-

 mouse 

[276,277]. Studies using this model, as well as clinical reports, are consistent with a role 

for increased production of AGE, mediated by protein glycation / glycoxidation and 

oxidative stress, in the development and progression of diabetes-accelerated 

atherosclerosis [278].  

Carnosine (β-alanyl-L-histidine dipeptide) is an endogenous dipeptide present at 

high concentrations in skeletal muscle [279]. A number of functions have been ascribed 

to carnosine including: as a buffer; as a regulator of Ca
2+  

sensitivity, as an antioxidant, 

or as an agent which could both prevent and reverse glycative and glycoxidative 

modifications to cell and tissue components [279,280]. Previous in vitro studies have 

shown that carnosine was effective at blocking pro-atherosclerotic AGE formation on 

low-density lipoproteins [281]. Recently Meini et al. [282] have demonstrated an anti-

atherosclerotic activity of  D-carnosine octylester in fat-fed apo E
-/-

 mice. Carnosine has 

also been shown to block increases in plasma triglycerides and cholesterol in fat-fed, 

non-diabetic, C57BL/6 mice [283]. As an endogenous peptide, carnosine has been 

shown to be safe and effective for oral delivery. It is absorbed as the intact dipeptide 

and hydrolysis in the intestinal mucosa is readily saturable [284]. However while it 

would be expected that intact dipeptide should be detectable in blood, plasma carnosine 

levels in humans are low or undetectable due to the rapid hydrolysis of carnosine in 

plasma induced by the enzyme carnosinase (e.g. [279,284] ).  Synthetic derivatives have 

however been developed that are much less susceptible to such hydrolysis (e.g. 
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[285,286,287]) and may therefore have therapeutic potential. By contrast, chronic 

supplementation of rodents with carnosine results in a persistent and significant 

elevation of plasma and tissue carnosine levels (e.g. [283,288,289]). Thus, chronic 

supplementation of rodents with carnosine provides an appropriate model to examine 

potential in vivo effects of carnosine (or its derivatives) as anti-oxidative / anti-glycative 

agents. The current study assesses, in vivo, the anti-atherogenic potential of chronic 

supplementation of streptozotocinF-treated apo E
-/-

 mice with carnosine. 

 

5.2 Aims 

To determine whether carnosine prevents or reverses atherosclerotic lesion 

formation and progression caused by prolonged periods of high blood glucose in vivo, 

using streptozotocin-treated diabetic apo E
-/-

 gene knock-out mice as a model of 

diabetes-associated atherosclerosis.  

 

5.3  Methods 

5.3.1 Animal model design 

Mice (n = 80) were maintained for 20 weeks, post-induction of diabetes, with 

the grouping as shown in Figure 5.1 that is; (i) control (vehicle-dosed); (ii) control mice 

receiving carnosine (2 g/L) in their drinking water; (iii) diabetic (streptozotocin-dosed) 

mice; and (iv) diabetic mice receiving carnosine in their drinking water. At the time of 

sacrifice, blood was collected for quantification of blood glucose and glycated 

haemoglobin, and plasma was prepared for assessment of carnosine, total cholesterol 

and triglyceride levels. The details and source of the animals used in this study are 

outlined in Sections 2.7 and 2.7.1. 

Induction of diabetes; care and monitoring of the animals; determination of body 

mass, blood glucose and glycated haemoglobin level; sample collection, fixation and 

store; and determination of plasma carnosine levels were undertaken by Dr David van 

Reyk and Dr Bronwyn Brown. Plasma cholesterol and triglyceride analyses were 

carried out by Ms Liming Hou of the Lipid Group of the Heart Research Institute. 
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Figure 5.1: Experimental Plan. 

The first two groups comprised of vehicle-dosed control mice groups (outlined in blue) 

with and without carnosine supplemented in their water. The third and fourth groups 

comprised of streptozotocin induced diabetic mice (outlined in orange) with and without 

carnosine supplemented in the water respectively.  

 

 

5.4 Results 

5.4.1 Induction of diabetes with STZ treatment 

Diabetes was confirmed by significant increases in blood glucose and glycated 

haemoglobin as shown in Figure 5.2 (reproduced with permission from Dr van Reyk). A 

wide range of blood glucose levels was observed amongst the mice, a blood glucose 

level of 18 mM was chosen to distinguish between those with and without diabetes. 

This cut-off was supported by glycated haemoglobin levels and body mass 

determinations. Thus mice with blood glucose levels < 18mM (for STZ-treated mice) or 

above this level (for vehicle-treated mice) were omitted from the data set. This cut-off is 

similar to that used previously for this model (19.2 mM; [276]). To ensure this decision 

did not have a major effect on the conclusions drawn, the data sets were also censored at 

20, 16, 14 and 12 mM blood glucose and reanalysed. Each cut-off gave broadly 
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consistent results, indicating that the choice of 18 mM did not affect the conclusions, 

nor was the level of blood glucose used as an indicator of diabetes induction, critical to 

the effects detected.  

Using this cut-off to distinguish between control mice (CTL) and those with 

diabetes (DIAB), the latter had a significantly lower body mass at time of sacrifice with 

a significant elevation of blood glucose, glycated haemoglobin, total cholesterol and 

triglycerides levels as presented in Table 5.1 (reproduced with permission from Dr van 

Reyk). These data are in accord with previous studies [276,290,291].  

 

 

 

Figure 5.2: Blood glucose levels (A) and glycated haemoglobin levels (B), at the 

time of sacrifice, for control (CTL) and diabetic (DIAB) apo E
-/-

 mice with (+CN) 

or without carnosine supplementation.  

Individual determinations (n = 12 - 18) are presented, together with the median value 

(horizontal bar). Out of range results (> 33 mmoles/L for blood glucose; and < 4% or 

>13% for glycated haemoglobin) are represented as markers placed on the dashed line 

that delimits the range of detection. A number of the animals with diabetes have 

superimposed data points. *: significantly different (p < 0.05) from the control group at 

the same level of carnosine supplementation using rank-transformed data. 
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Control 

Control 

with CN 
Diabetic 

Diabetic 

with CN 

Mass (g) 27.8 + 0.6 29.9 + 0.5 24.6 + 0.9* 24.2 + 0.5* 

Total cholesterol 

(mmoles/L) 
9.6 + 0.5 9.0 + 0.3 14.6 + 2.1* 15.2 + 0.7* 

Triglycerides (mmoles/L) 1.1 + 0.1 0.8 + 0.1
#
 1.7 + 0.2* 1.3 + 0.1*

#
 

 

Table 5.1: Mean body mass, total cholesterol and triglyceride plasma levels, 

estimated at the time of sacrifice, for non-diabetic (control) and diabetic apo E
-/-

 

mice with or without carnosine (CN) supplementation.  

Results are expressed as mean + standard error of the mean (SEM) for 12 - 19 mice per 

group. *: significantly different (p < 0.05) from control group at the same level of 

carnosine supplementation. 
#
: significantly different (p < 0.05) from the non-

supplemented group matched for glycaemic status using transformed data. 

 

 

5.4.2 Efficacy of carnosine supplementation 

Plasma-derived low molecular mass filtrates (< 3000 Da) were obtained by 

centrifugation (13 400 g, 30 min, 4°C) using Pall Nanosep 3000 MWCO filters (Ann 

Arbor, MI, USA) after. Carnosine was quantified by HPLC, after pre-column 

derivatisation with o-phthaldialdehyde (with 5% v/v 2-mercaptoethanol), against 

authentic standards [18].  

Low levels of plasma carnosine were detected reproducibly in the non-

supplemented mice, with supplementation significantly increasing this value as 

presented in Figure 5.3 (reproduced with permission from Dr van Reyk and Dr Brown). 

There was however substantial variation amongst individual mice in both supplemented 

groups.   

Supplementation with carnosine had no effect on blood glucose or glycated 

haemoglobin levels, final body mass or plasma total cholesterol levels (Table 5.1). 

However, for mice with the same glycaemic status (CTL or DIAB), triglycerides were 

significantly lower in the carnosine supplementation groups. 
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Figure 5.3: Plasma carnosine levels (μmoles/L), at the time of sacrifice, for control 

(CTL) and diabetic (DIAB) apo E
-/-

 mice with (+CN) or without carnosine 

supplementation.  

Data are presented as the 95% confidence interval together with the mean (n =12 - 18). 

#: significantly different (p < 0.05) from the non-supplemented group matched for 

glycaemic status using General Linear Model on the natural log-transformed data. 

 

 

5.4.3 Morphometry of atherosclerotic plaques in the brachiocephalic artery 

Six sections (A - F) were prepared for estimation for atherosclerotic lesion size 

in the brachiocephalic artery. One set of the six duplicate sections (A - F) was stained 

with Haematoxylin and Eosin (H & E) for general morphology in order to determine 

plaque areas, as described in Section 2.7.7 and displayed in Figure 5.4. The images were 

captured digitally with an IX71 Olympus microscope (North Ryde, NSW, Australia) for 

morphometric analysis for the following areas within the outlined boundaries of the 

brachiocephalic artery: total cross-sectional area, lumen, plaque and the cross-sectional 

area within the internal elastic intima as illustrated in Figure 5.5.  

 

 

# 

# 
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Figure 5.4: Representative images of 6 cross sections (A - F) taken from the 

brachiocephalic artery. 

5 μm sections were taken from the brachiocephalic artery commencing when the first 

entirely circular cross-section appeared for Slide A. Duplicate sections were taken every 

100 μm until six sections in total had been obtained from A to F. Sections were stained 

with H&E and photographed using a 20x objective.  
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Figure 5.5: Calculation of plaque morphometry in the brachiocephalic artery. 

Morphometry was performed on the cross-sections of the brachiocephalic artery. For the 

brachiocephalic artery the following measurements were made; internal area of lumen, 

plaque, internal elastic intima and total cross-sectional area.  

 

 

The arteries from the diabetic mice contained more plaque than the non-diabetic 

mice (p < 0.05) in both the non-carnosine and carnosine supplemented groups as shown 

in Figure 5.6 (Panel A).  There were significant increases in plaque area in the diabetic 

control (60.9 ± 4.8 (x10³) μm², p < 0.05) when compared to the non-diabetic control 

mice (44.9 ± 4.7 (x10³) μm²). Diabetic mice supplemented with carnosine (57.2 ± 3.6 

(x10³) μm², p < 0.05) also had more plaque than the control supplemented carnosine 

mice (40.4 ± 4.7 (x10³) μm²).  

 

 



132 
 

When the plaque areas are expressed relative to the total area there was a higher 

percentage observed in the diabetic control (41.8 ± 2.9 %, p < 0.05) than the non- 

diabetic control mice (33.5 ± 2.8 %) as shown in Figure 5.6 (Panel C). There was also a 

greater plaque percentage in the diabetic supplemented carnosine mice (41.6 ± 1.5 %, p 

< 0.05) when compared to the control supplemented carnosine mice (31 ± 3.5%). 

The area enclosed within the internal elastic intima and the area of the lumen 

were also measured in order to determine whether there were any differences between 

the morphological structure of the diabetic and non-diabetic mice with and without 

carnosine supplementation. There was a smaller ratio of lumen area over the total area 

observed in the diabetic mice supplemented with carnosine (30.9 ± 1.4, p < 0.05) than 

the non-diabetic mice supplemented with carnosine (39 ± 2.9) as presented in Figure 5.7 

(Panel A).  There were no statistical differences observed when the internal elastic 

intima areas were analysed over the total area as shown in Figure 5.7 (Panel B). 

Overall the diabetic mice had a greater extent of atherosclerotic plaque and a 

decreased lumen size as a percentage of total area in the brachiocephalic artery than the 

non-diabetic mice. Carnosine supplementation had no effect upon the increased plaques 

and smaller lumen sizes in these mice.  
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Figure 5.6: Plaque morphometry in brachiocephalic artery for plaque area 

(Panel A), total area (Panel B) and  percentage of plaque compared to total arterial 

cross-sectional area (Panel C) in control (CTL) and diabetic (DIAB) apo E
-/-

 mice 

with or without carnosine (+/- CN) supplementation.   

Plaque and total cross sectional areas of the artery were determined in the 

brachiocephalic artery are calculated as (x10³) μm² in Panels A and B. Plaque is 

expressed as a percentage over the total area in Panel C.  Statistical significance was 

achieved at * p < 0.05 versus control (CTL - CN), + p < 0.05 versus control 

supplemented with carnosine (CTL + CN) using two-way ANOVA followed by 

Bonferroni’s post-hoc test. Values are expressed as mean ± SEM.   
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Figure 5.7: Ratio of lumen (Panel A) and internal elastic intima areas (Panel B) 

over the total cross-sectional area of the brachiocephalic artery in control (CTL) 

and diabetic (DIAB) apo E
-/-

 mice with or without carnosine (+/- CN) 

supplementation.   

Lumen and internal elastic intima areas of the artery were determined in the 

brachiocephalic artery and the ratio was calculated over the total cross-sectional area.  

Statistical significance was achieved at + p < 0.05 versus control supplemented with 

carnosine (CTL + CN) using two-way ANOVA followed by Bonferroni’s post-hoc test. 

Values are expressed as mean ± SEM.   
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5.4.4 Plaque area in aortic sinus 

Six duplicate (A - F) cross-sections were taken along the aortic sinus and were 

imaged and morphometric measurements were performed with image analysis software 

as described in Section 5.3.3 to 5.3.4 and shown in Figure 5.8. The areas within the 

outlined boundaries of the aortic sinus were examined across the six duplicates (A - F) 

cross-sections in order to determine total plaque and cross-sectional area as illustrated in 

Figure 5.9.  

There were significant increases in plaque area in the diabetic supplemented 

carnosine group (43.3 ± 4.9 (x10³) μm², p < 0.01) when compared to the control 

supplemented carnosine mice (24.9 ± 3.2 (x10³) μm²) as shown in Figure 5.10 (Panel 

A). There were no statistical significant differences in the average cross-sectional total 

areas of the aortic sinus observed across the groups as shown in Figure 5.10 (Panel B).  

When plaque area was analysed over the total arterial cross-sectional area there 

was a higher percentage plaque area observed in the diabetic mice supplemented with 

carnosine (28.9 ± 2.4 %, p < 0.001) when compared to the control supplemented 

carnosine mice (18.1 ± 1.6%). There was a lower percentage of plaque seen in the 

control supplemented carnosine mice than the control mice (26.2 ± 1.5%, p < 0.05) as 

shown in Panel C of Figure 5.10. 
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Figure 5.8: Representative images of 6 cross-sections (A - F) taken from the aortic 

sinus. 

5 μm sections were taken from the appearance of the three valve leaflets for Slide A. 

Duplicate sections were taken every 100 μm until six sections in total had been 

obtained. Sections were stained with H&E and photographed using a 10x objective.  
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Figure 5.9: Calculation of plaque morphometry in the aortic sinus. 

Morphometry was performed on the cross-sections of the aortic sinus. For the aortic 

sinus, the total surface cross-sectional area and plaque areas were measured.  

 

 

 

Overall the diabetic mice had a greater extent of atherosclerotic plaque 

formation than the non-diabetic mice for groups on the same supplementation regime. 

Ingestion of carnosine did not result in a significant reduction in plaque size for the 

diabetic animals.  
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Figure 5.10: Plaque morphometry in the aortic sinus for plaque area (Panel A), 

total area (Panel B) and  percentage of plaque on total area (Panel C) in control 

(CTL) and diabetic (DIAB) apo E
-/-

 mice with or without carnosine (+/- CN) 

supplementation.   

Plaque and total cross sectional areas within the leaflets were determined for the aortic 

sinus are calculated as (x10³) μm² in Panels A and B. Plaque is expressed as a 

percentage over the total area in Panel C.  Statistical significance was achieved at ++ p 

< 0.01, +++ p < 0.001 versus control supplemented with carnosine (CTL + CN) and ^ p 

< 0.05 versus the control (CTL – CN) using two-way ANOVA followed by 

Bonferroni’s post-hoc test. Values are expressed as mean ± SEM.   
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5.4.5 Smooth muscle cells in fibrous cap in the brachiocephalic artery 

Immunostaining for α-actin was examined as a marker for the degree of smooth 

muscle cell infiltration of the plaque, to determine whether carnosine had any effect on 

plaque stability. The plaques were examined using the same sets of samples as 

described previously (refer to Sections 2.8.3 and 2.8.4). The fibrous caps of the 

atherosclerotic plaques were observed to contain α-actin expressing cells with these 

primarily detected in the regions of the cap directly beneath the endothelium as shown 

in Figure 5.11.   

As shown in Figure 5.12 (Panel A), there were no differences in absolute levels 

of α-actin staining between the diabetic and control mice in the absence of carnosine 

supplementation. However, there was a greater extent of α-actin staining in the 

carnosine-supplemented diabetic (1.5 ± 0.3 (x10³) μm², p < 0.05) than the carnosine-

supplemented control (0.7 ± 0.2 (x10³) μm²) mice.  Carnosine-supplemented diabetic 

mice had more levels of α-actin than the diabetic (0.5 ± 0.2 (x10³) μm², p < 0.05) mice.    

A higher plaque area was observed in the diabetic (47.2 ± 4.2 (x10³) μm², p < 

0.05) than the control mice (34 ± 3.2 (x10³) μm²) without carnosine supplementation as 

shown in Figure 5.12 (Panel B). No statistical differences were seen between the two 

carnosine supplemented groups. When the area of α-actin staining was analysed over 

the plaque area, there was a higher, statistically significant, percentage of α-actin 

staining observed in the carnosine-supplemented diabetic (4.2 ± 0.8 %, p < 0.05) than 

the diabetic mice (1.5 ± 0.6 %; and refer to Panel C in Figure 5.12).  

Although there were no statistical differences detected in α-actin levels between 

the control and diabetic mice, when comparing the two diabetic groups, carnosine 

supplementation was associated with higher absolute levels and percentage of α-actin 

immunostaining in the brachiocephalic artery.  
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Figure 5.11: Representative sections showing α-SM-actin staining in the 

brachiocephalic artery in control (CTL) and diabetic (DIAB) apo E
-/-

 mice with or 

without carnosine (+/- CN) supplementation.   

Representative image of sections from the brachiocephalic artery stained for α-actin (red 

staining) produced by smooth muscle cells. The red staining was quantified and 

expressed as a percentage of the total plaque area. For illustration purposes the slides 

were captured using a Carl Zeiss microscope and a 20x objective lens. 
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Figure 5.12: α-SM-actin staining of the fibrous cap in the brachiocephalic artery 

for α-actin area (Panel A), plaque area (Panel B) and percentage of α-actin on total 

area (Panel C) in control (CTL) and diabetic (DIAB) apo E
-/-

 mice with or without 

carnosine (+/- CN) supplementation.   

The area of α-actin staining and plaque area determined for the brachiocephalic artery 

sections are calculated as (x10³) μm² in Panels A and B. The area stained by α-actin is 

expressed as a percentage over the plaque area in Panel C.  Statistical significance was 

achieved at * p < 0.05 versus control (CTL - CN), + p < 0.05 versus control 

supplemented with carnosine (CTL + CN) # p < 0.05 versus the diabetic (DIAB) apo E
-

/-
 mice using two-way ANOVA followed by Bonferroni’s post-hoc test. Values are 

expressed as mean ± SEM.   
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5.4.6 Smooth muscle cells in the aortic sinus 

The fibrous caps were examined for α-actin staining arising for smooth muscle 

cells in the aortic sinus at 100 μm from the first appearance of the three valve leaflets as 

described in Sections 2.8.3 and 2.8.4. Representative images of the fibrous caps of the 

atherosclerotic plaques contained α-actin expressing cells which were stained red are 

shown in Figure 5.13.  

As shown in Figure 5.14 (Panel A), there were no statistical differences in 

absolute levels of α-actin staining between the control and the diabetic mice in the 

absence of carnosine supplementation. However there was a significant increase in α-

actin staining in the carnosine-supplemented diabetic mice (1.5 ± 0.3 (x10³) μm², p < 

0.05) when compared to the carnosine-supplemented control mice (0.6 ± 0.1 (x10³) 

μm²).  

A significant increase in plaque size was detected in the diabetic (21.6 ± 1.5 

(x10³) μm², p < 0.001) when compared to the control mice (14.5 ± 2.9 (x10³) μm²) as 

shown in Figure 5.14 (Panel B). A similar trend for plaque area was seen in the 

carnosine-supplemented diabetic (18.1 ± 1.2 (x10³) μm², p < 0.001) than the carnosine-

supplemented control mice (11.9 ± 1.2 (x10³) μm²). There were no statistical differences 

detected across the groups when the area of α-actin was expressed as a percentage of the 

plaque area as shown in Figure 5.14 (Panel C). When α-actin staining was expressed as 

a percentage of the total plaque area, carnosine-supplementation was associated with an 

increase in the percentage area positive for α-actin for both control and diabetic mice; 

however this increase did not reach statistical significance at this site.  
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Figure 5.13: Representative sections showing α-SM-actin staining in the aortic 

sinus in control (CTL) and diabetic (DIAB) apo E
-/-

 mice with or without carnosine 

(+/- CN) supplementation.   

Representative images of sections taken from the aortic sinus stained for α-actin to 

detect smooth muscle cells which appear as red staining. The area of red was calculated 

over the plaque area and expressed as a percentage of α-actin content within the plaques 

formed. For illustration purposes the slides were captured by use of a Carl Zeiss 

microscope. 



144 
 

 

 
 

Figure: 5.14: α-SM-actin staining of the fibrous cap in the aortic sinus for α-actin 

area (Panel A), plaque area (Panel B) and percentage of α-actin on total area 

(Panel C) in control (CTL) and diabetic (DIAB) apo E
-/-

 mice with or without 

carnosine (+/- CN) supplementation.   

The α-actin and plaque areas that were determined in the aortic sinus are calculated as 

(x10³) μm² in Panels A and B. The area stained by α-actin is expressed as a percentage 

over the plaque area in Panel C.  Statistical significance was achieved at *** p < 0.001 

versus control (CTL - CN) and + p < 0.05, +++ p < 0.01 versus control supplemented 

with carnosine (CTL + CN) apo E
-/-

 mice using two-way ANOVA followed by 

Bonferroni’s post-hoc test. Values are expressed as mean ± SEM.   
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5.4.7 Macrophages in plaque within the brachiocephalic artery sections 

In the brachiocephalic artery, the presence of macrophages in the plaques was 

assessed by probing for the murine macrophage marker F4/80 at 200 μm from the first 

complete circumference of the vessel as described in Sections 2.8.5. The macrophages 

were stained pink as shown in Figure 5.15 and the area occupied by these cells was 

quantified in order to investigate the composition of the atherosclerotic plaque formed 

in the diabetic and non-diabetic mice that were treated with and without carnosine.   

There was no increase in the areas that were stained for macrophages in the 

diabetic mice versus the non-diabetic mice regardless of carnosine supplementation as 

shown in Figure 5.16 (Panel A). There was a significant increase in plaque area in the 

vessels from the diabetic mice (38.1 ± 3.3 (x10³) μm², p < 0.01) than the control mice 

22.3 ± 3.5 (x10³) μm²) and higher plaque size in carnosine-supplemented diabetic (33.1 

± 3.6 (x10³) μm², p < 0.01) than carnosine-supplemented control mice (17.4 ± 3.1 (x10³) 

μm²) as presented in Figure 5.16 (Panel B). 

When F4/80 staining was expressed as percentage of total plaque area diabetic 

mice were associated with decrease in percentage positive for F4/80 than the control 

mice regardless of carnosine-supplementation, however this decrease did not reach 

statistical significance.  There were no statistical differences achieved when the area of 

F4/80 was analysed over the total plaque area as shown in Figure 5.16 (Panel C). 

Supplementation with carnosine did not therefore appear to affect the macrophage 

content within the plaques formed in the brachiocephalic artery.  
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Figure 5.15: Representative sections showing F4/80 staining in the brachiocephalic 

artery in control (CTL) and diabetic (DIAB) apo E
-/-

 mice with or without 

carnosine (+/- CN) supplementation.   

Representative sections taken from the brachiocephalic artery were stained with F4/80 

to detect for macrophages which appeared as pink colouration. The area of pink staining 

was calculated over the plaque area and expressed as a percentage of F4/80 staining 

within the total plaques formed. For illustration purposes the slides were captured by 

Carl Zeiss microscope using a 20x objective lens. 
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Figure 5.16: F4/80 staining for macrophages in the brachiocephalic artery for 

F4/80 area (Panel A), plaque area (Panel B) and percentage of F4/80 on total area 

(Panel C) in control (CTL) and diabetic (DIAB) apo E
-/-

 mice with or without 

carnosine (+/- CN) supplementation.   

The F4/80 and plaque areas that were determined in the brachiocephalic artery are 

calculated as (x10³) μm² in Panels A and B. The area stained by F4/80 is expressed as a 

percentage over the plaque area in Panel C.  Statistical significance was achieved at ** p 

< 0.01 versus control (CTL - CN) and ++ p < 0.01versus control supplemented with 

carnosine (CTL + CN) apo E
-/-

 mice using two-way ANOVA followed by Bonferroni’s 

post-hoc test. Values are expressed as mean ± SEM.   
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5.4.8 Macrophages in plaque within aortic sinus sections 

In order to examine the composition of the plaque generated in the diabetic and 

non-diabetic mice with and without carnosine-supplementation, the presence of 

macrophages within the plaques of the aortic sinus was examined by probing for the 

murine macrophage marker F4/80 at 200 μm from the first appearance of three valve 

leaflets as described in Sections 2.8.5. The macrophages were stained pink within the 

atherosclerotic plaques formed within the valve leaflets of the aortic sinus as shown in 

Figure 5.17. 

There were no statistical differences observed in the areas that were stained for 

macrophages in the diabetic mice versus the non-diabetic mice regardless of carnosine 

supplementation as shown in Figure 5.18 (Panel A). There were a significant increase in 

plaque size in the valve leaflets from the diabetic (21.8 ± 1.6 (x10³) μm²) than the 

control mice (15.3 ± 1.2 (x10³) μm², p < 0.01) as presented in Figure 5.18 (Panel B). 

There was a smaller area of plaque in the carnosine-supplemented control (11.5 ± 1 

(x10³) μm², p < 0.05) than the control mice. There was a significant decrease in plaque 

size observed in the carnosine-supplemented diabetic (15.1 ± 1.1 (x10³) μm², p < 0.001) 

than the diabetic mice. 

When the F4/80 was expressed as a percentage of total plaque area there was a 

higher percentage of F4/80 staining observed in the carnosine treated mice compared to 

its respective control as shown in Figure 5.18 (Panel C). The carnosine-supplemented 

control mice (44.4 ± 4.3 %, p < 0.05) possessed higher macrophage content than the 

control mice (31.8 ± 3.7%). There was an increased percentage of F4/80 staining 

observed in the carnosine-supplemented diabetic (41.3 ± 3.7 %, p < 0.05) than the 

diabetic mice (22.7 ± 3.1 %, p < 0.01).  

 Although diabetic mice had greater plaque areas, the absolute area stained for 

macrophages was not significantly different to the control mice. However there was a 

percentage increase of macrophages on total plaque areas observed in the aortic sinus 

for the carnosine-supplemented mice in both the diabetic and non-diabetic groups.   
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Figure 5.17: Representative sections showing F4/80 staining in the aortic sinus in 

control (CTL) and diabetic (DIAB) apo E
-/-

 mice with or without carnosine (+/- 

CN) supplementation.   

Representative sections taken from the aortic sinus were stained with F4/80 to detect for 

macrophages which appeared as pink colouration. The area of pink staining indicating 

the presence of F4/80 macrophages was expressed as a percentage over the total plaque 

formed. For illustration purposes the slides were captured by Carl Zeiss microscope 

using the 10x objective lens. 
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Figure 5.18: F4/80 staining for macrophages in the aortic sinus for F4/80 area 

(Panel A), plaque area (Panel B) and percentage of F4/80 on total area (Panel C) in 

control (CTL) and diabetic (DIAB) apo E
-/-

 mice with or without carnosine (+/- 

CN) supplementation.   

The F4/80 and plaque areas that were determined in the aortic sinus are calculated as 

(x10³) μm² in Panels A and B. The area stained by F4/80 is expressed as a percentage 

over the plaque area in Panel C.  Statistical significance was achieved at ** p < 0.01 

versus control (CTL - CN), ^ p < 0.05 versus control supplemented with carnosine 

(CTL + CN) and ## p <0.01, ### p < 0.001 versus diabetic (DIAB) apo E
-/-

 mice using 

two-way ANOVA followed by Bonferroni’s post-hoc test. Values are expressed as 

mean ± SEM.   
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5.4.9 Lipid content of plaque within the brachiocephalic artery 

The extracellular lipid content of the plaques was determined in the 

brachiocephalic artery as detailed in Sections 2.8.6 and 2.8.7.  The lipid content was 

examined to determine the nature and progression of the atherosclerotic plaque 

generated in the non-diabetic and diabetic mice with and without carnosine-

supplementation.  

Plaques from diabetic mice (7.5 ± 1.2 (x10³) μm², p < 0.001) contained 

significantly larger extracellular lipid pools than for the control mice (1.3 ± 0.3 (x10³) 

μm²). Most notably the extracellular lipid content from the carnosine-supplemented 

diabetic mice (2.8 ± 0.5 (x10³) μm², p < 0.001) was significantly lower than for the un-

supplemented diabetic mice as shown in Figure 5.19 (Panel A). 

When the lipid area was expressed as a percentage of total plaque area that was 

measured from the F4/80 stained lesion samples as shown in Figure 5.17 (Panel B), the 

plaques from the diabetic mice (20.5 ± 2.7%) contained a significantly greater lipid 

percentage than the control (6 ± 1.2%, p < 0.001) mice. However, a significant decrease 

in lipid percentage was detected for the carnosine-supplemented diabetic mice (8.2 ± 

1%, p < 0.001) when compared to the diabetic mice.  

Overall the lesions analysed from the diabetic mice had a higher area occupied 

by lipid pools and a greater percentage of extracellular lipid compared to control mice 

brachiocephalic artery samples. There was significantly greater lipid deposition 

observed in the diabetic than both the non-diabetic control and carnosine supplemented 

mice and this elevation was significantly attenuated in the diabetic mice that were 

supplemented with carnosine.   
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Figure 5.19: Comparison of extracellular lipid pools in the brachiocephalic artery 

determined as absolute lipid area (Panel A) and percentage area occupied by lipid 

compared to total plaque area (Panel B) in control (CTL) and diabetic (DIAB) apo 

E
-/-

 mice with or without carnosine (+/- CN) supplementation.   

The lipid area that was determined in the brachiocephalic artery is calculated as (x10³) 

μm² in Panel A. The area occupied by lipid is expressed as a percentage over the total 

plaque area in Panel B.  Statistical significance was achieved at *** p < 0.001 versus 

control (CTL – CN) and ### p < 0.01 versus diabetic (DIAB) apo E
-/-

 mice using two-

way ANOVA followed by Bonferroni’s post-hoc test. Values are expressed as mean ± 

SEM.   



153 
 

5.4.10 Lipid content in plaque within aortic sinus 

The extracellular lipid content of the plaques was determined in the aortic sinus 

sections in an analogous manner to that described in the previous section. The diabetic 

mice (7.6 ± 0.7 (x10³) μm²) contained a significantly higher extracellular lipid content 

than the control mice (2.2 ± 0.3 (x10³) μm², p < 0.001) as shown in Figure 5.20 (Panel 

A). Most notably the extracellular lipid content for the carnosine-supplemented diabetic 

mice (2.4 ± 0.3 (x10³) μm², p < 0.001) was significantly less than the diabetic mice. 

The lesion area occupied by extracellular lipid was expressed as a percentage of 

total plaque area as displayed in Figure 5.20 (Panel C). The diabetic mice (30.2 ± 1.6%) 

contained greater percentage lipid content when compared to the control mice (14.5 ± 

1.7%, p < 0.001). The carnosine-supplemented diabetic mice (13.2 ± 1.6%, p < 0.001) 

contained significantly less percentage lipid content than the non-supplemented diabetic 

mice. Overall the diabetic mice had a greater extent of extracellular lipid and a higher 

percentage area occupied by extracellular lipid in the aortic sinus sections than the 

control mice. This elevation was however significantly attenuated in the diabetic mice 

that were supplemented with carnosine.   
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Figure 5.20: Comparison of extracellular lipid pools in the aortic sinus. Absolute 

lipid area (Panel A), plaque area (Panel B) and percentage of area occupied by 

extracellular lipid when compared to the total lesion area (Panel C) in control 

(CTL) and diabetic (DIAB) apo E
-/-

 mice with or without carnosine (+/- CN) 

supplementation.   

The lipid and plaque areas that were determined in the aortic sinus are calculated as 

(x10³) μm² in Panels A and B. The area quantitated for lipid is expressed as a percentage 

over the plaque area in Panel C.  Statistical significance was achieved at *** p < 0.001 

versus control (CTL - CN), +++ p < 0.001 versus control supplemented with carnosine 

(CTL + CN) and ### p < 0.01 versus diabetic (DIAB) apo E
-/- 

mice using a two-way 

ANOVA followed by Bonferroni’s post-hoc test. Values are expressed as mean ± SEM.   
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5.4.11 Collagen content of plaques within the brachiocephalic artery 

The collagen content of the plaques was examined to provide information on the 

potential stability of the plaques that were formed in the diabetic and non-diabetic mice 

that were treated with or without carnosine. The composition of collagen was examined 

at 300 μm from the first complete circumference of the brachiocephalic artery as 

described in Sections 2.91. The collagen was stained with picrosirius red as shown in 

Figure 5.21.   

Although, there were no differences observed in collagen content between the 

diabetic and the control mice, there was an increase in collagen content observed in the 

carnosine-supplemented diabetic mice (23.7 ± 1.7 (x10³) μm²) when compared to the 

carnosine-supplemented control mice (15.7 ± 2.3 (x10³) μm², p < 0.05). There was also 

significantly greater collagen content determined in the carnosine-supplemented 

diabetic than the diabetic mice (15.9 ± 1.2 (x10³) μm², p < 0.05). 

There was a higher absolute amount of plaque observed in the diabetic control 

(44 ± 3.4 (x10³) μm²) than the control mice (32.6 ± 3.1 (x10³) μm², p < 0.05). A greater 

extent of plaque was also detected in the diabetic mice supplemented with carnosine 

(39.2 ± 2.7 (x10³) μm²) than the control supplemented carnosine mice (27.3 ± 3.5 (x10³) 

μm², p < 0.05). When the collagen area was expressed as percentage of total plaque area 

there were no statistical differences between the diabetic and control groups. However, 

the carnosine-supplemented diabetic mice contained higher collagen content (60.3 ± 

3.4%) than the corresponding non-supplemented diabetic mice (37.5 ± 2.8%, p < 0.001) 

as shown in Figure 5.22.  

Overall the carnosine-supplemented diabetic mice contained greater absolute 

collagen content than the carnosine-supplemented control and diabetic mice. 

Furthermore the diabetic mice that were supplemented with carnosine contained a 

higher collagen percentage than the diabetic control in the brachiocephalic artery 

suggesting that these lesions might be of greater stability than those in the non-

supplemented animals.  
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Figure 5.21: Representative images of atherosclerotic plaques stained with 

picrosirius red in the brachiocephalic artery cross sections of control (CTL), 

control + carnosine (CTL + CN), diabetes (DIAB) and diabetes + carnosine (DIAB 

+ CN) mice.  

Positive staining for collagen is depicted in red. The area of red was calculated over the 

plaque area and expressed as a percentage of collagen content within the plaques 

formed. For illustration purposes the slides were captured by a Carl Zeiss microscope 

using the 20x objective lens.  
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Figure 5.22: Comparison of collagen content within plaques in the brachiocephalic 

artery. Absolute collagen area (Panel A), plaque area (Panel B) and percentage of 

collagen expressed relative to the total plaque area (Panel C) in control (CTL) and 

diabetic (DIAB) apo E
-/-

 mice with or without carnosine (+/- CN) supplementation.   

The collagen and plaque areas that were determined in the brachiocephalic artery are 

calculated as (x10³) μm² in Panels A and B. The area quantitated for collagen is 

expressed as a percentage over the plaque area in Panel C.  Statistical significance was 

achieved at *p < 0.05 versus control without carnosine (CTL - CN), + p < 0.05versus 

control supplemented with carnosine (CTL + CN) and # p < 0.05, ### p < 0.001 versus 

diabetic (DIAB) apo E
-/-

 mice using two-way ANOVA followed by Bonferroni’s post-

hoc test. Values are expressed as mean ± SEM.   
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5.4.12 Collagen in plaque within the aortic sinus 

The collagen content was also examined via picrosirius red stain at 300 μm from 

the first appearance of the three value leaflets in the aortic sinus as described in Section 

2.9.1 and shown in Figure 5.23. Although there were no statistical differences in 

collagen content between the diabetic and the control mice, a significantly greater 

absolute area of collagen staining was seen in the carnosine-supplemented diabetic (11 

± 0.9 (x10³) μm²) than the carnosine-supplemented control mice (7.9 ± 0.8 (x10³) μm², p 

< 0.05).  

There was higher plaque observed in the diabetic (22.8 ± 1.5 (x10³) μm²) than 

the control (13.8 ± 1 (x10³) μm², p < 0.001). This was also detected with the carnosine-

supplemented diabetic mice (17.2 ± 1.1 (x10³) μm²) when compared to the carnosine-

supplemented control mice (11.4 ± 1 (x10³) μm², p < 0.001). Less plaque was observed 

in the carnosine-supplemented diabetic mice (p < 0.01) than its respective control.  

When the collagen area was expressed as percentage of total plaque, a 

significantly lower percentage of collagen was observed in the diabetic mice (42.7 ± 

3.6%) than the control (67.7 ± 2.6%, p < 0.001) mice. This was also the case in the 

diabetic groups where the diabetic mice had significantly less percentage collagen 

content than the carnosine-supplemented diabetic mice (63.9 ± 3%, p < 0.001) as shown 

in Figure 5.24.  

Overall lesions from the carnosine-supplemented diabetic mice appear to have 

significantly higher collagen content than those of the diabetic mice. When the collagen 

content was examined over the plaque area, the diabetic mice had the lowest percentage 

of collagen in the aortic sinus. There was a lower percentage of collagen observed in the 

diabetic group than the non-diabetic control group, and this decrease in collagen content 

seen in the diabetic mice was significantly attenuated by carnosine.  
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Figure 5.23: Representative images of atherosclerotic plaques stained with 

picrosirius red in the aortic sinus cross sections of control (CTL), control + 

carnosine (CTL + CN), diabetes (DIAB) and diabetes + carnosine (DIAB + CN) 

mice.  

Positive staining for collagen is depicted in red. The area of red was calculated over the 

total plaque areas and expressed as a percentage of collagen content within the plaques 

formed. For illustration purposes the slides were captured using a Carl Zeiss microscope 

with a 10x objective lens. 
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Figure 5.24: Comparison of collagen within plaques in the aortic sinus. Absolute 

collagen area (Panel A), plaque area (Panel B) and percentage of collagen 

expressed relative to the total plaque area (Panel C) in control (CTL) and diabetic 

(DIAB) apo E
-/-

 mice with or without carnosine (+/- CN) supplementation.   

The collagen and plaque areas that were determined in the aortic sinus are calculated as 

(x10³) μm² in Panels A and B. The area quantitated for collagen is expressed as a 

percentage over the plaque area in Panel C.  Statistical significance was achieved at *** 

p < 0.001, + p < 0.05, +++ p < 0.001 versus control supplemented with carnosine (CTL 

+ CN) and ## p <0.01, ### p < 0.001 versus diabetic (DIAB) apo E
-/-

 mice using two-

way ANOVA followed by Bonferroni’s post-hoc test. Values are expressed as mean ± 

SEM.   

 

 

 

 



161 
 

5.5  Discussion 

The antioxidant / anti-glycative activity of carnosine has been investigated 

extensively given the therapeutic potential that such actions could have in diseases 

where oxidative and / or glycative damage contributes to pathogenesis and disease 

progression. As an endogenous product, carnosine can be administered safely. Rodents 

provide an ideal model to assess the effects of carnosine, as chronic supplementation 

results in a sustained elevation in blood carnosine levels. The hyperglycaemic 

component of atherosclerosis was investigated using a mouse model of diabetes that 

was induced by streptozotocin in apo E
-/-

 mice. This treatment increased blood glucose, 

haemoglobin Alc, total cholesterol and triglycerides in the mouse plasma, and the 

diabetic mice had a significantly greater plaque burden than the non-diabetic mice  

resulting in a smaller lumen size in the artery.  

Direct administration of carnosine to humans results in only transient increases 

in plasma levels [288]. However, previous studies (e.g. [288,289]) and the current study 

have demonstrated that there is a significant increase in plasma carnosine levels in 

rodents if the animals are continuously supplemented with carnosine via their drinking 

water. The levels achieved in the current study are higher than those reported by Lee et 

al. [288] (who used Balb/cA mice), probably due to the higher dose employed in the 

current study. In contrast to these findings, Aldini et al. [289] using Zucker rats, 

demonstrated significant increases in plasma and kidney carnosine levels with chronic 

supplementation with D- but not L- carnosine. Thus the capacity to establish and 

maintain significantly high circulating levels of L-carnosine varies from species to 

species. In our study, a wider range of plasma carnosine levels was detected amongst 

the diabetic animals when compared to those for the matched control group, with this 

likely to be due to the characteristic polydipsia of diabetes with a three-fold higher level 

of water consumption observed in the diabetic animals.  

In this study, prolonged carnosine administration did not significantly modulate 

multiple disease parameters in the mice with diabetes including blood glucose levels. 

Lee et al. [288] demonstrated a significant reduction in blood glucose levels after four 

weeks of carnosine supplementation in mice with diabetes. Transient hyperglycaemia 

induced by 2-deoxy-D-glucose in Wistar rats has also been shown to be inhibited by 

intravenous and intraperitoneal delivery of carnosine [292]. The effect of carnosine in 

the latter study was restricted to submicro- and in some circumstances subnanomolar 
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concentrations. Whilst it has been repeatedly demonstrated that plasma levels of 

reactive aldehydes (e.g. methylglyoxal and glyoxal) are elevated in people with 

diabetes, the determination of plasma aldehyde levels is problematic. Values for 

methylgloxal can range from 0.2 - 120 and 0.5 - 400 μM in normoglycaemic and people 

with diabetes, respectively [293,294,295,296]. As these aldehydes react rapidly with 

proteins [297] these low concentrations are not unexpected. Thus the levels of plasma 

carnosine achieved by supplementation in this study, and another [288], may be within 

the range that would lead to effective aldehyde scavenging in vivo. In contrast to these 

studies, we did not find any hypoglycaemic effect of carnosine supplementation in the 

animals with diabetes, and this is supported by the absence of a carnosine-associated 

decrease in glycated haemoglobin. We conclude that the chronic high dose 

supplementation of carnosine used here does not have the more transient and low dose 

effects of carnosine upon blood glucose previously demonstrated.  

Whilst carnosine supplementation had no effect upon diabetes-induced 

hypercholesterolaemia in the diabetic mice, supplementation significantly reduced 

plasma triglyceride levels. This effect was also seen with carnosine-supplemented 

control mice. This differential effect upon the two classes of lipids was also found by 

Lee et al. [288] where both doses of carnosine (0.5 and 1.0 g/L) blunted the increase in 

heart and liver triglyceride levels in diabetic mice, while for cholesterol levels a 

significant effect was only seen with the higher dose of carnosine. In contrast, 

supplementation of hyperlipidaemic (but not hyperglycaemic) Zucker rats with either L- 

or D-carnosine resulted in matched and significant decreases in both plasma cholesterol 

and triglyceride levels [289]. Similarly both carnosine and histidine  (at 1g/L of 

drinking water) blocked increases in plasma triglycerides and cholesterol in fat-fed, 

non-diabetic, C57BL/6 mice [283]. Thus while carnosine has been consistently 

demonstrated to have a cross-species hypotriglyceridaemic action this is not the case for 

modulation of blood cholesterol levels.  

Further port mortem studies were carried out to examine the anti-atherogenic 

potential of carnosine as plasma triglyceride levels were significantly decreased in the 

diabetic mice that were supplemented with carnosine. Analysis of atherosclerotic 

lesions and disease progression using this model of diabetes-associated atherosclerosis 

is commonly determined by en face analysis of total aortic plaque area. However we 

chose to restrict our analysis to a more detailed examination of the brachiocephalic 

artery and aortic sinus given the propensity of these sites for the development of 
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advanced, rupture-prone, lesions in this strain of mouse [277]. Induction of diabetes 

resulted in a significant increase in plaque area at both sites. The plaques in the diabetic 

mice was shown to consist of large pools of deposited lipids extracellularly in the 

subendothelial space with lower levels of macrophages and decreased level of collagen 

with this potentially weakening the structure of the lesion and heightening the risk of 

plaque rupture [50,298].  

Despite the triglyceride-lowering effects of carnosine, supplementation did not 

lead to a significant reduction in plaque area compared to the un-supplemented mice 

matched for glycaemic status. This data is in agreement with Nestel et al. [291] who 

showed that dietary supplementation of diabetic apo E
-/-

 mice with conjugated linoleic 

acid did not lead to a decrease in aortic plaque area although there was a substantial 

lowering of plasma triglycerides. Using the same model Levi et al. [299] have 

demonstrated a decrease in aortic sinus plaque area in mice treated with PPARγ-agonist 

rosiglitazone, while drug treatment resulted in an elevation of blood triglycerides and 

cholesterol levels. Thus the modulation of diabetes-induced hypertriglyceridaemia in 

this particular animal model does not appear to have a consistent impact on gross plaque 

characteristics. Our results are in contrast to the recent demonstration that 

supplementation of fat-fed apo E
-/-

 with D-carnosine octylester resulted in a reduction in 

plaque area [282]. In common with the study of Menini et al., carnosine 

supplementation did lead to changes in plaque composition, specifically a reduction in 

the area occupied by lipid matched by an increase in that occupied by collagen. 

Cholesterol cleft formation and lipid deposition in atherosclerotic plaque reflects the 

severity and progression of the arterial disease and such lipid-enriched lesions are prone 

to plaque rupture [298]. In particular lesion rupture has been associated with a thinning 

of the fibrous cap and decreased collagen formation [300,301,302]. This shift in plaque 

composition from a lipid rich environment to a collagen rich area is thought to reduce 

the risk of plaque rupture [303]. Given the increasing costs, both personal and 

economic, of the complications of diabetes mellitus there is a strong drive to develop 

treatments to alleviate, delay and hopefully prevent these complications.  

Carnosine and its analogues have recently been shown to have both anti-

hyperlipidaemic, anti-atherosclerotic, hepato- and renal-protective actions in models of 

obesity-associated complications [282,283,288,289]. Our current study is the first to 

demonstrate that this well-tolerated dipeptide may also have a significant impact in the 

treatment of the complications of diabetes. While it had been conceived that carnosine’s 
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anti-atherogenic action would be mediated by its well-characterised anti-glycative / 

glycoxidative activities, this study found carnosine-linked improvements in lipid 

parameters. Thus while hyperglycaemia is a key agent of atherogenesis and 

atherosclerotic progression in diabetes, it must be remembered that, at least in the case 

of Type 2 diabetes, hyperlipidaemia is also likely to have critical pathological role.  

 

5.6  Conclusion 

Prolonged carnosine supplementation has been shown to have a significant 

impact on the progression of the atherosclerosis in a well-established model of diabetes-

associated atherosclerosis. Diabetic mice had a greater extent of plaque formation in the 

brachiocephalic artery and aortic sinus compared with their non-diabetic littermates. 

There were no significant differences in the plaque area when carnosine-supplemented 

mice were compared with mice on plain water and matched for glycaemic status. 

However potential anti-atherosclerotic effects of carnosine were found when 

plaque composition was investigated. When compared to the other treatments there 

were significantly increased numbers of smooth muscle cells (as evidenced by the 

extent of α-actin staining) in the plaques of the carnosine treated diabetic mice. There 

was a significant decrease in macrophage cell numbers in the diabetic mice in the 

brachiocephalic and the aortic sinus. This can be potentially rationalised by the 

significantly higher extracellular lipid content in the same plaques with these lipid 

levels being the result of macrophage foam cell death and lysis. Conversely, carnosine 

supplementation resulted in greater levels of collagen in the plaque although this was 

not consistently linked to an increase in smooth muscle cell staining. It is clear that cell 

populations within the lesions of the carnosine treated animals and particularly these 

with diabetes are altered and this may result in greater lesion stability as judged by 

greater collagen and less extracellular lipid. 

The hypolipidaemic effect of carnosine did not affect plaque area in the diabetic 

mice. However, carnosine does seem to have played an important role in reducing 

extracellular lipid deposition possibly as a result of a decrease in macrophage apoptosis 

and / or necrosis which are known to result in extracellular lipid accumulation [50], 

slowing down atherosclerotic plaque progression by significantly modulating the 

composition of the plaques, engendering plaque stability. On the basis of this data it 
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would appear that supplementation with carnosine may be of benefit in the treatment of 

atherosclerosis including that associated with diabetes. 

These studies are extended in the following chapter where another anti-

lipidaemic agent was also examined using apo E
-/- 

mice but where atherosclerosis was 

driven by high fat-feeding. The focus of the following chapter concentrates on the 

hyperlipidaemic manifestations that were initially observed in the diabetic mice, in apo 

E
-/-

 and wild type C57BL/6 mice that were fed a high fed diet to induce obesity. The 

anti-oxidant and anti hyperlipidaemic properties of TEMPOL was investigated using 

this high fat obesity animal model to further examine whether TEMPOL reverses the 

atherosclerosis.  
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CHAPTER 6: 

INVESTIGATION OF THE IMPACT OF TEMPOL UPON 

ATHEROSCLEROSIS, LIPID PROFILE AND CYTOKINE 

EXPRESSION IN A MURINE OBESITY MODEL 
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6.1  Introduction 

Dyslipidaemia plays a major role in the majority of cardiovascular disorders 

including atherosclerosis [304,305,306]. Total blood cholesterol and LDL-cholesterol 

(LDL-C) are classified as independent risk and graded factors for cardiovascular disease 

(CVD) and meet the criteria for causality related to CVD risk [304]. The causality 

between saturated fat consumption, blood cholesterol levels, and CVD mortality has 

been identified from various genetic, animal study, experimental pathology and 

epidemiological investigations [304,305,307,308,309,310,311,312,313,314,315,316].  

There are several mechanisms postulated for the role of triglycerides in CVD, such as 

smooth muscle damage and impaired vascular repair, or that excess triglycerides in 

lipoproteins may result in abnormal transport, but the association between 

hypertriglyceridaemia and CVD remains controversial [317,318,319,320]. Elevated 

triglyceride levels may be a warning sign and indicate a need to investigate other 

metabolic manifestations such as central obesity, hypertension, low HDL-C and glucose 

intolerance [305,321,322].   

The prevalence and impact of dyslipidaemias and metabolic disorders has led to 

extensive investigations of therapies designed to prevent, inhibit or reverse 

cardiovascular related diseases [304]. Many studies have shown therapeutic reduction of 

these lipid fractions via pharmaceutical or surgical interventions are strongly associated 

with improved measures [323,324,325,326,327,328]. However, prevention of the 

development of obesity, through promotion of healthy eating practices and increased 

physical activity, remains critical to reducing the occurrence of dyslipidaemia and 

excess body weight gain in the community [5,309,329]. Treatments that arrest gain in 

body fat and / or promote body fat loss (including pharmaceuticals and surgical 

procedures) provide critical support where management of body mass remains 

refractory to behavioural modifications alone [327]. Pharmaceuticals also provide tools 

to investigate the mechanisms that underlie obesity, and one example of such a 

compound is TEMPOL which has known impacts upon body weight gain, sensitivity to 

radiation and tumourigenesis [330,331,332,333,334,335].  

TEMPOL (4-hydroxy-2,2,6,6-tetramethylpiperidine-N-oxyl; C9H18NO2) is a cell 

permeant nitroxide, whose structure is shown in Figure 6.1. It has a well characterised 

superoxide dismutase-mimetic activity (which is thought to be basis of its previously 

demonstrated hypotensive effects) and is capable of reacting, and thus detoxifying, a 
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number of free radicals and reactive oxygen species 

[336,337,338,339,340,341,342,343,344,345,346,347]. Previous work from James 

Mitchell (National Cancer Institute) has shown for C3H male and female mice, rendered 

obese by feeding with a Western-style high fat diet, that administration of TEMPOL (10 

mg/g of food) had a profound inhibitory effect upon weight gain. This compound also 

prevented obesity induced changes in leptin levels and decreased age-related 

spontaneous tumour incidence [330]. TEMPOL has been found to reduce irradiation 

induced salivary gland hypofunction (xerostomia) and alopecia in numerous brain, head 

and neck cancer murine models [331,332]. Phase I and II clinical trials for safety, 

pharmacokinetics and preliminary efficacy for the prevention of alopecia induced by 

whole brain radiotherapy have been reported, and this compound is under consideration 

for phase III trials [333,334,335].  

 

 

 

Figure 6.1: Chemical structure of TEMPOL. 

TEMPOL is also referred to as 4-Hydroxy-TEMPO, and 4-hydroxy-2,2,6,6-

tetramethylpiperidin-1-oxyl.  

 

 

The potential protective effects of TEMPOL have also been examined in the 

cardiovascular and diabetes area and research has shown that it can prevent the 

production of hepatic reactive oxygen species induced by diabetes [345]. 

Antihypertensive effects of TEMPOL have been revealed in cell signalling and animal 

models [336]. Several studies have shown TEMPOL lowers blood pressure of rodents 

that were made hypertensive [337,346,347]. Prolonged lowering of blood pressure by 

TEMPOL has been related to an enhancing effect of this compound on the production 

or the action of endogenous nitric oxide (NO˙) [336,338]. TEMPOL has also been 

reported to work as a vasodilator, and has been shown to exhibit protective effects upon 
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vessels and the endothelium in hypertensive rats [337,338,339,346,347] and also in 

small arteries from visceral fat of obese patients [348].  

Endothelial dysfunction is an early event in atherogenesis and further alterations 

occur to the endothelial layers of the arterial wall with the progression and severity of 

atherosclerosis [349,350,351,352,353]. In the previous chapter a model of diabetes-

associated atherosclerosis was investigated using apo E
-/-

 mice in which diabetes was 

induced using the pancreatic toxin streptozotocin. Induction of diabetes was associated 

with larger plaque volume as well as dramatic changes in artery wall composition with 

noticeable lipid accumulation and significantly lower collagen content. The impact of 

the anti-glycative / anti-oxidative agent carnosine upon plaque morphology was 

characterised as a shift to a more stable phenotype with an increased collagen content 

and decreased extracellular lipid. This was associated with a significant decrease in 

blood triglyceride levels. However, hyperglycaemic manifestations (elevated blood 

glucose and glycated Hb levels) in the diabetic mice were not arrested by carnosine.   

The current chapter focuses on the potential modulation of hyperlipidaemia and 

the vascular lipid accumulation of atherosclerosis, a critical component to the 

progression of this disease, in the absence of diabetes. Although there are many reported 

studies on the hypotensive and cardio-protective vascular functions of TEMPOL upon 

the endothelium, arteries and blood vessels, the potential anti-atherogenic action of 

TEMPOL remains poorly characterized.  Therefore the study reported in this chapter 

assesses the potential anti-atherogenic actions of TEMPOL in a murine model of high 

fat fed atherosclerosis and obesity.   

 

6.2  Aims 

The overall aims of this study were firstly to determine whether TEMPOL 

prevents or attenuates atherosclerotic plaque development in obesity-associated 

atherosclerosis, and secondly to examine if TEMPOL reverses or suppresses obesity-

associated hyperlipidaemia, and / or systemic inflammation. 
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6.3  Experimental methods 

6.3.1 Animal model design 

Heart and plasma samples were obtained from Prof. Jim Mitchell from the 

National Cancer Institute (United States) from apo E
-/-

 (n = 38) mice and the parent 

strain C57BL/6 (n= 28) as outlined in Section 2.10. For each strain (i.e. apo E
-/-

 and 

C57BL/6) there were four groups. The first two groups consisted of mice fed a regular 

chow diet with and without TEMPOL (10 mg/g) placed into the food whilst the third 

and fourth groups comprised of a high fat diet with and without TEMPOL included in 

the food as shown in Figure 6.2. Five animals were allocated in each group for the chow 

fed mice with or without TEMPOL supplementation for both animal types. For the apo 

E
-/-

 mice, 13 mice were dedicated to the HFD and 15 were allocated to the HFD with 

TEMPOL supplemented group. For the C57BL/6 parent strain, 8 mice were placed into 

the HFD and 10 were allocated to the HFD with TEMPOL supplemented group.  The 

composition of the chow and high fat diets are detailed in Table 2.1 under Section 2.10.  

 

6.3.2 Histology procedures 

The histological analysis of the aortic sinus was undertaken as detailed in 

Sections 2.7.5 to 2.7.7 and 2.10.1 to 2.10.3 from sample preparation, through to tissue 

sectioning and haematoxylin staining. Three slides (which contained 3 sections) were 

chosen for plaque analysis as described in Sections 2.10.2 and 2.10.3. The first triplicate 

section was taken at the first appearance of the three valve leaflets of the sinus. The 

third slide was taken from the first disappearance of all three valve leaflets. The second 

slide was taken between the first and third sections. The three chosen slides were 

stained with Haematoxylin and Eosin (H & E) as detailed in Section 2.7.7 and later 

photographed using the appropriate magnification as shown in Figure 2.6. The total 

surface area and plaque were determined using Adobe Photoshop as shown in Figure 

5.5. 
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Figure 6.2: Animal model for TEMPOL study. 

C57BL/6 wild type and the apo E
-/-

 mice were divided into four groups comprising of 

chow control mice with and without TEMPOL administered in the food, and high fat 

diet fed mice with and without TEMPOL inserted in the food.   
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6.3.2 Plasma analysis 

The mouse plasma samples were analysed as described in Sections 2.11 to 

2.11.2 for triglycerides, total cholesterol, HDL-cholesterol and LDL-cholesterol. 

Cytokine, inflammatory agents and adipokine measurements were also examined as 

detailed in Sections 2.11.3. Statistical analysis was carried out by using two-way 

ANOVA analyses followed by a Bonferroni’s posthoc test.  

 

6.4  Results  

6.4.1 Effects of TEMPOL upon body mass in apo E
-/-

 and parent strain C57BL/6 

mice 

The animal husbandry was carried out at the National Cancer Institute 

(Bethesda, MD, USA) as outlined in Section 2.10. The body masses of the mice were 

closely monitored for 20 weeks.  The body masses of the HFD fed mice increased 

considerably in comparison to the chow fed mice regardless of TEMPOL 

supplementation in both animal types. However treatment with TEMPOL resulted in 

significantly lower gain in mass for the HFD mice. Notably the body mass of the 

TEMPOL-treated HFD mice was similar to that of the non-HFD fed mice (Figure 6.3).  
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Figure 6.3: Average body mass of apo E
-/-

 (Panel A) and C57BL/6 (Panel B) mice 

during the intervention phase during which the mice were fed normal chow or 

HFD with or without TEMPOL supplementation.   

The mean body mass (g) of the mice from each group during the intervention period of 

7 weeks is displayed for apo E
-/-

 (Panel A) and 20 weeks for C57BL/6 (Panel B) mice.     
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6.4.2 Morphometry of atherosclerotic plaques in the aortic sinus  

The heart samples from the different experimental groups outlined above were 

supplied by the National Cancer Institute. As each of these was provided without an 

intact arterial tree, only the aortic sinus was available for plaque analysis. This was 

analysed in order to determine whether TEMPOL inhibited or delayed the progression 

of atherosclerosis. 

Three triplicate cross-sections were taken along the aortic sinus and 

morphometric measurements were performed for each mouse as described in Sections 

2.10.1 to 2.10.3. Atherosclerotic plaques were observed in the apo E
-/-

 mice however no 

atherosclerosis was detected in the aortic sinus in the parent strain mice regardless of 

their diet and body mass gain (Figure 6.4).  

The aortic sinuses from the HFD fed mice (10.8 ± 0.7 (x10³) μm²) contained less 

plaque than for the chow control mice (17.1 ± 2.9 (x10³) μm², p < 0.05). In contrast the 

HFD supplemented mice with TEMPOL (12.1 ± 1.2 (x10³) μm², p < 0.01) contained a 

lower plaque area than the chow fed animals supplemented with TEMPOL (20.5 ± 1.8 

(x10³) μm², p < 0.01) mice as shown in Figure 6.5 (Panel A).  

There were no statistical differences in the total cross-sectional areas of the 

aortic sinus as shown in Figure 6.5 (Panel B). When the plaque was examined over the 

total area as presented in Figure 6.5 (Panel C), there were no statistical differences in 

plaque percentage between the chow (16.5 ± 2.8%) and HFD (11.8 ± 0.8%) fed apo E
-/-

 

mice. A lower plaque percentage was seen in the HFD mice supplemented with 

TEMPOL (12.3 ± 1.1%, p < 0.01) than the chow with TEMPOL (20.6 ± 1.3%, p < 0.01) 

supplemented apo E
-/-

 mice.  

Although TEMPOL effectively suppressed HFD induced gain in body mass, in 

both apo E
-/-

 mice and the parent strain, it did not appear to suppress atherosclerotic 

development in the apo E
-/-

 mice. The plaques measured in the aortic sinuses in both 

groups of chow-fed mice (that is with or without TEMPOL) mice were significantly 

larger than for the HFD apo E
-/-

 mice, matched for TEMPOL treatment. No 

atherosclerosis was detected in the aortic sinuses taken from the parent strain C57BL/6 

mice. 
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Figure 6.4: Representative sections of the aortic sinus stained with H & E from 

chow and high fat diet (HFD) fed apo E
-/-

 mice with or without TEMPOL 

supplementation.  

Sections taken from the aortic sinus were stained with H & E and photographed using 

the 10x objective to determine the degree of plaque formation within the valve leaflets. 

The total plaque area was analysed over the total area and expressed as a percentage.  
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Figure 6.5: Plaque morphometry in the aortic sinus for plaque area (Panel A), total 

area (Panel B) and percentage of plaque on total area (Panel C) in apo E
-/-

 mice 

that were fed either a chow or HFD, with or without TEMPOL supplementation.  

Plaque and total cross sectional areas within the leaflets were determined in the aortic 

sinuses and expressed as (x10³) μm² in Panels A and B. Plaque is expressed as a 

percentage over the total area in Panel C. Statistical significance was achieved at * p < 

0.05 versus the chow control and ++ p < 0.01 versus the chow supplemented with 

TEMPOL mice using two-way ANOVA analysis followed by Bonferroni’s post hoc 

test. Values are expressed as mean ± SEM. 
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6.4.3 Effects of TEMPOL upon plasma triglyceride levels in the treatment 

groups 

Hypertriglyceridaemia is associated with an increased risk of cardiovascular 

disease and commonly seen in people with lipid abnormalities, visceral obesity, 

metabolic syndrome and type 2 diabetes [354].  Triglyceride levels were measured in 

plasma from all mice as described in Section 2.11.1 to determine whether TEMPOL had 

an effect upon the lipid profile in mice that became obese via consumption of a high fat 

fed diet. 

The measured plasma triglyceride levels were significantly higher for the HFD 

fed apo E
-/-

 mice (2 ± 0.1 mmol/L) than the chow control (0.8 mmol/L, p < 0.001). HFD 

fed TEMPOL mice (0.6 mmol/L, p < 0.001) showed lower triglyceride levels than the 

HFD fed mice as shown in Panel A of Figure 6.6.  

Triglyceride levels were significantly elevated in the high fat fed C57BL/6 mice 

(0.8 mmol/L) than the chow control animals (0.5 ± 0.1 mmol/L, p < 0.001). HFD fed 

mice that were supplemented with TEMPOL (0.5 mmol/L, p < 0.001) showed lower 

triglyceride levels than the HFD fed mice. Lower levels of triglycerides were also 

detected in the chow fed mice administered TEMPOL (0.3 mmol/L, p < 0.05) when 

compared to the HFD fed mice supplemented with TEMPOL mice as shown in Panel B 

of Figure 6.6.  

Overall, the HFD fed mice had higher triglyceride levels than the non-HFD fed 

mice in both animal types, and TEMPOL significantly attenuated this elevation. The 

triglyceride levels in the plasma of the HFD mice administered TEMPOL were similar 

to that of the non-HFD fed mice as shown in Figure 6.6.  
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Figure 6.6: Plasma triglyceride levels for apo E
-/-

 (Panel A) and C57BL/6 (Panel B) 

mice.  

Triglyceride levels (mmol/L) were measured in mice that were fed a chow or a high fat 

diet (HFD) with or without TEMPOL supplementation. Statistical significance is 

achieved at *** p < 0.001 versus chow control, + p < 0.05 versus chow with TEMPOL 

and ### p < 0.001 versus HFD fed mice using two-way ANOVA analysis followed by 

Bonferroni’s post-hoc test. Data are expressed as mean ± SEM. 
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6.4.4 Effects of TEMPOL upon plasma total cholesterol in apo E
-/-

 and parent 

strain C57BL/6 mice 

Hypercholesterolaemia is a major risk factor for CVD [310,311] and was 

assessed to determine whether TEMPOL treatment could also modulate cholesterol 

levels as seen with the triglyceride levels in the HFD mice. Total cholesterol levels were 

measured in the mouse plasma as described in Section 2.11.2.   

Total cholesterol levels were significantly elevated in the high fat fed apo E
-/-

 

mice (4.6 ± 0.2 mmol/L) when compared to the chow control mice (2.8 ± 0.1 mmol/L, p 

< 0.001) as shown in Panel A of Figure 6.7. The HFD fed TEMPOL mice (2.7 ± 0.1 

mmol/L, p < 0.001) had lower cholesterol levels than the HFD and the chow 

supplemented with TEMPOL (3.8 ± 0.5 mmol/L, p < 0.01) mice. The chow control 

mice had lower cholesterol levels than the chow supplemented with TEMPOL mice (p < 

0.05). 

HFD fed C57BL/6 mice had higher total cholesterol levels (4.2 ± 0.2 mmol/L) 

compared to the chow control (1.9 ± 0.1 mmol/L, p < 0.001). HFD fed mice 

supplemented with TEMPOL (2.7 ± 0.1 mmol/L, p < 0.001) exhibited lower cholesterol 

levels than the HFD fed mice. Total cholesterol levels were statistically higher in the 

HFD mice supplemented with TEMPOL than the chow mice supplemented with 

TEMPOL (1.5 ± 0.1 mmol/L, p < 0.001) as shown in Panel B of Figure 6.7. 

Overall, high fat-feeding resulted in a significant increase in total plasma 

cholesterol levels for both the apo E
-/-

 and parent strains, and TEMPOL significantly 

attenuated this elevation. The total cholesterol levels in the plasma of the HFD mice 

administered TEMPOL were similar to those of the chow-fed mice as shown in Figure 

6.7.  
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Figure 6.7: Plasma total cholesterol levels for apo E

-/-
 (Panel A) and C57BL/6 

(Panel B) mice.  

Total cholesterol levels (mmol/L) were measured in mice that were fed a chow or a high 

fat diet (HFD) with or without TEMPOL supplementation. Statistical significance was 

achieved at * p <0 .05, *** p < 0.001 versus chow, ++ p < 0.01, +++ p < 0.001, +++ p < 

0.001 versus chow administered TEMPOL mice, ### p < 0.001 versus HFD using two-

way ANOVA analysis followed by Bonferroni’s post-hoc test. Values are expressed as 

mean ± SEM. 



181 
 

6.4.5 Effects of TEMPOL upon plasma high density lipoprotein-cholesterol 

(HDL-C) levels in apo E
-/-

 and parent strain C57BL/6 mice 

High density lipoproteins are believed to have cardio-protective effects as they 

mediate cholesterol efflux and reverse cholesterol transport, which is critical in limiting 

the number of lipid-laden foam cells that contribute to atherosclerosis [355,356]. Many 

cohort and case-control studies have reported a negative correlation between HDL 

concentrations and the occurrence of atherosclerotic disease, and HDL-C is involved in 

protection against the pathogenesis of atherosclerosis [304,305,306]. HDL-C levels 

were therefore measured in the mouse plasma as described in Section 2.11.2 to 

determine whether TEMPOL could modulate HDL-C levels in obese mice that 

consumed a HFD.   

HFD fed apo E
-/-

 mice had higher HDL-C levels (0.4 mmol/L) than the chow 

control mice (0.1 mmol/L, p < 0.001). HFD mice supplemented with TEMPOL (0.1 

mmol/L, p < 0.001) had lower HDL-C levels than the HFD fed mice as shown in Panel 

A of Figure 6.8.  

HDL-C levels were significantly elevated in the HFD fed C57BL/6 mice (1.4 ± 

0.1 mmol/L) compared with the chow control fed mice (0.6 ± 0.1 mmol/L, p < 0.001). 

HFD mice supplemented with TEMPOL (0.9 mmol/L, p < 0.001) exhibited lower HDL-

C levels than the HFD fed mice. Lower levels of HDL-C (0.6 mmol/L, p < 0.001) were 

observed in the chow supplemented TEMPOL mice when compared to the HFD mice 

supplemented with TEMPOL as shown in Panel B of Figure 6.8.  

Overall high fat feeding was associated with elevated HDL-C in both mouse 

strains, and this elevation was attenuated by TEMPOL. The HDL-C levels in the plasma 

of the HFD administered TEMPOL mice were similar to that of the non-HFD fed apo E
-

/-
 mice.  
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Figure 6.8: Plasma HDL-C levels for apo E
-/-

 (Panel A) and C57BL/6 (Panel B) 

mice.  

HDL-C levels (mmol/L) were measured in mice that were fed a chow or a high fat diet 

(HFD) with or without TEMPOL supplementation. Statistical significance was achieved 

at *** p < 0.001 versus chow, +++ p < 0.001 versus chow administered TEMPOL and 

### p < 0.001 versus HFD fed mice using two-way ANOVA analysis followed by 

Bonferroni’s post-hoc test. Data are expressed as mean ± SEM. 
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6.4.6 Effects of TEMPOL upon plasma low density lipoprotein-cholesterol (LDL-

C) in apo E
-/-

 and parent strain C57BL/6 mice 

Total blood cholesterol and LDL-cholesterol (LDL-C) are classified as 

independent risk and graded factors for cardiovascular disease (CVD) and meet the 

criteria for causality related to CVD risk [304]. Increased levels of LDL-C are 

associated with the progression of atherosclerosis, metabolic dysfunction and obesity 

[357,358,359]. LDL-C levels were therefore measured in the mouse plasma as described 

in Section 2.11.2 to determine whether TEMPOL had an effect upon LDL-C levels in 

mice that consumed a HFD. 

LDL-C levels were significantly higher in the HFD fed apo E
-/-

 mice (4.3 ± 0.2  

mmol/L) when compared to the chow control (2.7 ± 0.1 mmol/L, p < 0.001) as shown in 

Panel A of Figure 6.9. The HFD mice supplemented with TEMPOL (2.6 ± 0.1 mmol/L, 

p < 0.001) had lower LDL-C levels than the HFD fed mice. Lower levels of LDL-C 

were observed in the chow fed mice than the chow supplemented with TEMPOL mice 

(2.7 ± 0.1 mmol/L, p < 0.05). There were statistically lower LDL-C levels in the HFD 

supplemented with TEMPOL than the chow supplemented with TEMPOL mice (p < 

0.01).   

The HFD fed C57BL/6 mice had higher LDL-C levels (2.8 ± 0.2 mmol/L) than 

the chow control (1.2 ± 0.1 mmol/L, p < 0.001) as shown in Panel B of Figure 6.9. HFD 

mice supplemented with TEMPOL (1.8 ± 0.1 mmol/L, p < 0.001) had lower LDL-C 

levels than the HFD fed mice.  Lower levels of LDL-C were also detected in the chow 

mice supplemented with TEMPOL (0.9 mmol/L, p < 0.001) than the HFD fed mice 

supplemented with TEMPOL.   

Overall high fat feeding was associated with elevated LDL-C levels in both 

strains of mice, and TEMPOL significantly attenuated this elevation. The LDL-C levels 

in the plasma of the HFD mice administered TEMPOL were similar to those of the non-

HFD fed apo E
-/-

 mice.  
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Figure 6.9: Plasma LDL levels for apo E
-/-

 (Panel A) and C57BL/6 (Panel B) 

mice.  

HDL levels (mmol/L) were measured in mice that were fed a chow or a high fat diet 

(HFD) with or without TEMPOL supplementation. Statistical significance was achieved 

at * p < 0.05, *** p < 0.001 versus chow, ++ p < 0.01, +++ p < 0.001 versus chow 

administered TEMPOL and ### p < 0.001 versus HFD fed mice using two-way 

ANOVA analysis followed by Bonferroni’s post-hoc test. Values are expressed as mean 

± SEM. 
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6.5 Effects of TEMPOL on cytokine levels in high fat diet (HFD) fed apo E
-/-

 

and wild type C57BL/6 mice 

6.5.1 Effects of TEMPOL on Tumour Necrosis Factor-α (TNF-α) levels  

TEMPOL had a dramatic effect in suppressing body weight gain and 

hyperlipidaemia in mice that consumed a HFD (see Sections 6.4.1, 6.4.3 - 6.4.6).  The 

consequences of obesity include the development of insulin-resistance and 

inflammation which may play central roles in atherosclerosis. A deficiency of the 

proinflammatory cytokine TNF-α has been shown previously to protect against insulin 

resistance induced by a HFD in TNF-α knockout mice [360]. The levels of the pro-

inflammatory cytokine TNF-α levels were therefore investigated to determine whether 

the profound effect of TEMPOL upon body mass gain suppressesed inflammation 

possibly induced by the HFD. TNF-α levels (pg/ mL) were measured in the mouse 

plasma as described in Section 2.11.3.  

Although HFD had a dramatic effect on obesity and hyperlipidaemia there were 

no significant differences observed in TNF-α levels between the chow and HFD fed 

mice.  There were also no statistical differences observed across all the groups for both 

the apo E
-/-

 and C57BL/6 strains as shown in Figure 6.10. Thus neither the high fat diet 

nor the supplementation with TEMPOL modulated the TNF-α levels in the mouse 

plasma.  
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Figure 6.10: Plasma TNF-α levels for apo E
-/-

 (Panel A) and C57BL/6 (Panel B) 

mice.  

TNF-α levels (pg/mL) were measured in the plasma of mice that were fed a chow or a 

high fat diet (HFD) with or without TEMPOL supplementation. Values are expressed as 

mean ± SEM. No statistical differences were detected between the various groups using 

2-way ANOVA with Bonferroni’s post-hoc test. 
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6.5.2 Effects of TEMPOL on Monocyte Chemotactic Protein-1 (MCP-1) levels  

MCP-1 is an inflammatory marker commonly associated with atherosclerosis, 

obesity, diabetes, insulin resistance, metabolic dysfunction, adiposity and macrophage 

behaviour [312,361]. MCP-1 levels (pg/mL) were measured in the mouse plasma as 

described in Section 2.11.3.  

There were no statistical differences in MCP-1 levels detected between the apo 

E
-/-

 chow and HFD fed groups. However significantly lower MCP-1 levels were 

observed in the apo E
-/-

 HFD mice supplemented with TEMPOL (28.2 ± 4 pg/mL, p < 

0.01) when compared to HFD mice (43.8 ± 3.5 pg/mL). HFD mice supplemented with 

TEMPOL also contained lower MCP-1 levels than the chow apo E
-/-

 mice supplemented 

with TEMPOL (53.8 ± 4.1 mmol/L, p < 0.01) as shown in Figure 6.11 (Panel A).  

HFD fed C57BL/6 mice contained higher MCP-1 levels (36.6 ± 2.7 pg/mL) than 

the chow control (18.2 ± 4 pg/mL, p < 0.001) as shown in Panel B of Figure 6.11.  

Lower levels of MCP-1 were also detected in the HFD fed TEMPOL mice (23.4 ± 2.9 

pg/mL, p < 0.01) than the HFD fed mice.  

Overall HFD fed mice had higher MCP-1 levels than the non-HFD fed mice in 

C57BL/6 mice, and TEMPOL significantly attenuated this elevation. The MCP-1 levels 

in the plasma of the HFD mice administered TEMPOL were similar to that of the non-

HFD fed apo E
-/-

 mice, with the mean values not statistically different.  
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Figure 6.11: Plasma MCP-1 levels for apo E
-/-

 (Panel A) and C57BL/6 (Panel B) 

mice.  

MCP-1 levels (pg/mL) were measured in plasma of mice that were fed a chow or a high 

fat diet (HFD) with or without TEMPOL supplementation. Statistical significance was 

achieved at *** p < 0.001 versus chow, ++ p < 0.01 versus chow supplemented with 

TEMPOL and ## p < 0.01 versus HFD fed mice using two-way ANOVA analysis 

followed by Bonferroni’s post-hoc test. Values are expressed as mean ± SEM. 
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6.5.3 Effects of TEMPOL on interleukin-6 (IL-6) levels  

IL-6 is a biomarker of inflammation and is associated with the metabolic 

syndrome and obesity [313,362]. The levels of this species were therefore measured in 

the mouse plasma as described in Section 2.11.3.  

IL-6 levels were significantly higher in the HFD fed apo E
-/-

 mice (47 ± 2.7 

pg/mL) than the chow (10.4 ± 1.9 pg/mL, p < 0.001) control as presented in Panel A of 

Figure 6.12. Lower levels of IL-6 were observed in the HFD mice supplemented with 

TEMPOL (16.8 ± 1.5 pg/mL, p < 0.001) than the HFD fed mice.  

The IL-6 levels were greater in the HFD fed C57BL/6 mice (27.5 ± 2.2 pg/mL) 

than the chow control (4.9 ± 0.9 pg/mL, p < 0.001) as shown in Panel B of Figure 6.12. 

Lower IL-6 levels were detected in the HFD mice supplemented with TEMPOL (14.1 ± 

1.7 pg/mL, p < 0.001) than the HFD fed mice. The HFD supplemented mice with 

TEMPOL contained higher IL-6 levels than the chow supplemented mice with 

TEMPOL (4.8 ± 0.9 pg/mL, p < 0.01).  

Overall the HFD fed mice had higher levels of IL-6 than the non-HFD fed mice 

and TEMPOL significantly attenuated this elevation in both animal types. The IL-6 

values examined in the HFD mice supplemented with TEMPOL were similar to those of 

the non-HFD apo E
-/-

 mice with no statistical difference observed between these groups.  
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Figure 6.12: Plasma IL-6 levels for apo E
-/-

 (Panel A) and C57BL/6 (Panel B) mice. 

IL-6 levels (pg/mL) were measured in plasma of mice that were fed a chow or a high fat 

diet (HFD) with or without TEMPOL supplementation. Statistical significance was 

achieved at *** p < 0.001 versus chow and ++ p < 0.01 versus chow with TEMPOL 

supplementation and ### p < 0.001 versus HFD fed mice using two-way ANOVA 

analysis followed by Bonferroni’s post-hoc test. Values are expressed as mean ± SEM. 
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6.5.4 Effects of TEMPOL on serum amyloid-A (SAA) levels  

SAA is an acute-phase apolipoprotein predominantly produced by hepatocytes, 

the plasma levels of which have been positively correlated with the incidence of obesity, 

adiposity, diabetes and insulin resistance [363,364,365]. SAA levels were therefore 

measured in the mouse plasma as described in Section 2.11.3.  

SAA levels were significantly elevated in the HFD fed apo E
-/-

  mice (312.3 ± 

32.5 ng/mL) when compared to chow control mice (65.8 ± 15.4 ng/mL, p < 0.001) as 

presented in Panel A of Figure 6.13. The HFD mice supplemented with TEMPOL 

(127.3 ± 35.2 ng/mL, p < 0.001) had lower SAA levels than the HFD fed mice. 

HFD fed C57BL/6 mice exhibited higher SAA levels (294.4 ± 33.6 ng/mL) than 

the chow control (132 ± 9.6 ng/mL, p < 0.001) as shown in Panel B of Figure 6.13. 

HFD supplemented with TEMPOL mice (130.7 ± 9.4ng/mL, p < 0.001) showed lower 

SAA levels than the HFD fed mice.   

Overall the HFD mice had higher levels of SAA than the non-HFD fed mice and 

TEMPOL significantly attenuated this elevation in both the animal types. The SAA 

values examined in the HFD mice supplemented with TEMPOL were similar to that of 

the non-HFD fed mice in both animal types and there were no statistical differences 

observed between these groups.  
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Figure 6.13: Plasma SAA levels for apo E
-/-

 (Panel A) and C57BL/6 (Panel B) mice. 

SAA levels (ng/mL) were measured in plasma of mice that were fed a chow or a high 

fat diet (HFD) with or without TEMPOL supplementation. Statistical significance was 

achieved at *** p < 0.001 versus chow and ### p < 0.001 versus HFD fed mice using 

two-way ANOVA analysis followed by Bonferroni’s post-hoc test. Values are 

expressed as mean ± SEM. 
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6.5.5 Effects of TEMPOL on myeloperoxidase (MPO) levels  

MPO, a heme enzyme released by activated neutrophils and monocytes at sites 

of inflammation, catalyzes the oxidation of chloride ions to hypochlorous acid using 

hydrogen peroxide as a co-substrate [24]. Elevation of MPO levels have been reported 

to be an early biomarker of atherosclerosis and positively correlated with the incidence 

of obesity and cardiovascular disease in both children and adults [366,367]. MPO 

protein levels were therefore measured in the mouse plasma as described in Section 

2.11.3. 

MPO protein levels were significantly elevated in the HFD fed apo E
-/-

  mice 

(108.2 ± 7.1 ng/mL) when compared to chow control (39.8 ± 6 ng/mL, p < 0.001) as 

presented in Panel A of Figure 6.14. HFD mice supplemented with TEMPOL (28.8 ± 

2.2 ng/mL, p < 0.001) contained lower MPO levels than the HFD fed mice. Lower MPO 

levels were observed in the HFD supplemented with TEMPOL mice than the apo E
-/-

 

mice fed on chow supplemented with TEMPOL (57.6 ± 3.9 ng/mL, p < 0.01). 

HFD fed C57BL/6 mice had higher MPO levels (69.8 ± 5.3 ng/mL) than the 

chow control (23 ± 0.7 ng/mL, p < 0.001) as shown in Panel B of Figure 6.14. Lower 

levels of MPO were detected in the HFD mice supplemented with TEMPOL (43 ± 

4.1ng/mL, p < 0.001) than the HFD fed mice. Higher levels of MPO were present in the 

HFD mice supplemented with TEMPOL than the chow C57BL/6 mice supplemented 

with TEMPOL (22.7 ± 1.7 ng/mL, p < 0.01). 

Overall HFD fed mice of both strains had higher levels of MPO than the non-

HFD fed mice and TEMPOL significantly attenuated this elevation in both the animal 

types. The MPO levels detected in the HFD apo E
-/-

 mice supplemented with TEMPOL 

were the lowest of any of the apo E
-/-

 mouse groups examined. 
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Figure 6.14: Plasma MPO levels for apo E
-/-

 (Panel A) and C57BL/6 (Panel B) 

mice.  

MPO levels (ng/mL) were measured in plasma of mice that were fed a chow or a high 

fat diet (HFD) with or without TEMPOL supplementation. Statistical significance was 

achieved at *** p < 0.001 versus chow, ++ p < 0.01 versus chow with TEMPOL 

supplementation and ### p < 0.001 versus HFD fed mice using two-way ANOVA 

analysis followed by Bonferroni’s post-hoc test. Values are expressed as mean ± SEM. 
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6.5.6 Effects of TEMPOL on adiponectin levels  

Adipose tissue is a major energy reservoir in the body and a primary source of 

adipocytokines [368].  Adiponectin is a fat-derived hormone, secreted by adipocytes 

which exerts cardio-protective, anti-atherogenic, anti-inflammatory and anti-diabetic 

effects [369,370]. A reduction in adiponectin expression has been associated with 

obesity-related metabolic and cardiovascular diseases [368,370]. As a number of other 

cytokines and inflammatory agents were observed to be suppressed by TEMPOL in the 

obese and hyperlipidaemic high fat-fed mice examined in this project, it was of interest 

to determine whether adiponectin levels were also modulated in the mouse plasma. This 

adipokine was quantified as described in Section 2.11.3. 

Adiponectin levels were significantly decreased in the HFD fed apo E
-/-

 mice 

(9608 ± 592 ng/mL) compared to chow control (22091 ± 1202 ng/mL, p < 0.001). The 

HFD mice supplemented with TEMPOL (19103 ± 2035 ng/mL, p < 0.001) contained 

higher levels of adiponectin than the HFD fed mice, as presented in Panel A of Figure 

6.15. For the C57BL/6 mice there were no statistical differences in the levels of 

adiponectin amongst the groups as shown in Panel B of Figure 6.15.  

The HFD fed mice had the lowest levels of adiponectin, and TEMPOL 

significantly attenuated this decrease in adiponectin levels. The adiponectin values 

detected in the HFD mice supplemented with TEMPOL were similar to those of the 

non-HFD fed apo E
-/-

 mice and these data were not statistically different. Neither the 

HFD nor TEMPOL had any effect upon adiponectin levels in the C57BL/6 mice. 
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Figure 6.15: Plasma adiponectin levels for apo E
-/-

 (Panel A) and C57BL/6 (Panel 

B) mice.  

Adiponectin levels (ng/mL) were measured in plasma of mice that were fed a chow or a 

high fat diet (HFD) with or without TEMPOL supplementation. Statistical significance 

was achieved at *** p < 0.001 versus chow and ### p < 0.001 versus HFD fed mice 

using two-way ANOVA analysis followed by Bonferroni’s post-hoc test. Values are 

expressed as mean ± SEM. 
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6.5.7 Effects of TEMPOL on leptin levels 

Leptin is a hormone, secreted by adipocytes, that serves as a major negative 

regulator of food intake and engenders energy expenditure [368]. Dietary obesity is 

strongly correlated with hyperleptinaemia and hyperlipidaemia [78,312,330,371]. 

Leptin levels were therefore measured to confirm the inhibitory effects of TEMPOL 

upon inflammation, adiposity and body weight gain observed in the obese and 

hyperlipidaemic mice that were fed a HFD.   

The leptin levels were measured in the mouse plasma as described in Section 

2.11.3. The leptin levels were significantly elevated in the HFD fed apo E
-/-

 mice (95.2 

± 2.5 ng/mL) when compared to the chow control (4.3 ± 0.5 ng/mL, p < 0.001). HFD 

mice supplemented with TEMPOL (6.7 ± 0.6 ng/mL, p < 0.001) exhibited lower leptin 

levels than the HFD fed mice as presented in Panel A of Figure 6.16.  

HFD fed C57BL/6 mice produced higher leptin levels (112.5 ± 1.8 ng/mL) than 

the chow control (18.4 ± 0.4 ng/mL, p < 0.001) as shown in Panel B of Figure 6.16. The 

HFD mice supplemented with TEMPOL (15.1 ± 1.2 ng/mL, p < 0.001) contained lower 

leptin levels than the HFD fed mice.  Lower leptin values were also observed in the 

chow fed mice supplemented with TEMPOL (6.4 ± 0.5 ng/mL, p < 0.001) than the 

chow control.  Higher leptin levels were observed in the HFD supplemented with 

TEMPOL than the chow supplemented with TEMPOL mice (p < 0.001). 

Overall the HFD fed mice had higher levels of leptin than the non-HFD fed mice 

and TEMPOL significantly attenuated this elevation in both the animal types. The leptin 

values examined in the HFD mice supplemented with TEMPOL were similar to those of 

the chow control mice and these values were not statistically different in both animal 

types. For the apo E
-/-

 mice the leptin levels observed in the HFD supplemented with 

TEMPOL mice were similar to the non-HFD fed mice, and these values were not 

statistically different.  
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Figure 6.16: Plasma leptin levels for apo E
-/-

 (Panel A) and C57BL/6 (Panel B) 

mice.  

Leptin levels (ng/mL) were measured in plasma of mice that were fed a chow or a high 

fat diet (HFD) with or without TEMPOL supplementation. Statistical significance was 

achieved at *** p < 0.001 versus chow, +++ p < 0.001 versus chow with TEMPOL 

supplementation and ### p < 0.001 versus HFD fed mice using two-way ANOVA 

analysis followed by Bonferroni’s post-hoc test. Values are expressed as mean ± SEM. 
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6.5.8 Effects of TEMPOL on resistin levels  

As the data reported in the previous sections indicate that TEMPOL had an 

effect upon both adiponectin and leptin levels in the apo E
-/-

 obese and hyperlipidaemic 

mice that were on a HFD, resistin, an adipocyte secreted cytokine recently proposed to 

be associated with obesity and diabetes [78,372] was also quantified in the mouse 

plasma as described in Section 2.11.3.  

There were no statistical differences in resistin levels examined in the apo E
-/-

 

mice amongst the groups as shown in Panel A of Figure 6.17. There were also no 

statistical differences observed between the chow and HFD fed C57BL/6 mice as 

presented in Panel B of Figure 6.17. Resistin levels were however significantly higher 

in the HFD mice supplemented with TEMPOL C57BL/6  mice (52 ± 1.8 ng/mL) 

compared to chow fed mice supplemented with TEMPOL (26.2 ± 0.7 ng/mL, p < 0.001) 

and the HFD fed mice (23.7 ± 0.8 ng/mL, p < 0.001).  

Overall, there were no changes in resistin levels observed amongst the animals 

on the HFD, and TEMPOL did not have an effect upon resistin levels in the apo E
-/-

 

mice. However resistin values were greater in the HFD C57BL/6 mice supplemented 

with TEMPOL than the remaining groups of C57BL/6 mice.  
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Figure 6.17: Plasma resistin levels for apo E
-/-

 (Panel A) and C57BL/6 (Panel B) 

mice.  

Resistin levels (ng/mL) were measured in plasma of mice that were fed a chow or a high 

fat diet (HFD) with or without TEMPOL supplementation. Statistical significance was 

achieved at +++ p < 0.001 versus chow with TEMPOL supplementation and ### p < 

0.001 versus HFD fed mice using two-way ANOVA analysis followed by Bonferroni’s 

post-hoc test. Values are expressed as mean ± SEM. 
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6.6  Discussion 

The antioxidant activity and the antihypertensive effects of TEMPOL have been 

extensively studied with regard to inflammatory diseases including cancer 

[331,332,334,335], atherosclerosis [373,374,375,376], obesity [330,340,341,342] and 

diabetes [343,344,345] where oxidative damage is purported to contribute to 

pathogenesis and disease progression. In the present project, post mortem analyses was 

undertaken upon the aortic sinuses from atherosclerosis-prone mice (high fat-fed apo E
-

/-
 mice as well as the parent strain C57BL/6 strain) to elucidate the therapeutic potential 

of TEMPOL.  

Direct administration of TEMPOL has been shown to decrease blood pressure 

levels in many hypertensive rodent models [337,338,339,346,347]. TEMPOL and other 

nitroxides are considered safe to administer as no adverse effects appeared on cell 

growth and viability at concentrations of up to 1 mM [377]. Notably incubation with 

TEMPOL as high as 50 mM was shown to not provoke damage to chromosomal 

structures but instead was able to protect against radiation-induced chromosomal 

aberrations in cultured human peripheral blood lymphocytes [378]. Low loses of 

TEMPOL (0.4 mM/kg) given via intravenous injections have however been reported to 

cause restlessness and seizures [379,380]. However, TEMPOL concentrations as high as 

275 mg/kg were shown to be radioprotective in mice that were exposed to whole-body 

radiation [380].  TEMPO (2,2,6,6-tetramethylpiperidinoxyl radical; (CH2)3(CMe2)2NO˙
 

as shown in Figure 6.18) administration to mice was shown to result in rapid 

metabolism to produce the less toxic species TEMPOL [381]. Overall these studies 

imply that nitroxides are generally safe to administer except at exceptionally high 

dosages. Therefore we predicted that the 10 mg/g (equivalent to approx. 58 mM) 

TEMPOL that was utilised in these studies was likely to be well tolerated. Similar levels 

have been used in previous studies including long term feeding trials without any 

problems [330,331].   
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Figure 6.18: Chemical structure of TEMPO. 

TEMPO is also referred to as 2,2,6,6-tetramethylpiperidinoxidanyl, and 2,2,6,6-

tetramethylpiperidinoxyl radical. 

 

 

In this study, TEMPOL supplementation via food had a profound inhibitory 

effect, in both apo E
-/-

 and the parent C57BL/6 mice, upon the typical body mass gain 

that is the result of a high fat diet. Adult male apo E
-/-

 (or the parent C57BL/6) mice 

were fed for 7 weeks either on a standard chow diet or a high-fat diet (HFD) with the 

high fat feeding resulting in a substantial increase in body mass in both strains. 

TEMPOL feeding resulted in marked reduction in body mass gain. These findings 

confirm a previous study carried out by Mitchell et al. where TEMPOL administration 

via drinking water (2.9 - 58 mM) or food (10 mg/g food: 58 mM as used here) was also 

reported to result in significantly reduced body mass gain in C3H mice that were fed a 

bacon-flavoured mouse chow [330].  There seemed to be a dose dependent response as 

the degree of  inhibition of body weight gain increased with increasing dosages of 

TEMPOL, with 29 mM and above giving statistically significantly differences 

compared to both control groups (sucrose or ad lib). TEMPOL treated animals 

consumed approximately 20 to 30% less food than the non-TEMPOL administered 

mice.  

Although TEMPOL suppressed high fat feeding-induced body mass gain in both 

these previous studies [330,331] and the current investigation, the effect of this 

treatment on atherosclerosis remains under characterised. This was therefore further 

examined in the two animal models. Atherosclerotic plaque was assessed at one 

location, the aortic sinus. Regardless of diet, no plaque was observed in the aortic 

sinuses collected from the C57BL/6 parent strain. In contrast to this, plaques of 

substantial size were detected in the apo E
-/-

 mice. However, the plaque areas in the 

aortic sinuses from chow fed mice were significantly larger than those determined for 

the high fat-fed mice. This is a major limitation to the study as more plaque area should 

http://upload.wikimedia.org/wikipedia/commons/5/5c/2,2,6,6-Tetramethylpiperidinyloxyl.svg
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be observed in the high fat-fed mice across all well-established atherosclerotic animal 

models. This may be due to fact that the animals may have been kept for too long before 

analysis as all animals possessed large plaques regardless of diet. Where plaque area 

could be determined for the purpose of comparison, TEMPOL was observed to have no 

impact upon plaque size. However, failure to develop a good model of atherosclerotic 

plaque induced by a high fat diet is a potential reason for the lack of reduction in plaque 

size detected with the TEMPOL treatment. An earlier time point would have been a 

more suitable approach to address this issue, before both the chow and high fat-fed apo 

E
-/-

 mice produced highly advanced atherosclerotic lesions. Although, in this pilot study, 

TEMPOL supplementation did not significantly modulate plaque area, refined 

experiments with a larger cohort kept for shorter periods and an assessment of 

atherosclerotic plaque development at more than one site may help elucidate the effect 

of TEMPOL upon atherosclerosis.  

The C57BL/6 wild type mice under the conditions employed do not appear to be 

suitable for examining atherosclerosis as no plaque was detected; this observation is in 

line with a study on hypercholesterolaemia induced by HFD diet in wild type and apo E
-

/-
 mice. Oil red O staining of the aortic arch, thoracic and abdominal  aorta did not give 

rise to significant plaques in the wild type C57BL/6 mice despite the high cholesterol 

diet; in contrast visible macroscopic plaques were detected in all three regions of the 

aorta in the apo E
-/-

 mice [382].  

TEMPOL supplementation was observed to have a marked effect upon the 

hyperlipidaemia induced by high fat feeding in both animal types, with supplementation 

significantly reducing plasma triglycerides, total cholesterol, HDL-C and LDL-C levels. 

These results are similar to those detected in both lean Zucker rats (LZR) and obsese 

Zucker rats (OZR) that were fed a HFD which invoked hyperlipidaemia with 

significantly elevated total cholesterol, very low-density lipoprotein-cholesterol and 

triglyceride levels. This hyperlipidaemia  was attenuated by TEMPOL (1 mM in 

drinking water for 10 weeks) [340]. In this previous study HDL-C levels were 

significantly lower in the HFD fed animals, and TEMPOL restored HDL-C to near 

control levels in both the OZR and LZR animal types [340].   

TEMPOL supplementation (1 mM in drinking water for four weeks in old 

Fischer 344 rats) has been shown previously to significantly decrease plasma glucose, 

insulin and triglycerides compared to non-TEMPOL supplemented rats [343]. Another 
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study also measured plasma metabolic parameters, where TEMPOL supplementation (1 

mM in drinking water for four weeks) in diabetic KK/Ta-Akita mice did not alter blood 

glucose, HbA1c, bodyweight or total cholesterol levels. Despite the unaltered metabolic 

parameters, TEMPOL treatment had an impact on renal function as it effectively 

decreased albuminuria and inhibited elevation of glomerular filtration rate (GFR) and 

renal hypertropy [344]. Furthermore although TEMPOL supplementation (29-58 mM) 

inhibited body weight gain in C3H mice [330], it did not affect plasma triglycerides, 

cholesterol and HDL levels, where all the mice, including controls were fed a high fat 

diet with or without various concentrations of TEMPOL. These differences compared to 

the current study may be due to the different mouse strains utilised. In the two animal 

models used in the current study, high fat feeding resulted in a substantial elevation of 

lipid levels, and TEMPOL treatment resulted in a marked reduction in these parameters. 

The effects of TEMPOL on weight gain as well as hyperlipidaemia were 

associated with a decrease in several pro-inflammatory cytokines and agents including 

MCP-1, IL-6, SAA and MPO levels, elevations in which are commonly seen in obesity-

related metabolic complications. Higher plasma levels and protein expression of TNF-α 

has been reported in obese patients than lean control subjects [383,384] and animal 

models [385,386]. The elevation of TNF-α levels and iNOS expression resulted in 

endothelial dysfunction in the small arteries observed  from visceral fat of obese 

patients [348]. Vascular superoxide radical generation which was also elevated in obese 

patients was attenuated by TEMPOL [348]. TNF-α levels were shown to be also 

elevated in Zucker obese fatty (ZOF) rats, a model for prediabetic metabolic syndrome 

in comparison to lean control rats [340,386]. TEMPOL was shown to significantly 

decrease the elevation of TNF-α levels [340] in the cortical tissues of the lean Zucker rat 

(LZR) and ZOF animals that were fed a HFD. However in the current study there were 

no differences detected between plasma TNF-α levels detected between the chow (non-

obese) and HFD (obese) fed mice in both animal strains; this may be due to differences 

in animal type as well as the use of the high fat diet in the current study.  

MCP-1 levels were significantly elevated in the C57BL/6 wild type mice fed a 

HFD in comparison to the chow. MCP-1 expression was also found to be significantly 

elevated by high fat feeding in Wistar-Kyoto (WKY) rats and spontaneous hypertensive 

rats (SHR) [341]. TEMPOL supplementation (1 mM in the drinking water) was shown 

to prevent the increase in MCP-1 levels, along with an inhibition of renal oxidative 

stress by suppressing an elevation of 8-isoprostane levels and elevation in macrophage 
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infiltration in both WKY and SHR animal types [341]. TEMPOL was shown to inhibit 

MCP-1 and IL-6 levels in endothelial cells that were incubated with TNF-α, IL-1 and 

IFN-γ cytokines in order to stimulate the ROS production which resulted in an elevation 

of MCP-1 and IL-6 [387].  

In the current study IL-6 and MPO plasma levels were showed to be suppressed 

by TEMPOL in the HFD fed obese mice of both animal strains.  A reduction in serum 

IL-6 has been reported previously, together with an inhibition of colonic MPO levels, in 

dextran sulfate sodium (DSS) induced colitis in male BABL/cA mice that were treated 

with TEMPOL (5 - 15 mg/kg/day) [388]. TEMPOL has been shown previously to 

inhibit  MPO mediated inflammation and tissue damage in multiple inflammatory 

pathologies such as renal disease [389], respiratory syndrome [390] and edema [391] 

and this was also seen in the current study, with TEMPOL shown to effectively 

suppress MPO levels in the  hyperlipidaemic obese mice. TEMPOL has been shown 

previously to attenuate carrageenan-induced inflammation arising from MPO mediated 

damage in rat paws and also was shown to inhibit rat neutrophil migration in vitro 

[391]. Renal dysfunction and injury induced by ischaemia / reperfusion has also been 

shown to be reduced by TEMPOL with MPO activity significantly inhibited in the rat 

kidneys, along with cell infiltration and lipid peroxidation as measured by 

malondialdehyde (MDA) [389]. Treatment with TEMPOL has also been reported to 

significantly ameliorate MPO activity in LPS (1 mg/kg) induced acute lung injury 

where MPO, MDA and NO levels were elevated in lung tissues of male albino mice 

[390]. Elevation of the cytokines, TNF-α, IL-1β and IFN-γ were also significantly 

reduced after the administration of TEMPOL in both bronchoalveolar lavage fluid and 

lung tissue homogenates [390].   

Plasma SAA levels have been shown to be increased in disorders linked with 

chronic inflammation such as rheumatic diseases, atherosclerosis, diabetes and obesity 

[392,393,394,395,396]. It has been reported previously that SAA is expressed at the 

highest concentrations by large adipocytes separated from adipose tissue from obese 

patients [397]. This is consistent with the data obtained from the two animal strains 

examined in the current study, where the obese hyperlipidaemic mice had very high 

levels of plasma SAA. Although there are no previous studies on the effects of 

TEMPOL upon SAA expression, TEMPOL was observed in the current study to have a 

significant effect upon plasma SAA levels in the HFD fed mice of both animal strains 

suggesting that TEMPOL may target adipose tissue in hyperlipidaemic obese mice.  
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The inhibitory effects of TEMPOL upon obesity, hyperlipidaemia and pro-

inflammatory agents and markers were also associated with changes in the levels of the 

adipocytokines adiponectin, leptin and resistin. Adiponectin exerts strong anti-

inflammatory and athero-protective effects on vascular tissue, and has an insulin-

sensitising effect on tissues associated with glucose and lipid metabolism [398,399]. A 

significant reduction in plasma adiponectin levels was detected in the high fat fed mice 

that became obese and hyperlipidaemic, when compared to the lean control apo E
-/- 

mice. Similar findings have been reported in other animal models 

[314,315,398,400,401,402] of obesity, diabetes and coronary artery disease. Lower 

adiponectin levels have been reported in various human cohort studies in subjects with 

obesity, diabetes and coronary artery disease [403,404,405,406,407,408].  In contrast, 

TEMPOL prevented the decrease in adiponectin levels that was induced by high fat 

feeding and obesity. TEMPOL has been reported to inhibit the expression of 

adipogenesis markers, adipose differentiation and lipid storage in mouse pre-adipocytes 

(3T3-L1) and human mesenchymal stem cells [342], which may be the underlying cause 

of the effects of TEMPOL on body weight gain, and the protective effects upon 

adiponectin levels seen in vivo.   

Resistin, another adipokine associated with obesity and metabolic disorders 

[78,372,409] was reported to be positively correlated with serum lipid levels and 

negatively associated with HDL-C levels in Indian male subjects [410]. However in the 

current study no differences were detected in plasma resistin levels between the lean 

and obese mice that were fed a high fat diet in both animal strains.  Although elevated 

plasma levels of fat-derived signalling molecules are correlated with obesity and 

vascular endothelial dysfunction and coronary heart disease, little is known about their 

specific roles, and the relationship with obesity remains controversial [411,412]. This 

species may therefore not be a suitable adipokine marker to elucidate the potential 

inhibitory mechanism of TEMPOL in obesity-related vascular and metabolic 

complications. 

High fat feeding in mice has been shown previously to result in 

hyperleptinaemia, a phenomena commonly seen in obesity as higher leptin levels are 

indicative of greater adipose tissue reservoirs and excess secretion causing leptin 

resistance [78,312,316,371]. TEMPOL was shown to prevent elevation of plasma leptin 

levels in the current study; this is consistent with the data of Mitchell et al. with similar 

TEMPOL dosages, where the mice were also shown to consume less food  [330]. 
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TEMPOL (2 mM in drinking water) has also been shown to be effective in controlling 

blood pressure in leptin-induced hypertensive male Wistar rats [413].    

Given the increasing incidence and economic burden of obesity, vascular and 

metabolic disorders, there is a pressing need to develop new therapeutic treatments to 

improve, delay and prevent these complications [5]. TEMPOL and its analogues have 

been shown to possess anti-hypertensive, anti-cancer, anti-inflammatory, anti-

hyperlipidaemic, cardio and renal protective actions. This present study is the first to 

demonstrate that this well tolerated nitroxide administered at relatively high 

concentrations also may be of importance in inhibiting or decreasing several cytokines 

and inflammatory factors associated with obesity and hyperlipidaemia resulting from 

high fat feeding in two animal strains. 

  

6.7  Conclusion 

Short term TEMPOL supplementation has been shown to have a significant 

impact upon body mass gain and hyperlipidaemia in a well-established model of obesity 

induced by high fat feeding. High fat fed mice had elevated levels of plasma 

triglycerides, total cholesterol, LDL and HDL compared animals fed a normal chow 

diet. However the progression and severity of atherosclerosis did not appear to be 

directly correlated with obesity in the apo E
-/-

 mice and there were no observable 

plaques in the C57BL/6 parent strain. Thus it is hard to discern whether TEMPOL had a 

significant effect upon atherosclerosis in this pilot study. Further studies are therefore 

necessary to elucidate the effect of TEMPOL on atherosclerotic lesions.  

However potential anti-hyperlipidaemic and anti-atherosclerotic effects of 

TEMPOL were detected when various systemic inflammatory responses were 

quantified. High fat feeding was observed to induce profound inflammatory responses 

with elevated levels of MCP-1, IL-6, SAA and MPO plasma levels detected when 

compared to the chow fed mice, for both the apo E
-/-

 and C57BL/6 strains, and these 

have been reported to be early biomarkers or correlate positively with atherosclerosis, 

obesity and cardiovascular diseases.  

TEMPOL was shown to decrease plasma levels of cholesterol and triglycerides, 

inflammatory responses and prevent body weight gain in the HFD fed mice. This was 

associated with changes in adipocytokines that are secreted by adipose tissue, as high 
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fat feeding induced hyperleptinaemia in both animal types and hypoadiponectinaemia in 

the apo E
-/- 

mice only. Dietary obesity is strongly correlated with hyperlipidaemia, 

hyperleptinaemia and hypoadiponectinaemia [78,312,330,368,370,371]. The elevated 

leptin levels were considerably suppressed by TEMPOL in both animal types and the 

lower adiponectin levels observed in the HFD fed apo E
-/- 

mice was reversed with 

TEMPOL. Therefore TEMPOL may exert cardio-protective, anti-atherogenic, anti-

inflammatory and anti-diabetic effects.  

The present chapter focused on the hyperlipidaemic effect of TEMPOL upon 

vascular manifestations in vivo. TEMPOL was shown to block weight gain, and also the 

systemic inflammatory response, in these fat-fed animals. The next chapter describes a 

follow up study to examine potential effects of TEMPOL against the deleterious 

manifestations of high glucose levels in human monocyte-derived macrophages 

(HMDM) in which elevated glucose levels engendered lysosomal dysfunction (see 

Chapters 3 and 4).  It also addresses whether TEMPOL has an effect upon inflammatory 

responses induced by high glucose.  
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CHAPTER 7: 

EFFECTS OF TEMPOL UPON CYTOKINE PRODUCTION AND 

LYSOSOMAL FUNCTION OF HUMAN MONOCYTE-DERIVED 

MACROPHAGES EXPOSED TO NORMAL AND HIGH GLUCOSE 

CONCENTRATIONS 
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7.1   Introduction 

Dysfunction of macrophages is a common feature of diabetic complications, 

manifested as inflammation, augmented susceptibility to infection, atherosclerotic 

progression and impaired wound healing after tissue damage [50,94,317,414,415], as 

such dysfunction would lead to defects or down regulation of non-specific immunity, 

inflammation and the adaptive immune response.  Several studies have investigated 

defence mechanisms against infectious disease in people with diabetes [416,417,418]. 

Monocytes from patients with diabetes have been reported to possess impaired 

chemostatic responses [419], and suppressed phagocytic activity [420]. This may be due 

to the inhibition of chemotactic, phagocytic and bactericidal functions in people with 

diabetes [420]. Finally many investigations have associated the severity of diabetes with 

an increased risk of cardiovascular disease attributable to the chronic hyperglycaemia in 

addition to other well-defined cardiovascular risk factors [114,236].  

Macrophages are believed to be involved in every phase of atherogenesis from 

early stage through to late-stage atherosclerotic lesions [266], most noted as lipid-laden 

foam cells which are critical to cholesterol accumulation in the vessel well and lesion 

development [421]. The main pathway of cholesterol accumulation in macrophage cells 

is via endocytic uptake of modified forms of (lipo) protein particles [422]. Macrophage 

lysosomal cholesterol accumulation is a major factor in the development of late-stage 

atherosclerotic lesions [423]. The presence of cholesterol and cholesteryl esters in foam 

cells is indicative of impaired cholesteryl ester hydrolysis and free cholesterol clearance 

[239,422]. Cholesterol accumulation in lysosomes and associated lysosomal 

dysfunction may therefore be critical in plaque progression.  

Functional changes in lysosomes induced by high glucose levels may affect the 

capacity of monocytes and macrophages, to catabolise modified (lipo) proteins 

specifically, and more generally impact upon macrophage function and survival. 

Lysosomal dysfunction induced by elevated glucose levels is evident in monocytes and 

macrophages exposed to high glucose in vitro [244] as reported in Chapters 3 and 4. 

The impact of hyperglycaemia upon atherosclerotic development is consistent with the 

data presented in Chapter 5 where diabetic mice plaques were larger in size with greater 

amounts of extracellular lipid and lower collagen content; characteristics of plaques 

with a higher risk of rupture. The beneficial effects of carnosine in this model were 

associated with reduced blood triglyceride levels as well as a greater portion of the 
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plaque being occupied by collagen in place of extracellular lipid, though this was 

without any impact on the chronic hyperglycaemia.  

For most subjects with diabetes the increased prevalence and rate of progression 

of atherosclerosis is likely to be the result of a combination of hyperglycaemia (and the 

associated oxidative and glycative stress), insulin resistance, a pro-inflammatory state 

and obesity. TEMPOL, a cell-permeable nitroxide is known to be capable of reacting, 

and detoxifying a number of free radicals and reactive oxygen species [336], and has 

reported impacts upon hypertension [336,337,339,346,347], diabetes [345,424,425], 

obesity [330,374], and cancer [331,332,426].  

The studies reported in the previous chapter indicated that exposure of fat-fed 

mice to TEMPOL had a profound inhibitory effect upon body weight gain, prevented 

obesity and attenuated hyperlipidaemia. The hypolipidaemic effect of TEMPOL was 

also associated with an inhibition of several pro-inflammatory cytokines and 

inflammatory agents, where these levels increased with obesity. Notably the source of 

these cytokines is not fully characterised in that both local adipocytes as well as 

infiltrating macrophages are implicated.  

This was the driver for the studies reported on this chapter whereby the effects 

of TEMPOL upon human monocyte-derived macrophages were examined. Further as 

chronic exposure of HMDM to high glucose levels has been shown to cause lysosomal 

dysfunction [244] and induce various innate and inflammatory responses, the impact of 

TEMPOL upon cytokine production as well as lysosomal function was examined for 

HMDM under normal and high glucose levels.  

 

7.2   Aims 

Firstly, to see if TEMPOL reverses the effect of lysosomal dysfunction seen in 

HMDM exposed to elevated glucose concentrations and in particular the detrimental 

impact upon the lysosomal enzymes studied in Chapters 3 and 4, and secondly to 

determine whether TEMPOL also has an effect upon cytokine production in the same 

macrophages in the light of the effects of TEMPOL on cytokine expression in vivo 

presented in Chapter 6. 
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7.3 Methods 

Human monocytes isolated from buffer coats of healthy donors were matured 

into macrophages over 10 days as described in Section 2.2.4 in RPMI media that 

contained normal (5.5 mM) or high (20 mM) glucose concentration and with or without 

supplementation with TEMPOL (100 μM). Cell pellets were obtained as detailed in 

Sections 2.2.5 to determine the lysosomal activities of cathepsins B, L and LAL as 

outlined in Sections 2.3 to 2.3.2 and 2.3.6. 

 

7.3.1 Secretion of cytokines by lipopolysaccharide (LPS) treatment 

Human monocytes were matured over 10 days in normal (5.5 mM) or high (20 

mM) glucose with or without TEMPOL added into the RPMI media. The pilot studies 

were conducted where the cells were initially stimulated with 0, 50 and 200 ng/mL of 

LPS on day 10. The cell culture supernatants were collected after 24 and 48 hrs of 

incubation and the levels of protein, interleukin-6 (IL-6), monocyte / macrophage 

chemotactic protein-1 (MCP-1), C-reactive protein (CRP), macrophage migration 

inhibitory factor (MIF), macrophage inflammatory protein-1α (MIP-1α) and tumour 

necrosis factor-α (TNF-α) were determined as previously described in Sections 2.11.3 - 

2.12.2. Based on these pilot studies, the cells were stimulated with 0, 25 and 50 ng/mL 

of LPS for 24 hrs before collection of the supernatants for analysis of the levels of 

protein,  CRP, MIP-1α and TNF-α.  
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7.4  Results 

7.4.1 The effect of TEMPOL upon lysosomal activities of cathepsin B, L and LAL 

in HMDM 

The lysosomal activities of human monocytes matured under normal (5.5 mM) 

and high (20 mM) glucose concentrations with and without TEMPOL supplementation 

(100 μM) were examined to determine whether TEMPOL counteracts the inhibition of 

lysosomal activity induced by high glucose.  

In agreement with studies present in Chapters 3 and 4, maturation of human 

monocytes in high glucose concentrations for 10 days modulated the activities of the 

three lysosomal activities as shown in Figure 7.1. In cells incubated in the high glucose 

concentrations the measured cathepsin B (64.5 ± 5.1%, p < 0.001), L (64.5 ± 5.1, p < 

0.001) and LAL (68.5 ± 6, p < 0.001) activities were significantly lower than the cells 

that were incubated in the normal 5.5 mM glucose (activity taken as 100%). However 

the presence of TEMPOL in either condition did not result in any significant 

differences. Thus addition of TEMPOL did not modulate the inhibition of lysosomal 

activities observed between the different concentrations of glucose as there were no 

statistical differences observed within the equivalent glucose treatment groups. 
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Figure 7.1: Lysosomal enzymatic activities in human monocytes matured under 

normal 5.5 mM or high 20 mM glucose concentrations with or without 100 μM 

TEMPOL supplementation for 10 days.  

Lysates of human monocytes that had been exposed to the normal 5.5 mM (blue) or 20 

mM (orange) glucose with or without TEMPOL (100 μM) were examined for the 

activities of lysosomal cathepsin B (Panel A), L (Panel B) and LAL (Panel C). Data 

(mean ± SEM) are the linear change in fluorescence intensity with time from 5 

independent donors. Statistical significant inhibition of lysosomal activities were 

examined at *** p < 0.001 against the normal 5.5 mM glucose conditions, and ### p < 

0.001 versus the normal glucose with TEMPOL supplementation. No statistical 

differences were detected between the samples with the same glucose treatment.  
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7.4.2  Protein content of human monocyte cells matured in varying glucose and 

LPS concentrations 

Initially the human monocytes from a single donor were incubated with the 

normal 5.5 mM and high 20 mM glucose concentrations for 10 days with this followed 

by 24 or 48 hr treatment with LPS (0, 50 and 200 ng/mL). This was to determine 

whether different times or concentrations of LPS affected cell confluence and total 

concentration of protein in HMDM that were matured in the presence of normal or high 

glucose.  The protein levels of the cells from various conditions were determined by the 

BCA protein assay by use of a standard curve generated using BSA as discussed in 

Section 2.4.1. The protein concentration in the zero LPS and zero time condition was 

0.6 μg/μL and there were no statistical differences observed in the protein content in the 

normal and high glucose treated HMDM that were subsequently stimulated for 24 or 48 

hr incubations with 0, 50 and 200 ng/mL of LPS as shown in Figure 7.2.  

 

 

Figure 7.2: Protein levels for HMDM cells subject to LPS stimulation (0, 50 and 

200 ng/mL) for 24 or 48 hrs after maturation for 10 days in normal 5.5 mM (blue) 

and high 20 mM (orange) glucose concentrations.   

BCA protein levels were determined for HMDM that had been matured in normal 5.5 

mM or high 20 mM glucose levels for 10 days followed by LPS stimulation at 0, 50 and 

200 ng/mL for 24 or 48 hrs. Values (µg/µL) are expressed as a mean of triplicate 

experiments from one monocyte donor.  
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7.4.3  MCP-1, IL-6, MIF, CRP, TNF-α and MIP- 1α expression by normal and 

hyperglycaemic HMDM after LPS stimulation 

Macrophages play a key role in the chronic inflammatory response in part by 

generating cytokines such as MCP-1, IL-6, MIF, CRP, TNF-α and MIP- 1α. MCP-1 is 

part of the chemostatic family and therefore also referred to as chemokine (C-C motif) 

ligand 2 (CCL2) and small inducible cytokine A2. MCP-1 is over secreted by many cell 

types including monocytes and macrophages at sites of inflammation triggered by either 

tissue injury or infection, which are commonly encountered with atherosclerosis, 

obesity, diabetes, insulin resistance, metabolic dysfunction and adiposity [312,361]. IL-

6 is a biomarker of inflammation that is secreted by T cells and macrophages to 

stimulate the immune response in particularly after tissue injury leading to 

inflammation, and elevated levels have been associated with the metabolic syndrome 

and obesity [313,362]. MIF (also known as glycosylation-inhibiting factor, GIF), is an 

important regulatory protein of the innate immune response released by the anterior 

pituitary gland. Elevated levels of MIF have been associated with diabetes, 

atherosclerosis and obesity [427,428,429,430,431,432,433,434,435,436], and lower 

levels of MIF protect against pancreatic beta-cell apoptosis and dysfunction [428]. 

CRP is a circulating plasma protein, which is secreted by the liver in response to 

inflammatory processes [437] and has been associated with the metabolic syndrome, 

insulin resistance and hyperglycaemia [438,439,440,441,442]. CRP has been shown to 

be a sensitive biomarker for cardiovascular disease (CVD) and CRP-inhibitors have 

been investigated as a treatment for cardiovascular disease [440,443,444,445,446].  

TNF-α is a cytokine produced by multiple cell types, primarily monocytes and 

macrophages, which are key inflammatory cells heavily involved in systemic 

inflammation and innate immunity [440]. Various studies have correlated elevated 

levels of TNF-α with diabetes [414,416,447,448,449,450], obesity 

[385,386,451,452,453] and cardiovascular disease [440,454,455,456,457,458,459].  

MIP-1α belongs to the chemokine family, and is also known as chemokine (C-C 

motif) ligand 3 (CCL3). This chemokine is secreted by many cell types, but particularly 

monocytes, macrophages, dendritic cells and lymphocytes and it is important for 

immune responses in infection and inflammation [460]. Higher levels of MIP-1α have 

been implicated in a number of studies of hyperglycaemia, obesity and atherosclerosis 

[449,460,461,462,463,464,465,466,467].  
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These cytokines which are associated with inflammation and tissue injury have 

been shown to be enhanced with hyperglycaemia, accelerated atherosclerosis and 

altered vascular wall function [387,414,447,448,449,450,468]. Therefore the 

concentrations of these cytokines were determined to examine the effect of high glucose 

and TEMPOL upon these potential pro-inflammatory factors.  

As normal and hyperglycaemic HMDM that were exposed to high 

concentrations of LPS for 24 or 48 hrs did not have significantly different levels of cell 

protein, the levels of cytokines were further examined at both time points. The levels of 

MCP-1, IL-6, MIF, CRP, TNF-α and MIP-1α were determined in the supernatants from 

cells that were stimulated with 0, 50 and 200 ng/mL of LPS as described in Sections 

2.12.1 and 2.12.2.  

Levels of MCP-1, IL-6, TNF-α and MIP-1α were increased with LPS 

stimulation, however there were no significant differences observed in MCP-1 and IL-6 

levels in HMDM that were stimulated with 50 or 200 ng/mL of LPS for either 24 or 48 

hr incubation periods as shown in Figure 7.4. 

A dose dependent increase in TNF-α and MIP-1α expression was seen with 

increasing concentrations of LPS as shown in Panels E and F in Figure 7.4. There was a 

marked up-regulation of TNF-α and MIP-1α levels in the hyperglycaemic HMDM when 

compared to the normal glucose cells that were stimulated with LPS at 50 and 200 

ng/mL for either 24 or 48 hrs. The differences between the two glucose treatment 

groups were more evident in the cells that were stimulated with 50 or 200 ng/mL LPS 

for 24 hrs. 

MIF was detected in the supernatants however there were no differences 

between the two incubation periods and no differences were observed between the 

different glucose concentrations and LPS levels. CRP was also detected in the 

supernatants that were not stimulated with LPS. There was a decrease in CRP levels in 

hyperglycaemic HMDM when compared to the normal glucose condition, with the 

reduction observed with high glucose more noticeable with LPS stimulation.   

Overall there was also an elevation in TNF-α and MIP-1α expression and a 

reduction in CRP levels in HMDM that were incubated with high glucose (20 mM). The 

largest differences between the normal and high glucose conditions occurred between 0 

and 50 ng/mL LPS at 24 hrs. This was followed by smaller changes between 50 and 200 



218 
 

ng/mL LPS, with even fewer differences observed for the 48 hr incubation periods. 

Hence lower concentrations of LPS of 0, 25 and 50 ng/mL and a 24 hr incubation period 

were used for subsequent experiments, as the differences in TNF-α, MIP-1α and CRP 

levels between the two glucose treatments were greatest with 50 ng/mL LPS for 24 hrs. 

These three cytokines were therefore investigated in depth for five donors to see if the 

up regulation of TNF-α and MIP-1α, and down regulation of CRP levels were 

reproducible for the two glucose concentrations in macrophages with lower levels of 

LPS stimulation for 24 hrs.  Simultaneously the effect of TEMPOL upon both normal 

and hyperglycaemic HMDM was investigated. 

 

7.4.4 Protein content of human monocyte cells matured in varying glucose, 

TEMPOL and LPS concentrations 

In these follow up experiments lower LPS levels of 0, 25 and 50 ng/mL were 

used as the optimal changes were observed to occur between 0 and 50 ng/mL of LPS at 

24 hrs (refer to Figure 7.3).  Differences in TNF-α, MIP-1α and CRP levels between the 

two (5.5 mM and 20 mM) glucose treatments were then assessed after 24 hrs in the 

absence and presence of (100 μM) TEMPOL.  Data was obtained from cells from five 

different donors.  BCA protein contents were determined for the cells at 0 and 24 hrs 

and LPS concentrations of  0, 25 and 50 ng/mL with and without TEMPOL (100 μM) 

for normal and high glucose treated HMDM cells. A protein concentration of 0.6 μg/μL 

was determined for the control cells and there were no statistical differences observed in 

the protein content in the HMDM that were stimulated with 0, 25 and 50 ng/mL of LPS 

with normal and high glucose concentrations with or without TEMPOL 

supplementation as shown in Figure 7.4.  
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Figure 7.3: Fold increase in MCP-1 (Panel A), IL-6 (B), MIF (C), CRP (D), TNF-α 

(E) and MIP-1α (F) expression compared to control (5.5 mM glucose) for 24 (clear 

bars) and 48 hrs (hatched bars) of LPS stimulation (0, 50 and 200 ng/mL) in 

HMDM that were matured for 10 days in normal 5.5 mM (blue) and high 20 mM 

(orange) glucose concentrations.   

Measurement of fold increase in MCP-1, IL-6, MIF, CRP, TNF-α and MIP- 1α  

expression compared to the normal 5.5 mM glucose (used as control) HMDM were 

incubated with normal (5.5 mM) or high (20 mM) glucose levels for 10 days followed 

by LPS stimulation with 0, 50 and 200 ng/mL for 24 or 48 hrs. Values in μg/μL are 

expressed as a mean of triplicate experiments from one monocyte donor.  
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Figure 7.4: Protein levels for HMDM cells after LPS stimulation (0, 25 and 50 ng/ 

mL) for 24 hrs after maturation for 10 days in normal 5.5 mM (blue) and high 20 

mM (orange) glucose concentrations with and without 100 μM TEMPOL 

supplementation.   

BCA protein levels (in μg/μL) were measured for HMDM that were matured in the 

normal 5.5 mM and high 20 mM glucose levels supplemented with and without 

TEMPOL for 10 days followed by LPS stimulation at 0, 25 and 50 ng/mL for 24 hrs. 

Data (mean ± SEM) are from five independent donors. No statistical differences were 

detected between any of the conditions. 

 

 

7.4.5 Effects of TEMPOL on C-Reactive Protein (CRP) levels from LPS induced 

normal and hyperglycaemic HMDM 

CRP levels were shown to be reduced with high glucose conditions in the pilot 

study, as shown in Figure 7.5, and this was further examined with multiple donors. The 

CRP levels were also determined in HMDM to examine the potential effects of 

TEMPOL upon CRP levels secreted by HMDM that were matured in normal (5.5 mM) 

and high (20 mM) glucose concentrations supplemented with and without TEMPOL. 

There were no statistical differences in CRP levels in the HMDMs that were incubated 
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in the normal 5.5 mM and high 20 mM glucose concentrations with 0, 25 or 50 ng/mL 

of LPS stimulation. There were no statistical changes observed in the normal and high 

glucose treated HMDM with or without TEMPOL supplemented in the media.  

Overall these results showed that there were no changes in CRP levels when the 

cells were exposed to 100 μM compared to 0 μM TEMPOL at either concentration of 

glucose or the different concentrations of LPS as shown in Figure 7.5.  

 

 

 
 

Figure 7.5: Fold increase in CRP expression compared to control (5.5 mM glucose) 

after 24 hrs of LPS stimulation (0, 25 and 50 ng/mL) for HMDM that had been 

matured for 10 days in normal 5.5 mM (blue) or high 20 mM (orange) glucose 

concentrations with and without 100 μM TEMPOL supplementation.   

Measurement of fold increase in CRP expression compared to the normal (5.5 mM) 

glucose (used as control) HMDM that were incubated with normal (5.5 mM) or high (20 

mM) glucose levels supplemented with and without TEMPOL for 10 days followed by 

LPS stimulation at 0, 25 and 50 ng/mL for 24 hrs. Data (mean ± SEM) are expressed in 

μg/μL from five independent donors.  
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7.4.6 Effects of TEMPOL on Tumour Necrosis Factor-α (TNF-α) levels from LPS 

induced normal and hyperglycaemic HMDM 

As enhanced secretion of TNF-α was detected with high glucose compared to 

the normal glucose treated HMDM in the initial experiments, this was investigated 

further with multiple donors. TEMPOL was investigated to determine whether it 

counteracts the increased secretion of TNF-α induced by high glucose levels. Therefore 

TNF-α levels were assessed in media from HMDM to examine the effect of TEMPOL 

upon TNF-α levels for cells matured in normal 5.5 mM and high 20 mM glucose 

concentrations with and without TEMPOL supplementation.  

Cells were exposed to 0, 25 and 50 ng/mL of LPS for 24 hrs after the maturation 

of monocytes to macrophages over 10 days. There was a dose dependent increase in 

TNF-α levels with increasing concentrations of LPS, as shown in Figure 7.6. There 

were no statistical differences in TNF-α levels across the groups when HMDM were not 

stimulated with LPS. 

For the cells that were exposed to 25 ng/mL of LPS for 24 hrs, TNF-α levels 

were significantly upregulated in HMDM that were incubated with high glucose (360.3 

± 161.9 fold increase over control) when compared to the normal glucose condition 

(131.4 ± 55.6 fold increase over control, p < 0.01), normal glucose with TEMPOL 

(132.3 ± 64.2 fold increase over control, p < 0.01) and high glucose with TEMPOL 

(124.6 ± 58.8 fold increase over control, p < 0.01).  

 Similarly when identical groups of cells were exposed to 50 ng/mL of LPS there 

was a significant elevation of TNF-α levels in HMDM that were incubated with high 

glucose (485.6 ± 197.8 fold increase over control) when compared to normal glucose 

(188.5 ± 80 fold increase over control, p < 0.001), normal glucose with TEMPOL 

(202.6 ± 96.5 fold increase over control, p < 0.001) and high glucose with TEMPOL 

(157.3 ± 69.8 fold increase over control, p < 0.001). 

HMDM incubated in high glucose levels (20 mM) had significantly elevated 

TNF-α levels when compared to both the HMDM groups that were incubated with 

normal glucose regardless of TEMPOL supplementation. TEMPOL significantly 

attenuated the elevation of TNF-α expression that was induced by high glucose. The 

TNF-α levels determined for the cells incubated in high glucose with TEMPOL were 
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similar to those of the normal glucose treated cells with no statistical differences 

observed.  

 

 

Figure 7.6: Fold increase in TNF-α expression compared to control (5.5 mM 

glucose) after 24 hrs of LPS stimulation (0, 25 and 50 ng/mL) for HMDM that 

were matured for 10 days in normal 5.5 mM (blue) and high 20 mM (orange) 

glucose concentrations with and without 100 μM TEMPOL supplementation.   

Measurement of fold increase in TNF-α expression compared to the normal (5.5 mM) 

glucose (used as control) HMDM that were incubated with normal (5.5 mM) or high (20 

mM) glucose levels supplemented with and without TEMPOL for 10 days followed by 

LPS stimulation at 0, 25 and 50 ng/mL for 24 hrs. Data (mean ± SEM) are expressed as 

μg/μL from five independent donors. Statistical significance is achieved at ** p < 0.01 

and *** p < 0.001 versus the remaining groups; 5.5 mM glucose, 5.5 mM glucose with 

TEMPOL and 20 mM glucose with TEMPOL by two-way ANOVA followed by 

Bonferroni’s post-hoc test.   
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7.4.7 Effects of TEMPOL on Macrophage Inhibitory Protein-1α (MIP-1α) 

secretion by LPS induced normal and hyperglycaemic HMDM 

As elevation of MIP-1α levels was observed with high glucose compared to the 

normal glucose treated HMDM cells in the pilot studies, this was subsequently 

examined for multiple donors. TEMPOL was also investigated to observe whether it 

suppresses the MIP-1α levels induced by high glucose levels. MIP-1α levels were 

assessed in HMDM to examine the effect of TEMPOL upon MIP-1α levels secreted by 

HMDM that were matured in normal 5.5 mM and high 20 mM glucose concentrations 

supplemented with and without TEMPOL. 

Cells were exposed to 0, 25 and 50 ng/mL of LPS for 24 hrs after the maturation 

of monocytes to macrophages. There was a dose dependent increase in MIP-1α levels 

when cells were exposed to 0, 25 and 50 ng/mL of LPS, as shown in Figure 7.7. There 

were no statistical differences in MIP-1α levels across the groups when HMDM were 

not stimulated with LPS. 

For the cells that were exposed to 25 ng/mL of LPS for 24 hrs, MIP-1α levels 

were significantly increased in HMDM that were matured in high glucose (46.1 ± 7.7 

fold increase over control) when compared to the normal glucose (16.9 ± 3 fold increase 

over control, p < 0.001), normal glucose with TEMPOL (18.2 ± 1.7 fold increase over 

control, p < 0.001) and high glucose with TEMPOL (17 ± 2.7 fold increase over control, 

p < 0.001).  

Similarly when identical groups of cells were exposed to 50 ng/mL of LPS there 

was a significant elevation of MIP-1α levels in HMDM that were incubated with high 

glucose (49 ± 10.2 fold increase over control) when compared to normal glucose (28.4 ± 

1.8 fold increase over control, p < 0.001), normal glucose with TEMPOL (29 ± 3.8 fold 

increase over control, p < 0.001) and high glucose with TEMPOL (28.2 ± 5.6 fold 

increase over control, p < 0.001). 

HMDM matured in high glucose (20 mM) had significantly higher MIP-1α 

levels than both the HMDM groups that were incubated with normal glucose regardless 

of TEMPOL supplementation. TEMPOL significantly attenuated the elevation of MIP-

1α expression that was induced by high glucose. The MIP-1α levels detected form the 

cells exposed to high glucose with TEMPOL were similar to those of the normal 

glucose treated cells, with no statistical differences detected.  
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Figure 7.7: Fold increase in MIP-1α expression compared to control (5.5 mM 

glucose) after 24 hrs of LPS stimulation (0, 25 and 50 ng/mL) for HMDM that 

were matured for 10 days in normal 5.5 mM (blue) and high 20 mM (orange) 

glucose concentrations with and without 100 μM TEMPOL supplementation.   

Measurement of fold increase in MIP-1α expression compared to the normal (5.5 mM) 

glucose (used as control) HMDM that were incubated with normal (5.5 mM) or high (20 

mM) glucose levels supplemented with and without TEMPOL for 10 days followed by 

LPS stimulation at 0, 25 and 50 ng/mL for 24 hrs. Data (mean ± SEM) are expressed as 

μg/μL from five independent donors. Statistical significance is achieved at *** p < 

0.001 versus the remaining groups; 5.5 mM glucose, 5.5 mM glucose with TEMPOL 

and 20 mM glucose with TEMPOL by two-way ANOVA followed by Bonferroni’s 

post-hoc test.  
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7.5  Discussions 

TEMPOL has been studied extensively as it has been reported to have potent 

anti-inflammatory activity which may therefore have therapeutic benefits in addition to 

reducing oxidative and / or glycative damage that initiates and accelerates progression 

of a number of inflammatory diseases [330,336,340,341,342,343,344,345,373,375,424]. 

Therefore compounds like TEMPOL may be valuable as novel therapies for the 

treatment of diabetes [343,344,345,424], obesity [330,340,341,342] and atherosclerosis 

[373,375]. Monocytes and macrophages are heavily involved in inflammatory diseases 

such as atherosclerosis, and the current studies demonstrated that their functions are 

influenced by hyperglycaemia [228,317]. Human monocyte-derived macrophages 

provide an ideal in vitro model to assess lysosomal function, and potential anti-

inflammatory and other immune-modulatory effects [244].  

Dosages of 5 mM TEMPOL have been reported as being relatively safe, as no 

adverse effects emerged on cell growth and viability in various in vitro studies 

[377,447,469,470].  Therefore it was assumed that TEMPOL supplementation at 100 

μM was likely to be well tolerated at both test levels for glucose. Indeed a previous 

study has examined human monocytes that were exposed to 30 mM glucose with 100 

μM TEMPOL [447]. In the present study TEMPOL at 100 μM did not affect the cellular 

protein levels significantly for the various glucose conditions or LPS treatments. 

 Glucose levels ranging from 10 to 30 mM are commonly used in in vitro studies 

of diabetes [244,471,472,473]. Potential defects in lysosomal degradation induced by 

exposure to high glucose have been investigated in monocytes and macrophages that 

were incubated with 10 to 30 mM glucose [244] and the extent of these changes have 

been examined in Chapters 3 and 4. For maturing monocytes and developed 

macrophages the inhibition of lysosomal activities, and the reductions detected in 

protein expression and lysosomal number were seen at 20 mM glucose and higher. 

Likewise, in the current study, reductions in cathepsins B, L and LAL enzymatic 

activities were detected in macrophages that were exposed to equivalent glucose 

conditions. This impairment of lysosomal activities may result in poor clearance of both 

native and modified proteins, including those internalised by endocytosis, or trafficked 

intracellularly and may help account for the lipid accumulation detected in macrophages 

causing foam cells. 
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TEMPOL (100 μM) supplementation did not arrest the inhibition of lysosomal 

activity induced by high glucose in HMDM cells. Therefore TEMPOL may not have an 

effect upon the lysosomal dysfunction induced by high glucose, or a higher dosage of 

TEMPOL may be required to observe any distinctive changes. Notably, TEMPOL 

appears to have an effect upon protein degradation system via a different mechanistic 

pathway, possibly via activating the protein kinase RNA-like endoplasmic reticulum 

kinase (PERK) [474].  Activation of the unfolding protein response (UPR) caused by 

endoplasmic reticulum- and oxidative-stress may stimulate c-jun N-terminal kinase 

(JNK). ROS generated from this activation can result in an accumulation of misfolded 

proteins, beta cell dysfunction, apoptosis and altered protein secretion [475,476]. Rats 

infused with TEMPOL (2.41 μM/kg/min) and high glucose (15 - 22 mM) were shown 

to have preserved endoplasmic reticulum function and reduced oxidative stress and beta 

cell dysfunction in isolated islets compared to the high glucose alone condition 

[474,477]. Butylated hydroxyanisole (BHA), a lipid-soluble antioxidant was also shown 

to suppress endoplasmic reticulum stress and protein secretion in chop
-/-

 C57BL/6 mice 

[475].   

Although TEMPOL (100 μM) did not arrest the decrease in lysosomal 

enzymatic activities induced by high glucose, further studies were carried to investigate 

the anti-inflammatory potential of TEMPOL. Macrophages play a critical role in innate 

immunity and inflammatory processes by synthesising and releasing particular 

cytokines, and elevated levels of MCP-1, IL-6, MIF, CRP, TNF-α, MIP-1α have been 

associated with hyperglycaemia, accelerated atherosclerosis  and altered vascular wall 

function [387,414,447,448,449,450,468]. A range of pro-inflammatory cytokines and 

agents were significantly reduced by TEMPOL (58 mM) in hyperlipidaemic and obese 

mice resulting from feeding with a HFD as reported in Chapter 6. Up-regulation of 

inflammatory pro-cytokines has been reported in various studies of diabetes 

[317,414,416,418,438,439,447,448,449,450,468], atherosclerosis 

[50,415,440,454,462,463] and obesity-related metabolic dysfunction 

[94,385,386,442,451,452,453,461] and cardiovascular diseases 

[443,445,455,456,457,458,459]. Therefore the potential inhibitory action of TEMPOL 

upon inflammatory cytokine release was investigated in HMDM exposed to high 

glucose and LPS.  
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Hyperglycaemia is a well known risk factor for both micro- and macrovascular 

disease and a number of studies have implicated changes in the inflammatory response 

in the early stages of diabetes and obesity [478,479]. People with diabetes with 

microvascular complications have been reported to have augmented production of 

inflammatory biomarkers, such as pro-inflammatory cytokines, over and above the 

levels detected in Type 1 diabetic (T1D) patients without microvascular complications 

and healthy control subjects [480,481,482,483]. Higher MIF have been detected in 

pregnant women with gestational diabetes [427] and a deficiency in MIF was shown to be 

protective from palmitic acid-induced apoptosis in pancreatic islets [428]. Although up-

regulation of pro-inflammatory cytokines is commonly encountered in people with 

hyperglycaemia, the pilot study carried out here with cells from one healthy donor 

showed that high glucose did not affect LPS-induced MCP-1, IL-6 and MIF levels. 

However TNF-α and MIP-1α levels were notably raised, and CRP levels were 

decreased, in macrophages that were matured in high glucose.  

Subsequent studies were carried out with human monocytes from five 

independent healthy donors that were matured to HMDM cells to confirm the elevation 

of TNF-α and MIP-1α and the reduction of CRP levels detected in the pilot studies. 

Further studies confirmed that high glucose (20 mM) matured in HMDM cells elevated 

the secretion of TNF-α and MIP-1α levels in response to LPS.  

High glucose did not affect CRP levels, despite the increasing levels of LPS and 

glucose concentrations to which the HMDM were exposed. CRP levels have been 

reported to be higher in Type 2 diabetes and diabetic nephropathy patients compared to 

healthy subjects and IL-6 levels were positively associated with severity of the disease 

[468]. Furthermore higher levels of CRP have been detected in the plasma of diabetic 

patients [438,439,440,441,442] and this has been reported to be a sensitive biomarker 

for CVD and atherosclerosis [440,443,444,445,446]. However this was not shown for 

human macrophages in in vitro studies. CRP is predominantly produced and released by 

the liver [437] which may be another reason as to why no differences were observed 

despite the varying levels of LPS (0 - 200 ng/mL) used to treat the human macrophages. 

This may suggest that only low levels of CRP are available in HMDM for secretion 

when induced by LPS. Testing for CRP levels in a different cell types may be 

worthwhile, in particularly in hepatocytes where CRP is primarily synthesised, and 

where the effect of TEMPOL upon CRP levels induced by high glucose may be more 

obvious. In contrast, the levels of TNF-α and MIP-1α were extremely responsive to 
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higher glucose concentrations for the same HMDM donors used to assess CRP levels 

suggesting that there were no problems with the cells in the experiments used.  

High glucose elevated the secretion of TNF-α and MIP-1α in response to LPS. 

Elevation of pro-inflammatory cytokines induced by high glucose has been reported in 

both in vitro and in vivo studies. Thus human monocytes that were incubated with 30 

mM glucose and treated with LPS (500 ng/mL; 24 hrs) increased secretion of MIP-1α 

levels, and higher levels of IL-6, IL-8, and MIP-1β were observed when compared to 

normal 5.6 mM glucose from U-937 monocytes [449]. Increases in TNF-α expression 

along with IL-1β, IL-6, IL-12, IL-18 were detected and found to be stimulated by 

hyperglycaemia in vivo from mouse peritoneal macrophages from STZ-induced diabetic 

C57BL/6 mice [414]. Macrophages from mice with diabetes (16.8 - 28 mM glucose) 

were also found to produce significantly more TNF-α, IL-6 and reactive oxygen 

intermediates than cells from normoglycaemic control CBA/J mice [450]. 

TEMPOL has been reported to alleviate high glucose induced oxidative stress 

[424,425,447,474]. In the current study, TEMPOL (100 μM) significantly attenuated the 

elevation of TNF-α and MIP-1α levels released from human macrophages induced by 

20 mM glucose, where many studies have reported an increase in these cytokines 

[414,447,448,449,450,460,461,462,463,464,465,466,467]. Given that TEMPOL at the 

same concentration also inhibited TNF-α levels in human monocytes exposed to a 

glucose concentration of 30 mM, and this was associated with inhibited ROS 

production, the probable mechanism in the current study would be the antioxidant 

activity of TEMPOL [447]. Interestingly TEMPOL was shown to block MCP-1 and IL-

6 release from endothelial cells that were stimulated with TNF-α, IL-1 and IFN-γ 

cytokines in order to engender the production of ROS [387]. TEMPOL (1 mM in 

drinking water) has also been shown to exert protective antioxidative effects against 

renal dysfunction in streptozotocin-induced diabetic rats, as malondialdehyde levels 

were significantly reduced, and this was coupled with a decrease in activity of 

superoxide dismutase and glutathione peroxidase [424]. In another animal model the 

same dose of TEMPOL (1 mM in drinking water) did not prevent early renal injury 

(proteinuria) induced by caffeine, but was found to suppress late stage renal 

inflammatory, proliferative and fibrotic changes that were inflicted by chronic caffeine 

consumption in obese ZSF1 rats [484]. Further to this, hypertension and insulin 

resistance were found to be associated with greater secretion of MCP-1 and TNF-α 

levels in the soleus rat muscle, with these changes being attenuated by TEMPOL [485]. 
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These findings suggest that TEMPOL ameliorates inflammation and oxidative stress 

caused by conditions that include high blood glucose levels. However, it cannot be 

excluded that the inhibition by TEMPOL of TNF-α and MIP-1α secretion induced by 

high glucose treatment may also indicate that other pathways may contribute to the 

inhibition of the inflammatory responses seen in diabetes and cardiovascular disorders 

such as atherosclerosis. Chemokine receptors have been shown to influence lipoprotein 

metabolism and atherosclerosis in mice [486,487,488,489,490]. Thus MIP-1α (CCL3) 

levels have been found to play a crucial role in lipid metabolism in hyperlipidaemic fat-

fed mice and to be positively associated with disease in various mouse models of 

atherosclerosis [462,491], and in human carotid endarterectomy samples [492]. Plasma 

lipids, leptin and insulin concentrations, atherosclerotic lesion area, the presence of 

lesional T lymphocytes, body adiposity, hepatic triglycerides and TNF-α levels in the 

adipose tissue were also significantly lower in CCL3
-/- 

 hyperlipidaemic mice [462].  

MIP-1α levels have also been shown to be elevated on incubation of mouse 

peritoneal macrophages with VLDL [493], however the effect of TEMPOL upon MIP-

1α secretion engendered by lipid remains unknown. The current study is the first to 

reveal that enhanced generation of TNF-α and MIP-1α levels by human macrophages 

induced by high glucose can be significantly inhibited by TEMPOL. These anti-

inflammatory effects strongly suggest that TEMPOL may have a significant role to play 

in diabetes-associated atherosclerosis which deserves further studies. In the previous 

chapter, TEMPOL was shown to prevent body weight gain and decrease the levels of 

several cytokines and inflammatory factors in hyperlipidaemic and obese mice. In the 

current study, TEMPOL was found to have a profound inhibitory impact upon the 

secretion of some of these species by human macrophages that had been previously 

exposed to high glucose.  
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7.6  Conclusion 

Lysosomal dysfunction is evident in HMDM exposed to hyperglycaemic (20 

mM) conditions as shown by a decrease in lysosomal cathepsin B, L and acid lipase 

activities. However, TEMPOL was unable to arrest these detrimental effects on 

lysosomal function induced by high glucose.  

High glucose induced an inflammatory response in HMDM as the levels of 

TNF-α and MIP-1α levels were significantly elevated.  TEMPOL (100 μM) 

supplementation of these cells exposed to high glucose significantly attenuated the 

elevation of TNF-α and MIP-1α levels induced by LPS. These are early biomarkers of 

inflammation and are known to be positively associated with hyperglycaemia, obesity 

and atherosclerosis. However, the effects of high glucose did not appear to be directly 

correlated with CRP secretion as there were no notable differences in CRP levels 

between normal and high glucose concentrations. Therefore it is hard to determine 

whether TEMPOL had a significant effect upon CRP levels and further studies are 

required to elucidate the effect of TEMPOL on CRP levels which are elevated in people 

with diabetes, obesity and related cardiovascular diseases [440,443,444,445,446]. 

Overall the anti-inflammatory effects exerted by TEMPOL observed in the 

present and previous chapters, strongly suggest that TEMPOL may have a potential 

protective role to play in diabetes-associated atherosclerosis.  
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8.1  Overview 

The research undertaken in this project sought to provide molecular insights into 

the links between diabetes and atherosclerosis, as well as exploring potential anti-

glycative and anti-oxidant compounds which may alleviate cardiovascular related 

diseases induced by hyperglycaemia and hyperlipidaemia.  

Hyperglycaemia, which may lead to chronically elevated levels of AGE and 

glycated proteins, is an independent risk factor for the diabetic complications of 

atherosclerosis [317].  In atherosclerosis, modified lipoproteins and lipid-laden 

macrophage-derived foam cells accumulate within lesions and formation of the latter 

may be partially due to an increased uptake of lipoproteins, decreased or altered 

intracellular metabolism and / or decreased cholesterol efflux. Modified (lipo) proteins 

in particular appear to accumulate in cells as a result of the impairment of the endo-

lysosomal system, which is responsible for the degradation or turnover of native or 

modified LDL particles. The potential role of hyperglycaemia in macrophage lysosomal 

dysfunction has not been fully elucidated, and the impact that high glucose 

concentrations may have on lysosomes was therefore investigated in both murine and 

human macrophages (Chapter 3), and monocytes during their maturation to 

macrophages (Chapter 4).  

These studies were subsequently extended to a diabetes-associated 

atherosclerotic animal model, where diabetes was induced by streptozotocin. This 

model was then used to investigate the potential anti-glycative, anti-lipidaemic and anti-

atherogenic properties of carnosine (Chapter 5).  

Hyperlipidaemia, a dominant feature of the metabolic syndrome, is also 

commonly seen in people with diabetes and cardiovascular diseases. Potential anti-

obesity, anti-lipidaemic and anti-inflammatory effects of TEMPOL (Chapter 6) were 

therefore examined in an animal model where mice were fed a high fat diet or normal 

chow with or without added TEMPOL. The potent anti-inflammatory effects of 

TEMPOL that were observed in these hyperlipidaemic obese mice were further 

investigated in human macrophages exposed to hyperglycaemia-like conditions 

(Chapter 7). The results obtained in each of these systems are discussed in further detail 

below.  
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8.2 Lysosomal dysfunction caused by high glucose in maturing monocytes and 

macrophages 

Lysosomes, are major sub-cellular organelles in macrophages and play a major 

role in degradation and the removal of a range of biomacromolecules [494]. 

Dysfunction of lysosomes may be responsible for the accumulation of 

damaged/glycated proteins and decreased or altered turnover of native or modified low 

density lipoprotein particles in macrophage foam cells [240,495]. Understanding the 

factors that influence lipid accumulation in macrophages is therefore an important line 

of study in diabetes-associated atherosclerosis.  

In the initial stages of atherosclerosis, excess sterol is primarily located within 

lipid droplets of the cell cytoplasm [496]. However, as lesions progress a significant 

amount of sterol is accumulated within the lysosomes of foam cells [423]. Furthermore 

an accumulation of oxidised lipids and proteins is known to occur in human 

atherosclerotic lesions [496,497,498,499], and previous studies have reported an 

enhanced accumulation of modified proteins and lipids during the development of 

diabetes-associated atherosclerosis [151,240,495,500].  

A possible mechanism for this accumulation is that modified proteins (e.g. 

glycated, oxidised or chemically modified) LDL are endocytosed via interaction with 

macrophage scavenger receptors. The endocytosed LDL is transported to the lysosomes 

to be degraded, with the free cholesterol released into the cytosol.  The free cholesterol 

is then available for efflux from the cell to lipid-free or lipid-poor apolipoprotein A1 

and HDL [501,502,503].  

Hyperglycaemia may have an impact on a number of these steps such as 

increased scavenger receptor expression and thus uptake of lipoprotein particles, 

impeded efflux of cytosolic cholesterol and impaired apolipoprotein A1 and HDL 

transport [272,504,505]. Macrophage scavenger receptor mRNA and protein levels have 

been shown to be modulated in HMDM by high glucose, with elevation of LOX1 

mRNA and decreased expression of SR-A1, SRB1, LDL-R and CD36 mRNA, however 

this did not impact the accumulation of cholesteryl esters in the HMDM [272]. This 

suggests that macrophage scavenger receptor levels may not be the key or sole 

determining factor in lipid accumulation in human macrophages. 
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Exposure of macrophages, but not smooth muscle and endothelial cells to 

glycated LDLs in the absence of high glucose has been shown to result in cholesterol 

and cholesterol ester accumulation. [151,500]. Furthermore lipid and cholesterol ester 

accumulation was observed in HMDM that were exposed to LDL glycated with 

methyglyoxal and glycoaldehyde [240]. This lipid accumulation was accompanied by 

greater endocytosis, degradation, and intracellular accumulation of modified apo B 

protein from glycoaldehyde-modified LDL [240]. Inhibition of LDL glycation by 

hydrazine compounds has been reported to inhibit and reduce lipid loading and foam 

cell formation in murine macrophage cells [506]. However extensive modification of 

the LDL was required to see intracellular accumulation of cholesteryl esters, and this 

may not reflect the situation in people with diabetes. It remains to be established 

whether high glucose levels alone drives this lipid or protein accumulation and to what 

degree hyperglycaemia impairs the metabolism and turnover rate of endogenous levels 

of glycated and oxidised lipoproteins, as these previous studies reported used high 

amounts of modified and glycated proteins and / or cells with unimpaired lysosomal 

metabolism. 

Cholesterol efflux from cells to apoA-1 and HDL metabolism may be affected 

by hyperglycaemia with this leading to lipid accumulation and contributing to the 

progression of atherosclerosis [507,508]. It has been shown that increasing glycation of 

apo A-1 is associated with a decreased activity of LCAT, a key enzyme in the 

metabolism of HDL [507]. A deficiency in LCAT activity has been reported for 

glycated apoA-1 isolated from people with Type 2 diabetes [429,431] and 

cardiovascular disease [430]. This reduction in enzyme reactivity may result in a 

decreased or impeded cholesterol efflux, as LCAT drives reverse cholesterol transport 

by esterifying cellular cholesterol and therefore allowing removal by HDL. Although 

glycation of apoA-1 may adversely affect reverse cholesterol and HDL function, this 

pathway alone may be insufficient to be the main driving factor of intracellular 

cholesterol accumulation in atherosclerosis.  

The studies reported in this thesis initially examined the potential impact of high 

glucose concentrations upon lysosomal enzymatic activities and number of lysosomes 

in murine J774A.1 macrophage-like cells that were incubated with normal (5.5 mM) or 

elevated concentrations of glucose (10 - 30 mM). The activities of three lysosomal 

cysteine proteases (cathepsins B, L and S), the aspartic acid protease cathepsin D and 

lysosomal acid lipase (all of which are highly expressed in normal macrophage 
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lysosomes), were found to be inhibited in cells exposed to high glucose concentrations. 

This decrease in multiple lysosomal activities may be due to a number of factors 

including; direct inactivation of these enzymes by glucose or materials derived from it, 

altered lysosomal pH, decreased protein levels or altered lysosome numbers. An acidic 

lysosomal environment must be achieved in order for the lysosomal enzymes to be fully 

activated; a higher pH may decrease the activity of these lysosomal enzymes. 

Alternatively a decrease in enzyme activity may also be due to a reduction in lysosomal 

protein levels or number. In the current study it has been shown that lysosomal 

cathepsin S protein levels were reduced by high glucose (30 mM) in HMDM cells 

[244]. Multiple lysosomal cathepsin activities along with acid lipase enzymatic 

activities were also decreased with high but lower concentrations of glucose (10 and 20 

mM) [244]. A deficiency in the activity of these enzymes may result in inadequate 

degradation of the ingested materials, further slowing down the breakdown and removal 

process of these particles. Lysosomal deficiency or lysosomal defects from 

hyperglycaemia may therefore lead to the accumulation of lipids in lysosomes.   

In order to provide a more suitable model of the situation in people with 

diabetes, these experiments were subsequently extended to human monocyte-derived 

macrophages (HMDM) that were collected from healthy donors. Long term exposure of 

these monocyte/ macrophage cells to elevated glucose levels resulted in a depression of 

lysosomal proteolytic and lipase activities.  

Lysosomal numbers were assessed in the murine J774A.1 and HMDM cells by 

LAMP-1 levels, aryl sulfatase activity and Lysotracker Red dye accumulation.  There 

was also less aryl sulfatase activity and LysoTracker Red staining, which are indicative 

of decreased lysosomal populations in the HMDM and J774A.1 cells that were exposed 

to 30 mM glucose [244]. High glucose modulated the levels of LAMP-1 protein, which 

is used as a general indicator for the presence of lysosomes [269]. LAMP-1 has been 

shown to play a key role in the generation of lysosomes, their translocation and the 

subsequent fusion of phagosomes with lysosomes [432]. Hyperglycaemia was also 

shown to decrease aryl sulfatase activity, Lysotracker dye accumulation and cathepsin 

protein levels supporting the LAMP-1 results with regard to the impact upon lysosomal 

number [244].   

As lysosomal enzymes and lipases were shown to be inhibited by 

hyperglycaemia, this may cause lysosomal dysfunction and a reduced capacity to 
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degrade and hydrolyse proteins, triglycerides and cholesterol esters, thereby 

contributing to lipid accumulation.  LAL is the only lysosomal hydrolase, available for 

the cleavage of cholesteryl esters and triglycerides delivered to the lysosomes [509]. A 

significant decrease in atherosclerotic plaques by LAL administration was observed in 

mice with LDL receptor deficiency with a HFD. Repeated dosages of additional LAL 

have also been reported to almost completely eradicate early stage lesions, and there 

were considerable improvement in the quality and quantity of advanced lesions [510].   

Intravenous injections of LAL into LAL-deficient mice corrected macrophage lipid 

storage disorders and decreased cholesterol and triglyceride content in multiple tissues 

[511,512].  

Lysosomal impairment in the murine J774A.1 and HMDM cells were seen with 

elevated glucose concentrations. However, whether the lysosomal dysfunction that was 

detected in these cellular studies can also be seen in vivo remains unanswered. This 

could be addressed by examining a standard diabetes atherosclerosis model to examine 

whether high glucose alone causes an accumulation of LDL particles within the 

lysosomes in vivo. This can be determined by lysosomal cathepsin and acid lipase 

markers in atherosclerotic lesions via immunohistology [510,511,513]. If lower levels 

of lysosomal markers are detected in the diabetic mice, this may confirm that lysosomal 

dysfunction or reduction of lysosomes within plaque macrophages can be potentially 

exacerbated by hyperglycaemia leading to plaque growth and instability. This would 

further define the roles of lysosomes and the magnitude of lysosomal damage that is 

inflicted by hyperglycaemia and the effect of this on plaque composition. Such studies 

would therefore provide key mechanistic data linking diabetes and atherosclerosis as 

postulated in Figure 8.1.  

Additional studies on the mechanisms of modified and oxidised lipid 

accumulation in cells as a result of hyperglycaemia could be carried out to examine the 

turnover and degradation rates of LDL in macrophages that are exposed to high glucose 

and which are known to be susceptible to LDL accumulation. The endocytosis, 

degradation rates, turnover of exogenous protein and net intracellular accumulation of 

native and glycated LDL could be examined by using 
125

I- of labeling LDL particles and 

radioactive counting. Lipid and cholesterol ester accumulation has been previously 

shown to be associated with greater endocytosis, degradation and intracellular 

accumulation of modified apo B lipoproteins in HMDM cells that were exposed to high 

amounts of glycoaldehyde-modified LDLs [240].  In such studies it would be of interest 
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to see whether high levels of glucose alone affects endocytosis and degradation of 
125

I-

BSA and 
125

I-LDL relative to the normal glucose conditions and whether high glucose-

exposed cells accumulate native and glycated LDLs. A possible reduction in endocytic 

and degradative activity may explain the diminished proteolytic capacity of lysosomal 

cathepsins and acid lipases in cells that are exposed to high glucose.  

Further mechanistic studies could be carried out to investigate possible 

detrimental effects of hyperglycaemia on various lysosomal gene expression pathways. 

The effect of high glucose concentrations on lysosomal cathepsin and lipase mRNA 

expression can be further examined by RT-PCR techniques. Structural changes to 

lysosomes can be viewed under routine electron microscopy and changes in lysosomal 

markers in hyperglycaemic macrophages in atherosclerotic lesions from diabetic mice 

or humans can be examined via immunohistochemistry [513]. This would provide a 

more solid understanding of the causes of lysosomal dysfunction induced by 

hyperglycaemia. 

Early endosome antigen 1 (EEA1) is responsible for translocation and fusion of 

early endosomes along with Arf and Rab GTPases, which are important in the 

regulation of fusion of transport vesicles [514,515]. The CD63/68 antigen is a 

glycoprotein of the LAMP family which binds to LDL and plays an important role in 

phagocytotic activity and intracellular lysosomal metabolism in late endosomes 

[516,517,518,519] and protein p62 mRNA is responsible for delivery of ubiquitin-

tagged proteins into autophagosomes [520,521,522]. Electron microscopic 

immunocytochemistry has revealed that fatty streaks of human aortas contained 

diminished amounts of EEA1 and Rab5a mRNAs, whilst the levels of CD68 and p62 

mRNAS were elevated in comparison to normal intima [513]. These data indicate that 

both early and late endo-lysosomal systems are affected in atherogenesis. Further 

investigations on the impairment that may be occurring in the early or late endo-

lysosomal systems, along with lysosomal structural changes arising from 

hyperglycaemia may determine whether alterations in lysosomal enzyme levels and 

activity result in a reduced capacity to clear native and modified lipoprotein particles, 

and hence whether this contributes to lipid accumulation within lysosomes.  

The studies in Chapter 4 were carried out to determine at which time point high 

glucose levels begin to impede lysosomal function. High glucose concentrations were 

shown to have an inhibitory effect on lysosomal cathepsin activity in monocytes within 
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two days of exposure in vitro. The magnitude of the glucose-induced changes in 

lysosomal cathepsin activities increased as the cells matured into macrophages. A 

similar but less marked trend was seen in lysosomal acid lipase activity.  

The reduced activities of lysosomal cysteine proteases observed in the 

monocytes and macrophages exposed to high glucose concentrations may be due to 

modification of the active site cysteine residues by reactive aldehydes and glycated 

proteins that may form intracellularly [243]. The loss of these active site residues in the 

lysosomal cysteine proteases could be quantified in further studies by use of an assay 

(e.g. Thio Glo) that measures thiol levels. Cathepsin D and L activity have been 

previously reported to reduce the toxicity of AGE [269].  Greater amounts of 

endosomes and lysosomes, as well as increased cathepsin D and L activity has been 

associated with endocytosis of AGEs and the phagocytic function of macrophages 

[269].  Cathepsin D activity has been shown to be essential for the degradation or 

modification of age-related proteins [523], and this enzyme has been demonstrated to be 

capable of degrading AGEs [274]. Excessive intracellular AGE accumulation within 

lysosomes and a reduction in AGE modified protein degradation were observed in 

fibroblasts isolated from cathepsin D knockout mice in comparison to the wild type 

animals [274].   

The results obtained in the current study demonstrate that lysosomal cathepsin 

enzymes and numbers are affected by high glucose during monocyte maturation to 

macrophages. Further investigations are required to determine whether this lysosomal 

inhibition also occurs in other cell types that are known to be capable of accelerating the 

oxidation and accumulation of LDL in vitro, such as endothelial cells, smooth muscle 

cells and lymphocytes. However whether hyperglycaemia causes lysosomal damage in 

vivo and to what degree lysosomal dysfunction influences the metabolism and turnover 

rate of glycated and oxidised proteins in humans remains to be determined. Therefore 

further research is necessary to verify the extent and mechanism of lysosomal 

impairment in vivo / clinical samples and whether this occurs in the same way as seen in 

the current cell studies.  

 Examination of monocytes and macrophages from people with and without 

Type 1 and 2 diabetes would provide a more tangible insight into whether the roles of 

cathepsins and lysosomal dysfunction are associated with hyperlipidaemia, and the 

severity of cardiovascular diseases. However one of the major limitations of this type of 
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study is that human tissue macrophages are difficult to obtain. Monocytes may be 

obtained from elutriation of human blood and matured into macrophages. However, the 

key issue to overcome is incubating the monocytes with the same (fluctuating) glucose 

concentrations that may be present in vivo in the donor.   

People with diabetes have varying levels of glucose throughout the day, which 

will produce inconsistency for sample collection and analysis. This glucose reading at 

the time of collection may not accurately reflect the patient’s overall glucose history and 

hence the glucose levels to which the cells have been exposed.  

Therefore further research on in vivo samples may be necessary to verify the 

extent and mechanism of lysosomal impairment before translation into clinical studies. 

Resident peritoneal macrophages could be obtained from normal and diabetic mice, and 

lysosomal enzymes, number and protein expression measured. Lysosomal number (as 

measured by LAMP-1 protein levels), multiple cathepsins, and acid lipase are known to 

be detectable in atherosclerotic lesions via immunohistochemistry techniques. The 

effect of high glucose concentrations on lysosomal cathepsin and lipase mRNA 

expression could be further assessed by RT-PCR techniques in aortic samples from 

healthy donors and these with established cardiovascular disease. Such studies may 

provide a deeper understanding of the molecular mechanisms behind lysosomal 

dysfunction induced by hyperglycaemia in vivo. 
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Figure 8.1: Proposed mechanisms for macrophage lysosomal dysfunction caused 

by high glucose in monocytes and macrophages.  

In normal blood glucose conditions as shown in the top panel, modified proteins (e.g. 

glycated, oxidised or chemically modified) LDL are taken up by the macrophage 

scavenger receptors and endocytosed and transported to the lysosomes. A diversity of 

lysosomal enzymes such as cathepsins and lipases work actively to degrade the 

internalised particles. The current studies indicate that additionally hyperglycaemia may 

modify scavenger receptor expression such that the rate of modified protein uptake is 

increased to a point where it is a burden upon the lysosomal system. Hyperglycaemia 

may affect the activity of lysosomal enzymes such as cathepsins and lipases, and thus 

alter intracellular protein and lipid metabolism as shown in the bottom panel. Finally 

hyperglycaemia has been shown to impair reverse cholesterol transport. Together, these 

could lead to impaired removal of modified proteins, LDL and excess cellular 

cholesterol accumulation generating macrophage foam cells and thus accelerate plaque 

development under conditions of hyperglycaemia.  
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8.3 Effects of carnosine on atherosclerotic plaque development in diabetic apo 

E
-/-

 mice 

As protein glycation and glycoxidation appear to contribute to the development 

of diabetic complications such as atherosclerosis, agents which block or reverse protein 

glycation / glycoxidation may have therapeutic potential in the treatment of these 

complications. Carnosine is an endogenous dipeptide that has been shown to; a) block 

and detoxify glycated proteins; b) act as an antioxidant; c) act as a buffer; and d) act as a 

sensitiser for Ca
2+ 

[524]. Carnosine has been shown to modulate triglycerides and 

glycation levels in both cell [169] and whole animal systems [282,499]. The studies 

reported in Chapter 5 were therefore carried out to examine whether prolonged 

supplementation with carnosine inhibits atherosclerosis in hyperglycaemic and 

hyperlipidaemic mice.  

Diabetes was confirmed in the experimental system chosen (streptozotocin was 

used to induce Type 1 diabetes in apo E
-/-

 mice) by significant increases in blood 

glucose, glycated haemoglobin and a significantly lower body mass. In these mice were 

also hyperlipidaemic as evidenced by increased plasma triglycerides and total 

cholesterol levels. The brachiocephalic artery and aortic sinus plaque area were 

significant greater in the diabetic mice. Plasma carnosine levels were elevated in mice 

that were supplemented with carnosine in both the non-diabetic and diabetic groups. 

Whilst carnosine supplementation had no effect upon the diabetes-induced 

hyperglycaemia or hypercholesterolaemia of the diabetic mice, supplementation 

significantly reduced plasma triglyceride levels by 23%. Thus, carnosine may have anti-

lipogenic actions as this compound, notably it has been shown to significantly reduce 

triglyceride and cholesterol levels in the heart and livers of diabetic Balb/cA mice [525]. 

Plasma and hepatic triglycerides and cholesterol levels have also been reported to be 

lowered by carnosine supplementation  in high fat fed non-diabetic C67BL/6 mice that 

were hyperlipidaemic and obese with hepatic steatosis [283].  

In the diabetic mice, increases in plaque areas were observed at both aortic sites, 

however this was not significantly reduced by carnosine.  Further histochemical studies 

were carried out to elucidate whether the observed hypolipidaemic action of carnosine 

modulated plaque composition by assessing the presence and number of smooth muscle 

cells and macrophages and the levels of lipid and collagen in the atherosclerotic 

plaques.  
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The major finding of this study is that carnosine can alter plaque composition 

potentially increasing plaque stability in diabetes-associated atherosclerosis. This was 

evidenced by an approximate 60% reduction in the area occupied by extracellular lipid 

and an increase in both the number of macrophages by 70% and collagen content by 

50% within the plaques assessed. Carnosine has been previously shown to inhibit 

glucose-induced oxidation and glycation of human LDL [525] and effectively block 

pro-atherosclerotic AGE formation by preventing glycation of LDL that promotes foam 

cell formation in human macrophages [169]. An anti-atherosclerotic activity of this type 

of compound has also been demonstrated in fat-fed apo E
-/-

 mice that were 

supplemented with D-carnosine octyl ester [282,499]. In addition significantly smaller 

atherosclerotic lesions has been reported in carnosine-supplemented mice compared to 

controls, and a lower extent of macrophage apoptosis, in animals exposed to 4-hydroxy-

2-nonenal (4-HNE) [499]. A more stable plaque phenotype with less accumulation of 

lipid and foam cells, reduced inflammation, apoptosis and necrotic core formation has 

also been observed in the aortic sinus in apo E null mice that were fed a pro-atherogenic 

diet with D-carnosine octylester compared to the untreated controls [282].  

The anti-atherogenic activities of carnosine detected in the current study (and its 

derivatives in other studies [169,282,499]) may be due to these agents scavenging 

species that modify LDL (either radicals or reactive aldehydes), thereby impeding 

oxidation and glycation processes. The results obtained in this study indicate that in a 

well-established model of diabetes-associated atherosclerosis, prolonged carnosine 

supplementation had a significant impact on markers of atherosclerotic plaque stability. 

Interestingly there was no effect of carnosine on either blood glucose or glycated 

haemoglobin levels, so whether the carnosine levels achieved in the plasma are 

sufficient to cause substantive anti-glycative / oxidative activity in these mice remain 

unresolved. It is however clear that significant changes are induced in the artery wall.  

Further studies are required to confirm whether there was a greater accumulation 

of glycation and lipid peroxidation products within the plaques of the diabetic mice used 

in this study. Various markers of oxidative stress including protein and lipid oxidation 

products have been associated with the initiation and progression of atherosclerosis 

[526,527]. AGE products have also been shown to accumulate in the plaques of diabetic 

and atherogenic mice [528,529]. Reactive aldehydes / lipid peroxidation products such 

as malondialdehyde (MDA) [530,531], 4-hydroxy-2-nonenal (4-HNE) [282,532], N-

epsilon-carboxymethyl-lysine (CML) [528,533], methylgloxal and AGE products 
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[534,535,536] can be detected in atherosclerotic lesions by immunohistochemical 

techniques. Quantification of some of these markers in the lesions of the carnosine-

treated and control mice would therefore allow conclusions to be drawn as to whether 

the levels of plasma carnosine achieved by supplementation in this study were also 

sufficient to prevent and / or reverse glycative and glycoxidative modifications within 

the atherosclerotic plaques.  

Further mechanistic studies on the hypolipidaemic effect of carnosine could be 

carried out in other organ systems such as the liver, muscles and adipose tissues of these 

mice. This would allow a clearer and deeper understanding of the hypolipidaemic and 

other potential pathways by which carnosine lowers plasma triglyceride and lipid 

content in this model. In this regard carnosine has been previously demonstrated to 

block increases in plasma and hepatic triglycerides and cholesterol in high fat diet fed 

C67BL/6 mice [283], and mechanistic studies showed that carnosine supplementation 

significantly decreased mRNA expression of lipogenic enzymes (malic enzyme, fatty 

acid synthase, HMG-CoA reductase) and the sterol regulatory element-binding proteins, 

SREBP-1c and SREBP-2, which have been shown to be elevated in high fat fed mice 

[283].  In the study reported in this thesis carnosine supplementation was not only 

shown to lower plasma triglycerides, but plaque lipid levels were also significantly 

reduced. This hypolipidaemic action may also have an impact upon hepatic, adipose and 

skeletal muscle triglyceride content, but this remains unknown. Examining liver 

morphology may be a good indicator of whether sterols or triglycerides have 

accumulated in the hepatocytes. Excessive fat accumulation in hepatocytes gives rise to 

non- alcoholic fatty liver disease and steatosis in its severe form, and carnosine has been 

previously reported to have protective effects against hepatic steatosis and to lower 

epidydymal fat in high fat fed mice [283]. A more quantitative approach would be 

directly measure the triglyceride and cholesterol levels of homogenised liver samples 

by, for example, HPLC / UPLC.  Similarly triglyceride measurements could also be 

made on adipose tissue (visceral, epididymal and inguinal fat) and skeletal muscles 

from the leg, such as the gastrocnemius, quadriceps and soleus. Quantification of lipids 

from these tissues may allow conclusions to be reached as to whether the intake of 

carnosine ameliorates systemic, adipocytic and hepatic inflammation in diabetes-

associated atherosclerosis.  

The hypolipidaemic and protective effect of carnosine upon plaque composition 

may also provide a clearer insight into the involvement of lysosomes in the 
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accumulation of damaged / glycated proteins and turnover of oxidised low density 

lipoprotein particles. It would also be interesting to determine whether the 

hypolipidaemic action of carnosine has a protective effect upon macrophage lysosomes 

in atherosclerotic plaques.  A higher content of F4/80-positive macrophages were 

detected in the lesions of the carnosine-treated mice regardless of their glycaemic status, 

and it would be of interest to determine whether lysosomal acid lipase activity (i.e. lipid 

hydrolysis) was enhanced by supplementation with carnosine. An enhanced rate of 

hydrolysis of cholesterol esters and triglycerides may explain why there was 

considerably less extracellular lipid accumulation observed in the diabetic mice that 

were supplemented with carnosine compared to the non-supplemented mice.   

Further clinical trials of carnosine, a well tolerated dipeptide in diabetic and 

hyperlipidaemic subjects may be of significant value in the treatment of the vascular 

complications of diabetes. However plasma levels of carnosine levels in humans are low 

due to rapid hydrolysis by carnosinase in plasma and a corresponding short half life 

making it hard to achieve therapeutic doses of carnosine [524,537]. Synthetic derivates 

have been shown to be less susceptible to such hydrolysis, and may therefore have 

therapeutic potential [287].  The use of these novel derivatives may provide a promising 

preventive and therapeutic strategy for diabetic vascular complications in humans and 

as such would appear to warrant further investigations.  

 

8.4 Impact of TEMPOL on lipid profiles and cytokine expression in 

hyperlipidaemic obese mice 

TEMPOL has been shown to have hypotensive and cardio-protective actions in 

rodents however the potential anti-atherogenic action of TEMPOL remains inadequately 

characterised. Administration of TEMPOL has also been shown to effectively suppress 

body weight gain in obese C3H male and female mice that were fed a high fat diet. In 

the light of this previous data, the studies reported in Chapter 6 attempted to investigate 

whether TEMPOL supplementation inhibited atherosclerosis and obesity in high fat fed 

mice. Hyperlipidaemia was confirmed by significant increases in blood cholesterol, 

triglycerides, LDL-C levels and excess body mass gain; however this was not reflected 

in the plaque areas of the aortic sinus. Although the results of this study showed that 

plaque areas were not attenuated by TEMPOL, this compound effectively suppressed 
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hyperlipidaemia, blocked fat accumulation and inflammatory responses in both mouse 

strains when these were fed a high fat diet (HFD).  

Although TEMPOL suppressed high fat feeding-induced body mass gain and 

hyperlipidaemia in both the C57BL/6 wild type and the apo E
-/-

 mice the plaque areas in 

the aortic sinuses from chow fed mice were significantly larger than those determined 

for the high fat-fed apo E
-/-

 mice. This may be due to the presence of highly advanced 

disease in the high fat feeding, leading to lesion remodelling and contraction. This 

suggests an earlier time point should have been chosen for examination of this 

parameter. In the apo E
-/-

 mice, TEMPOL inhibited the elevation of MCP-1, IL-6, SAA, 

MPO and leptin levels that were observed in the hyperlipidaemic mice. No changes 

were seen in resistin levels, however a significant decrease in adiponectin levels were 

observed between the chow and HFD fed mice, and TEMPOL was shown to reverse 

these changes. A similar scenario was seen for the C57BL/6 mice, with MCP-1, IL-6, 

SAA, MPO and leptin levels reduced in the high fat fed mice that were supplemented 

with TEMPOL. No changes were however seen in the adiponectin levels in these mice; 

however an increase in resistin levels was observed in the HFD fed mice that were 

supplemented with TEMPOL.  Unlike the apo E
-/-

 strain, the C57BL/6 mice did not 

produce any observable atherosclerotic plaques and therefore this does not appear to be 

a sensible model to assess whether TEMPOL can inhibit atherosclerosis. However the 

veracity of this conclusion needs to be tempered by the fact that only one location was 

examined and more plaque may have existed in other regions of the vasculature, in 

particularly the brachiocephalic artery, as it is a key site for atherosclerotic progression. 

However other regions were not available for analysis. An assessment of atherosclerotic 

plaque development at other sites may rationalise the observed differences between 

atherosclerotic progression between the chow and HFD fed groups for the two mouse 

strains.  

Examination of the plaque composition between the supplemented and control 

chow and HFD mice may allow differences in atherosclerotic lesion structure to be 

determined. TEMPOL supplementation was shown to have an impact upon obesity, 

preventing body weight gain, hyperlipidaemia, and decreasing a range of plasma lipids 

and inflammatory markers; these changes were also associated with striking differences 

in plaque compositional changes between the HFD, and HFD supplemented with 

TEMPOL, mice. This could be determined by staining the lesions for α-actin for smooth 

muscle cells, F4/80 for macrophages, picrosirius red for collagen content and 
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calculating extracellular lipid content.  The results in the previous carnosine study 

showed significant hypolipidaemic effects on plaque composition (using these staining 

procedures) although there were no statistical differences in the atherosclerotic plaque 

size. Further experiments with a larger cohort of apo E
-/-

 mice fed for shorter periods 

would be beneficial with regard to assessing possible changes in lesion extent induced 

by TEMPOL.   

The results obtained in this study indicate that in a well-established model of 

obesity related-hyperlipidaemia, prolonged TEMPOL supplementation had a significant 

impact on various inflammatory and cytokine levels. Elevation of MCP-1, IL-6, SAA 

and MPO levels as seen in the HFD fed mice in both animal types have been reported to 

be early biomarkers of, or correlate positively with, atherosclerosis, obesity and 

cardiovascular diseases [312,313,361,362,363,364,365,366,367,538] and TEMPOL was 

shown to inhibit the elevation of these cytokines. Inflammatory cells that infiltrate 

adipose tissue are known to contribute substantially to the increased cytokine release of 

this tissue [539]. Obesity, with greater body mass and adipose tissue, is also known to 

induce changes in the secretion of adipose-specific cytokines (i.e. adipokines) 

[538,539]. Hence the potential inhibitory effects of TEMPOL on these adipokines were 

examined and significant changes in the levels of adiponectin and leptin were detected. 

HFD induced obesity led to hyperleptinaemia in both animal strains and decreased 

adiponectin secretion in the apo E
-/-

 mice. The elevated leptin levels were suppressed by 

TEMPOL in both animal types and the lower adiponectin levels observed in the HFD 

fed apo E
-/-

 mice were reversed with TEMPOL. Further mechanistic studies on the 

hypolipidaemic effect of TEMPOL could be carried out on other organ systems such as 

the liver, muscle and adipose tissue, as previously discussed in Section 8.3. This would 

provide a clearer and deeper understanding of the hypolipidaemic roles and other 

potential systemic inflammatory mechanisms by which TEMPOL lowers plasma lipid 

content in obesity related metabolic syndrome complications.   

Although TEMPOL was shown to lower plasma lipid levels, and also the 

systemic inflammatory response, in these fat-fed animals, the mechanisms that underlie 

these changes remain unknown. Further work needs to be carried out in order to 

understand the anti-obesity and anti-inflammatory actions of TEMPOL using an in vitro 

model of adipocyte proliferation and differentiation to elucidate whether TEMPOL 

inhibits production of adipokines by decreasing adipocyte size and / or number. That is 

whether: (i) the inhibition of gain in mass represents a TEMPOL-mediated inhibition of 
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adipocyte proliferation or differentiation; (ii) the changes in the pattern of cytokine and 

adipokine secretion are a consequence of the effects of TEMPOL upon adipocyte 

proliferation / differentiation; and / or (iii) whether the action of TEMPOL is mediated 

by its antioxidant activities.  

The murine preadipocyte cell line 3T3-L1 is a commonly used model for 

preadipocyte proliferation and adipocyte differentiation in vitro. Cell proliferation of 

pre-adipocytes in the absence or presence of TEMPOL could be determined using the 3-

(4,5-dimethylthiazol-2-yl)-2,5-diphenltetrazolium bromide (MTT) assay, and the degree 

of adipocyte hypertrophy could be digitally imaged and quantified. Comparison of 

adipocyte differentiation, and lipid accumulation, between TEMPOL treated and 

untreated cells could be quantified by staining lipid droplets via Oil-Red staining, or by 

HPLC/ UPLC quantification of triglycerides and fatty acids in cell lysates.  

 High fat intake has been proposed to induce a degree of endotoxaemia [540] and 

recently Lassenius and colleagues [541] have demonstrated an elevated serum 

lipopolysaccharide (LPS) / HDL ratio in people with Type 1 diabetes particularly those 

diagnosed with features of the metabolic syndrome. Adipocytes express receptors for 

LPS [542] and activation of adipocytes by LPS, via Toll-like receptors, induces fatty 

acid release [543]. Thus the capacity of TEMPOL to inhibit fatty acid release could be 

compared between TEMPOL treated and untreated cultures in the presence of LPS. A 

number of cytokines which are secreted by adipocytes are known to be induced by LPS 

stimulation [342,363,364]. The secreted levels of adipokines (e.g. leptin and 

adiponectin) and cytokines (TNF-α, IL-6, IL-8, serum amyloid A and CCL-2 and -5) 

from pre and matured adipocytes could be determined using immunoassay kits to assess 

whether TEMPOL inhibits cytokine production and secretion from these cells. 

The inhibitory effect of TEMPOL upon adipocyte proliferation, differentiation 

and / or pro-inflammatory responses may be influenced by its superoxide dismutase-

mimetic activity [336,346,544]. Quantification of superoxide levels in TEMPOL-treated 

and untreated cells may therefore be worth assessing, and this could be measured by 

using the dihydroethidine / 2-hyxdroxy ethidium fluorimetric assay [545].  

Such work on adipocytes from 3T3-L1 cells would pave the way for future 

projects. 3T3-L1 cells could provide a standard model system to screen novel 

compounds e.g. structural analogues of TEMPOL before use in expensive animal 

models. Investigations on primary adipocytes obtained from fat-fed obese mice and 
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obese subjects (e.g. those who have undergone liposuction) would also provide a more 

complete systematic understanding of the anti-obesity and anti-inflammatory actions of 

TEMPOL. 

The results obtained in these studies suggest that TEMPOL supplementation 

may be beneficial in lowering plasma lipid levels and suppressing obesity and 

hyperlipidaemia. Thus TEMPOL may be of significant value in arresting body fat 

accumulation and promoting body fat loss where management of body mass is resistant 

to behavioural modifications alone. Although TEMPOL is well known for its potent 

hypotensive effects, the anti-atherogenic properties of TEMPOL remain unestablished, 

and deserve further study. 

 

8.5 Effects of TEMPOL upon lysosomal function and cytokine expression in 

HMDM cells incubated with high glucose 

In the light of the above data which shows that TEMPOL can down regulate 

inflammation and lower cytokine levels, further studies were carried out to determine 

whether this compound affected lysosomal function and cytokine expression in HMDM 

exposed to high glucose. The studies carried out to assess the potential anti-

inflammatory effects of TEMPOL against the deleterious effects of high glucose levels 

in HMDM on lysosomal dysfunction (Chapters 3 and 4), showed that TEMPOL was not 

able to reverse or arrest this inhibition.  

The studies reported in Chapter 7 examined the potential impact of high glucose 

concentrations on a range of cytokine factors produced by HMDM upon stimulation 

with LPS, in order to establish a suitable model to assess the potential anti-

inflammatory action of TEMPOL. This was of interest because the antioxidant 

TEMPOL has been shown to protect against renal dysfunction and inhibit the 

production of hepatic reactive oxygen species induced by streptozotocin in vivo 

[345,424]. TEMPOL has also been demonstrated to inhibit AGE induced TNF-α and 

ROS production in vitro [425].  

In the studies reported in Chapter 7 high glucose was found to significantly 

elevate secretions of TNF-α and MIP-1α and lower CRP expression in macrophages 

when compared to normal glucose conditions. Subsequent experiments with multiple 

donors confirmed the significant elevation in TNF-α and MIP-1α induced by high 
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glucose, and TEMPOL was shown to significantly attenuate the elevation of TNF-α and 

MIP-1α expression across all donors. This may be due to TEMPOL having a protective 

effect against the oxidative stress and damage inflicted by high glucose, and further 

studies would be required to determine and elucidate the potential protective effects of 

TEMPOL in human macrophages against oxidative and glycative damage. This could 

be achieved by the generation of various reactive oxygen species or the inclusion of 

advanced glycation end products markers by LPS stimulation in the media to examine 

whether TEMPOL inhibits or reverses potential elevations in ROS and AGE markers. 

The potential induction of inflammatory markers by high glucose and its modulation by 

TEMPOL could also be examined in other cell types such as monocytes, neutrophils, 

dendritic cells, lymphocytes and other leukocytes which act as key communicators 

between the innate and immune response. Studies on mouse peritoneal macrophages 

obtained from mice with diabetes (with and without TEMPOL supplementation) would 

also be potentially worthwhile to examine whether TEMPOL, which has been shown to 

inhibit TNF-α and MIP-1α elevations induced by high glucose at a cellular level, also 

has such actions in animals suffering from diabetes. Examination of the effects of 

TEMPOL on monocytes elutriated from the blood of people with Type 1 or 2 diabetes 

may further elucidate the roles of TEMPOL in humans.   

CRP secretion was not found to be affected by stimulation with LPS or exposure 

to high glucose; therefore it is difficult to conclude whether high glucose or TEMPOL 

supplementation had an effect upon these levels. Plasma CRP levels have been reported 

to be higher in people with diabetes, cardiovascular diseases and atherosclerosis, 

however this was not reflected in the human monocyte-derived macrophages examined 

in these studies. This may be due to the absence or only levels of low concentrations of 

CRP generated by HMDM. Further investigations would therefore be beneficial in other 

cell types, such as hepatocytes where CRP is primarily synthesised [437]. CRP levels 

are a sensitive marker for cardiovascular diseases and particularly atherosclerosis, and 

therefore further investigations in diabetic and hyperlipidaemic subjects may be 

warranted to elucidate potential beneficial effects of TEMPOL.  
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8.6  Concluding remarks 

The chronic elevated blood glucose levels detected in people with diabetes may 

have a detrimental impact upon macrophage lysosomal function that could promote 

atherosclerosis. The studies in this thesis attempted to demonstrate for the first time, 

some of the deleterious effects of high glucose upon lysosomes, and it has been shown 

that this includes inhibition of lysosomal enzymes and reduced lysosomal number in 

murine and human monocytes / macrophages.  Lysosomal dysfunction may therefore be 

an underlying cause for the increased incidence, and rate of development of 

atherosclerosis in people with diabetes.  

The endogenous agent carnosine was examined in a murine model of diabetes-

induced atherosclerosis. Carnosine supplementation was shown to have anti-

hyperlipidaemic effects and properties that may enhance plaque stability which may be 

of therapeutic value in the treatment of diabetes-accelerated atherosclerosis.  

The nitroxide TEMPOL was investigated in two well-established murine models 

of obesity induced by high fat feeding. TEMPOL was shown to effectively block weight 

gain in mice and relieve the associated hyperlipidaemia induced by a high fat diet. 

Further mechanistic studies showed that TEMPOL was able to reduce systemic 

inflammation and reverse the changed adipokine profile of obesity. Furthermore 

TEMPOL was shown to have an impact upon inflammation induced by high glucose in 

human macrophages. The anti-hyperlipidaemic, anti-obesity and anti-diabetic actions of 

TEMPOL may therefore be of therapeutic value in the treatment of many complications 

that arise from metabolic dysfunction.  

 

 

 

 

 

 

 



252 
 

 

 

 

REFERENCES 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



253 
 

1.  Zimmet P, Alberti K, Shaw J (2001) Global and societal implications of the 

diabetes epidemic. Nature 414: 782-787. 

2.  Eckel RH, Grundy SM, Zimmet PZ (2005) The metabolic syndrome. Lancet 

365: 1415-1428. 

3.  Eckel RH, Alberti K, Grundy SM, Zimmet PZ (2010) The metabolic syndrome. 

Lancet 375: 181-183. 

4.  Zimmet P, Magliano D, Matsuzawa Y, Alberti G, Shaw J (2005) The metabolic 

syndrome: A global public health problem and a new definition. Journal of 

Atherosclerosis and Thrombosis 12: 295-300. 

5.  Keating CL, Moodie ML, Bulfone L, Swinburn BA, Stevenson CE, et al. (2012) 

Healthcare utilization and costs in severely obese subjects before bariatric 

surgery. Obesity 20: 2412-2419. 

6.  Guize L, Thomas F, Pannier B, Bean K, Jego B, et al. (2007) All-cause mortality 

associated with specific combinations of the metabolic syndrome according to 

recent definitions. Diabetes Care 30: 2381-2387. 

7.  Thomas GN, Schooling CM, McGhee SM, Ho SY, Cheung BMY, et al. (2007) 

Metabolic syndrome increases all-cause and vascular mortality: The Hong Kong 

Cardiovascular Risk Factor Study. Clinical Endocrinology 66: 666-671. 

8.  Cheung BMY, Thomas GN (2007) The metabolic syndrome and vascular 

disease in Asia. Cardiovascular & Hematological Disorders - Drug Targets 7: 

79-85. 

9.  John AP, Koloth R, Dragovic M, Lim SCB (2009) Prevalence of metabolic 

syndrome among Australians with severe mental illness. Medical Journal of 

Australia 190: 176-179. 

10.  Ford ES (2005) Risks for all-cause mortality, cardiovascular disease, and 

diabetes associated with the metabolic syndrome - A summary of the evidence. 

Diabetes Care 28: 1769-1778. 

11.  Ford ES, Zhao GX, Li CY (2010) Pre-diabetes and the risk for cardiovascular 

disease a systematic review of the evidence. Journal of the American College of 

Cardiology 55: 1310-1317. 

12.  Dunstan DW, Thorp AA, Healy GN (2011) Prolonged sitting: is it a distinct 

coronary heart disease risk factor? Current Opinion in Cardiology 26: 412-419. 

13.  Crawford AG, Cote C, Couto J, Daskiran M, Gunnarsson C, et al. (2010) 

Prevalence of obesity, type II diabetes mellitus, hyperlipidemia, and 

hypertension in the United States: Findings from the GE centricity electronic 

medical record database. Population Health Management 13: 151-161. 

14.  Park YW, Zhu SK, Heymsfield SB, Heshka S (2003) The metabolic syndrome: 

All criteria are equal, but some criteria are more equal than others - In reply. 

Archives of Internal Medicine 163: 2788-2788. 

15.  Enzi G, Busetto L, Inelmen EM, Coin A, Sergi G (2003) Historical perspective: 

visceral obesity and related comorbidity in Joannes Baptista Morgagni's 'De 

sedibus et Causis Morborum per Anatomen Indagata'. International Journal of 

Obesity 27: 534-535. 

16.  Alberti K, Zimmet P, Shaw J (2006) Metabolic syndrome - a new world-wide 

definition. A consensus statement from the International Diabetes Federation. 

Diabetic Medicine 23: 469-480. 

17.  Vague J (1956) The degree of masculine differentiation of obesities - a factor 

determining predisposition to diabetes, atherosclerosis, gout, and uric calculous 

disease. American Journal of Clinical Nutrition 4: 20-34. 

18.  Reaven GM, Javorski WC, Reaven EP, Olefsky J, Jen P (1975) Diabetic 

hypertriglyceridemia. American Journal of the Medical Sciences 269: 382-389. 



254 
 

19.  Reaven GM, Olefsky JM (1978) Role of insulin resistance in the pathogenesis of 

hyper glycemia. Washington, D.C., USA: Illus Hemisphere Publishing 

Corporation pp. 229-266. 

20.  Reaven GM, Hoffman BB (1987) A role for insulin in the etiology and course of 

hypertension. Lancet 2: 435-437. 

21.  Reaven GM (1988) Role of insulin resistance in human-disease. Diabetes 37: 

1595-1607. 

22.  Gale AE (February 12–13, 1998) Chronic Fatigue Syndrome associated with 

insulin resistance Chronic Fatigue Syndrome. Sydney: Current Medical 

Diagnosis & Treatment 38th Ed. Case Study Poster Presentation. 

23.  Silva V, Stanton KR, Grande AJ (2013) Harmonizing the diagnosis of metabolic 

syndrome-focusing on abdominal obesity. Metabolic Syndrome and Related 

Disorders 11: 102-108. 

24.  Alberti K, Zimmet PZ, Consultation WHO (1998) Definition, diagnosis and 

classification of diabetes mellitus and its complications Part 1: Diagnosis and 

classification of diabetes mellitus - Provisional report of a WHO consultation. 

Diabetic Medicine 15: 539-553. 

25.  Simmons RK, Alberti K, Gale EAM, Colagiuri S, Tuomilehto J, et al. (2010) 

The metabolic syndrome: useful concept or clinical tool? Report of a WHO 

Expert Consultation. Diabetologia 53: 600-605. 

26.  Cheal KL, Abbasi F, Lamendola C, McLaughlin T, Reaven GM, et al. (2004) 

Relationship to insulin resistance of the Adult Treatment Panel III diagnostic 

criteria for identification of the metabolic syndrome. Diabetes 53: 1195-1200. 

27.  Alberti K, Zimmet P, Shaw J (2005) The metabolic syndrome - a new 

worldwide definition. Lancet 366: 1059-1062. 

28.  WHO (2013) Cardiovascular Diseases (CVDs), Fact Sheet No. 317 World 

Health Organisation. 

29.  Bonow RO (2010) ACC/AHA 2006 Guidelines for the management of patients 

with valvular heart disease: A report of the American College of 

Cardiology/American Heart Association task force on practice guidelines 

(Writing committee to develop guidelines for the management of patients with 

valvular heart disease). Circulation 121: E443-E443. 

30.  AIHW (2012) Health expenditure Australia 2010–11. Australian Institute of 

Health and Welfare. 

31.  AIHW (2013) Impact of cardiovascular disease. Australian Institute of Health 

and Welfare (AIHW). 

32.  Begg S, Vos T, Goss J, Mann N (2008) An alternative approach to projecting 

health expenditure in Australia. Australian Health Review 32: 148-155. 

33.  ABS (2006) Diabetes in Australia: A Snapshot, 2004-05  Australian Bureau of 

Statistics. 

34.  Falk E (2006) Pathogenesis of atherosclerosis. Journal of the American College 

of Cardiology 47: C7-C12. 

35.  Cheung N, Sharrett AR, Klein R, Criqui MH, Islam A, et al. (2007) Aortic 

distensibility and retinal arteriolar narrowing - The multi-ethnic study of 

atherosclerosis. Hypertension 50: 617-622. 

36.  Jenkins AJ, Best JD, Klein RL, Lyons TJ (2004) 'Lipoproteins, glycoxidation 

and diabetic angiopathy'. Diabetes-Metabolism Research and Reviews 20: 349-

368. 

37.  Faghihnia N, Tsimikas S, Miller ER, Witztum JL, Krauss RM (2010) Changes 

in lipoprotein(a), oxidized phospholipids, and LDL subclasses with a low-fat 

high-carbohydrate diet. Journal of Lipid Research 51: 3324-3330. 



255 
 

38.  Orlova EV, Sherman MB, Chiu W, Mowri H, Smith LC, et al. (1999) Three-

dimensional structure of low density lipoproteins by electron cryomicroscopy. 

Proceedings of the National Academy of Sciences of the United States of 

America 96: 8420-8425. 

39.  Jenkins AJ, Lyons TJ, Zheng DY, Otvos JD, Lackland DT, et al. (2003) 

Lipoproteins in the DCCT/EDIC cohort: Associations with diabetic 

nephropathy. Kidney International 64: 817-828. 

40.  Feng M, Morales AB, Beugeling T, Bantjes A, vander Werf K, et al. (1996) 

Absorption of high density lipoproteins (HDL) on solid surfaces. Journal of 

Colloid and Interface Science 177: 364-371. 

41.  Segrest JP, Jones MK, De Loof H, Dashti N (2001) Structure of apolipoprotein 

B-100 in low density lipoproteins. Journal of Lipid Research 42: 1346-1367. 

42.  Fievet C, Fruchart JC (1991) HDL heterogeneity and coronary heart-disease. 

Diabetes-Metabolism Reviews 7: 155-162. 

43.  Tabet F, Rye KA (2009) High-density lipoproteins, inflammation and oxidative 

stress. Clinical Science 116: 87-98. 

44.  Hayden MR, Tyagi SC (2004) Vasa vasorum in plaque angiogenesis, metabolic 

syndrome, type 2 diabetes mellitus, and atheroscleropathy: a malignant 

transformation. Cardiovascular Diabetology 3: 1-16. 

45.  Crowther MA (2005) Pathogenesis of atherosclerosis. Hematology / the 

Education Program of the American Society of Hematology. American Society 

of Hematology. Education Program: 436-441. 

46.  Stary HC, Chandler AB, Dinsmore RE, Fuster V, Glagov S, et al. (1995) A 

definition of advanced types of atherosclerotic lesions and a histological 

classification of atherosclerosis - a report from the committee-on-vascular-

lesions of the council-on-arteriosclerosis, American-Heart-Association. 

Arteriosclerosis Thrombosis and Vascular Biology 15: 1512-1531. 

47.  Ross R, Glomset J, Harker L (1977) Response to injury and atherogenesis. 

American Journal of Pathology 86: 675-684. 

48.  D'Souza A, Hussain M, Howarth FC, Woods NM, Bidasee K, et al. (2009) 

Pathogenesis and pathophysiology of accelerated atherosclerosis in the diabetic 

heart. Molecular and Cellular Biochemistry 331: 89-116. 

49.  Steinberg D, Witztum JL (2010) History of discovery oxidized low-density 

lipoprotein and atherosclerosis. Arteriosclerosis Thrombosis and Vascular 

Biology 30: 2311-2316. 

50.  Libby P (2002) Inflammation in atherosclerosis. Nature 420: 868-874. 

51.  Stary HC (2000) Natural history of calcium deposits in atherosclerosis 

progression and regression. Zeitschrift Fur Kardiologie 89: 28-35. 

52.  Stary HC, Chandler AB, Glagov S, Guyton JR, Insull W, et al. (1994) A 

definition of initial, fatty streak, and intermediate lesions of atherosclerosis - a 

report from the committee on vascular-lesions of the council on arteriosclerosis, 

American-Heart-Association. Circulation 89: 2462-2478. 

53.  Anonymous (2012) Is it diabetes yet?  [Cited 6
th

 June 2013]; Available from: 

http://myghisite.com/is-it-diabetes-yet-part-2-of-2-article/atherosclerosis-stages/ 

54.  Negrato CA, Tarzia O (2010) Buccal alterations in diabetes mellitus. 

Diabetology & Metabolic Syndrome 2: 1-11. 

55.  Rathmann W, Giani G (2004) Global prevalence of diabetes: Estimates for the 

year 2000 and projections for 2030. Diabetes Care 27: 2568-2569. 

56.  IDF (2012) International Diabetes Federation (IDF) Diabetes Atlas 2012 [Cited 

1
st
 April 2013]; Available from: http://www.idf.org/diabetesatlas/5e/Update2012 

57.  Sherwin R, Jastreboff AM (2012) Year in Diabetes 2012: The Diabetes 

Tsunami. Journal of Clinical Endocrinology & Metabolism 97: 4293-4301. 



256 
 

58.  NIH (November 2008) National Diabetes Information Clearinghouse (NDIC). 

In: 09–3873 NPN, editor: National Institute of Diabetes and Digestive and 

Kidney Diseases (NIDDK), National Institutes of Health (NIH). 

59.  American Diabetes Association (2013) Diagnosis and Classification of Diabetes 

Mellitus. Diabetes Care 36: S67-S74. 

60.  Miller RA, Chu QW, Xie JX, Foretz M, Viollet B, et al. (2013) Biguanides 

suppress hepatic glucagon signalling by decreasing production of cyclic AMP. 

Nature 494: 256-260. 

61.  Dorkhan M, Frid A (2007) A review of pioglitazone HCL and glimepiride in the 

treatment of type 2 diabetes. Vascular health and risk management 3: 721-731. 

62.  Loh KC, Leow MKS (2002) Current therapeutic strategies for type 2 diabetes 

mellitus. Annals Academy of Medicine Singapore 31: 722-730. 

63.  Stumvoll M, Nurjhan N, Perriello G, Dailey G, Gerich JE (1995) Metabolic 

effects of metformin in non-insulin-dependent diabetes-mellitus. New England 

Journal of Medicine 333: 550-554. 

64.  Berner B, Hummel KM, Strutz F, Ritzel U, Ramadori G, et al. (2002) 

Metformin-induced lactic acidosis with acute renal failure in type 2 diabetes 

mellitus. Medizinische Klinik 97: 99-103. 

65.  Ahima RS (2011) Digging deeper into obesity. Journal of Clinical Investigation 

121: 2076-2079. 

66.  Godfrey JR (2006) Toward optimal health: Robert Kushner, M.D., offers a 

practical approach to assessment of overweight patients. Journal of Womens 

Health 15: 991-995. 

67.  Cornier MA, Despres JP, Davis N, Grossniklaus DA, Klein S, et al. (2011) 

Assessing adiposity a scientific statement from the American Heart Association. 

Circulation 124: 1996-2019. 

68.  WHO (2013) Obesity and overweight Fact sheet N°311. World Health 

Organisation. Last update: March 2013 [Cited 1
st
 April 2013] 

http://www.who.int/mediacentre/factsheets/fs311/en/ 

69.  Wellman NS, Friedberg B (2002) Causes and consequences of adult obesity: 

health, social and economic impacts in the United States. Asia Pacific Journal of 

Clinical Nutrition 11: S705-S709. 

70.  Seth A, Sharma R (2013) Childhood obesity. Indian Journal of Pediatrics 80: 

309-317. 

71.  Sharifi M, Rifas-Shiman SL, Marshall R, Simon SR, Gillman MW, et al. (2013) 

Evaluating the implementation of expert committee recommendations for 

obesity assessment. Clinical Pediatrics 52: 131-138. 

72.  Narang I, Mathew JL (2012) Childhood obesity and obstructive sleep apnea. 

Journal of Nutrition and Metabolism 2012: 1-8. 

73.  Wing RR (1995) Changing diet and exercise behaviors in individuals at risk for 

weight-gain. Obesity Research 3: S277-S282. 

74.  Malik VS, Popkin BM, Bray GA, Despres JP, Hu FB (2010) Sugar-sweetened 

beverages, obesity, type 2 diabetes mellitus, and cardiovascular disease risk. 

Circulation 121: 1356-1364. 

75.  Bray GA (2012) Fructose and risk of cardiometabolic disease. Current 

Atherosclerosis Reports 14: 570-578. 

76. Mavoa HM, McCabe M (2008) Sociocultural factors relating to Tongans' and 

Indigenous Fijians' patterns of eating, physical activity and body size. Asia 

Pacific Journal of Clinical Nutrition 17: 375-384. 

77.  Sibai AM, Nasreddine L, Mokdad AH, Adra N, Tabet M, et al. (2011) Nutrition 

transition and cardiovascular disease risk factors in Middle East and North 



257 
 

Africa countries: Reviewing the evidence. Annals of Nutrition and Metabolism 

57: 193-203. 

78.  Piya MK, McTernan PG, Kumar S (2013) Adipokine inflammation and insulin 

resistance: the role of glucose, lipids and endotoxin. The Journal of 

Endocrinology 216: T1-T15. 

79.  Sun K, Kusminski CM, Scherer PE (2011) Adipose tissue remodeling and 

obesity. Journal of Clinical Investigation 121: 2094-2101. 

80.  Greenberg AS, Coleman RA, Kraemer FB, McManaman JL, Obin MS, et al. 

(2011) The role of lipid droplets in metabolic disease in rodents and humans. 

Journal of Clinical Investigation 121: 2102-2110. 

81.  Sundell J, Laine H, Luotolahti M, Kalliokoski K, Raitakari O, et al. (2002) 

Obesity affects myocardial vasoreactivity and coronary flow response to insulin. 

Obesity Research 10: 617-624. 

82.  Ramachandrappa S, Farooqi IS (2011) Genetic approaches to understanding 

human obesity. Journal of Clinical Investigation 121: 2080-2086. 

83.  Farooqi IS (2011) Genetic, molecular and physiological insights into human 

obesity. European Journal of Clinical Investigation 41: 451-455. 

84.  Sierra-Johnson J, Romero-Corral A, Lopez-Jimenez F, Gami AS, Kuniyoshi 

FHS, et al. (2007) Relation of increased leptin concentrations to history of 

myocardial infarction and stroke in the United States population. American 

Journal of Cardiology 100: 234-239. 

85.  Hajer GR, van Haeften TW, Visseren FLJ (2008) Adipose tissue dysfunction in 

obesity, diabetes, and vascular diseases. European Heart Journal 29: 2959-2971. 

86.  Wang ZV, Scherer PE (2008) Adiponectin, cardiovascular function, and 

hypertension. Hypertension 51: 8-14. 

87.  Seino S, Shibasaki T, Minami K (2011) Dynamics of insulin secretion and the 

clinical implications for obesity and diabetes. Journal of Clinical Investigation 

121: 2118-2125. 

88.  Prentki M, Nolan CJ (2006) Islet beta cell failure in type 2 diabetes. Journal of 

Clinical Investigation 116: 1802-1812. 

89.  Shoelson SE, Lee J, Goldfine AB (2006) Inflammation and insulin resistance 

Journal of Clinical Investigation 116: 1793. 

90.  Stienstra R, Tack CJ, Kanneganti TD, Joosten LAB, Netea MG (2012) The 

inflammasome puts obesity in the danger zone. Cell Metabolism 15: 10-18. 

91.  Nov O, Shapiro H, Ovadia H, Tarnovscki T, Dvir I, et al. (2013) Interleukin-1 

beta regulates fat-liver crosstalk in obesity by auto-paracrine modulation of 

adipose tissue inflammation and expandability. Plos One 8: 1-12. 

92.  Furukawa S, Fujita T, Shimabukuro M, Iwaki M, Yamada Y, et al. (2004) 

Increased oxidative stress in obesity and its impact on metabolic syndrome. 

Journal of Clinical Investigation 114: 1752-1761. 

93.  Sprague AH, Khalil RA (2009) Inflammatory cytokines in vascular dysfunction 

and vascular disease. Biochemical Pharmacology 78: 539-552. 

94.  Weisberg SP, McCann D, Desai M, Rosenbaum M, Leibel RL, et al. (2003) 

Obesity is associated with macrophage accumulation in adipose tissue. Journal 

of Clinical Investigation 112: 1796-1808. 

95.  Vlasova M, Purhonen AK, Jarvelin MR, Rodilla E, Pascual J, et al. (2010) Role 

of adipokines in obesity-associated hypertension. Acta Physiologica 200: 107-

127. 

96.  Chen CY, Jiang J, Lu JM, Chai H, Wang XW, et al. (2010) Resistin decreases 

expression of endothelial nitric oxide synthase through oxidative stress in human 

coronary artery endothelial cells. American Journal of Physiology-Heart and 

Circulatory Physiology 299: H193-H201. 



258 
 

97.  Verma S, Li SH, Wang CH, Fedak PWM, Li RK, et al. (2003) Resistin promotes 

endothelial cell activation - Further evidence of adipokine-endothelial 

interaction. Circulation 108: 736-740. 

98.  Azuma K, Katsukawa F, Oguchi S, Murata M, Yamazaki H, et al. (2003) 

Correlation between serum resistin level and adiposity in obese individuals. 

Obesity Research 11: 997-1001. 

99.  Savage DB, Sewter CP, Klenk ES, Segal DG, Vidal-Puig A, et al. (2001) 

Resistin/Fizz3 expression in relation to obesity and peroxisome proliferator-

activated receptor-gamma action in humans. Diabetes 50: 2199-2202. 

100.  Catenacci VA, Hill JO, Wyatt HR (2009) The obesity epidemic. Clinics in Chest 

Medicine 30: 415-444. 

101.  Lopez-Jimenez F, Cortes-Bergoderi M (2011) Obesity and the heart. Revista 

Espanola De Cardiologia 64: 140-149. 

102.  Dorresteijn JAN, Visseren FLJ, Spiering W (2012) Mechanisms linking obesity 

to hypertension. Obesity Reviews 13: 17-26. 

103.  McGill HC, McMahan CA, Herderick EE, Zieske AW, Malcom GT, et al. 

(2002) Obesity accelerates the progression of coronary atherosclerosis in young 

men. Circulation 105: 2712-2718. 

104.  Lopez-Jimenez F, Jacobsen SJ, Reeder GS, Weston SA, Meverden RA, et al. 

(2004) Prevalence and secular trends of excess body weight and impact on 

outcomes after myocardial infarction in the community. Chest 125: 1205-1212. 

105.  Poirier P, Giles TD, Bray GA, Hong YL, Stern JS, et al. (2006) Obesity and 

cardiovascular disease: Pathophysiology, evaluation, and effect of weight loss - 

An update of the 1997 American Heart Association Scientific Statement on 

obesity and heart disease from the Obesity Committee of the Council on 

Nutrition, Physical Activity, and Metabolism. Circulation 113: 898-918. 

106.  Licata G, Argano C, Di Chiara T, Parrinello G, Scaglione R (2006) Obesity: a 

main factor of metabolic syndrome? Panminerva Medica 48: 77-85. 

107.  Remick J, Underberg JA, Shah NR (2008) Utility of different lipid measures to 

predict coronary heart disease. JAMA-Journal of the American Medical 

Association 299: 35-36. 

108.  Chaowalit N, Lopez-Jimenez F (2008) Epicardial adipose tissue: friendly 

companion or hazardous neighbour for adjacent coronary arteries? European 

Heart Journal 29: 695-697. 

109.  Romero-Corral A, Montori VM, Somers VK, Korinek J, Thomas RJ, et al. 

(2006) Association of bodyweight with total mortality and with cardiovascular 

events in coronary artery disease: a systematic review of cohort studies. Lancet 

368: 666-678. 

110.  Romero-Corral A, Sierra-Johnson J, Lopez-Jimenez F, Thomas RJ, Singh P, et 

al. (2008) Relationships between leptin and C-reactive protein with 

cardiovascular disease in the adult general population. Nature Clinical Practice 

Cardiovascular Medicine 5: 418-425. 

111.  Tong B, Stevenson C (2007) Comorbidity of cardiovascular disease, diabetes 

and chronic kidney disease in Australia. Canberra, ACT, Australia: Australian 

Institute of Health and Welfare. 

112.  Haffner SM, Lehto S, Ronnemaa T, Pyorala K, Laakso M (1998) Mortality from 

coronary heart disease in subjects with type 2 diabetes and in nondiabetic 

subjects with and without prior myocardial infarction. New England Journal of 

Medicine 339: 229-234. 

113.  Brownlee M (2013) Hyperglycemia-stimulated myelopoiesis causes impaired 

regression of atherosclerosis in type 1 diabetes. Cell Metabolism 17: 631-633. 



259 
 

114.  Bianchi C, Miccoli R, Daniele G, Penno G, Del Prato S (2009) Is there evidence 

that oral hypoglycemic agents reduce cardiovascular morbidity/mortality? Yes. 

Diabetes Care 32, Suppl 2: S342-S348. 

115.  Brownlee M (2005) The pathobiology of diabetic complications - A unifying 

mechanism. Diabetes 54: 1615-1625. 

116.  Yabe-Nishimura C (1998) Aldose reductase in glucose toxicity: A potential 

target for the prevention of diabetic complications. Pharmacological Reviews 

50: 21-33. 

117.  Brownlee M (2001) Biochemistry and molecular cell biology of diabetic 

complications. Nature 414: 813-820. 

118.  Lipinski B (2002) Evidence in support of a concept of reductive stress. British 

Journal of Nutrition 87: 93-94. 

119.  Ramasamy R, Oates PJ, Schaefer S (1997) Aldose reductase inhibition protects 

diabetic and nondiabetic rat hearts from ischemic injury. Diabetes 46: 292-300. 

120.  Gleissner CA, Galkina E, Nadler JL, Ley K (2007) Mechanisms by which 

diabetes increases cardiovascular disease. Drug Discovery Today: Disease 

Mechanisms 4: 131–140. 

121.  Trueblood N, Ramasamy R (1998) Aldose reductase inhibition improves altered 

glucose metabolism of isolated diabetic rat hearts. American Journal of 

Physiology-Heart and Circulatory Physiology 275: H75-H83. 

122.  Beckman JA, Creager MA, Libby P (2002) Diabetes and atherosclerosis - 

Epidemiology, pathophysiology, and management. JAMA-Journal of the 

American Medical Association 287: 2570-2581. 

123.  Du XL, Edelstein D, Dimmeler S, Ju QD, Sui C, et al. (2001) Hyperglycemia 

inhibits endothelial nitric oxide synthase activity by posttranslational 

modification at the Akt site. Journal of Clinical Investigation 108: 1341-1348. 

124.  Duan WL, Paka L, Pillarisetti S (2005) Distinct effects of glucose and 

glucosamine on vascular endothelial and smooth muscle cells: Evidence for a 

protective role for glucosamine in atherosclerosis. Cardiovascular Diabetology 

4: 1- 10. 

125.  Farhangkhoee H, Khan ZA, Kaur H, Xin XP, Chen SL, et al. (2006) Vascular 

endothelial dysfunction in diabetic cardiomyopathy: Pathogenesis and potential 

treatment targets. Pharmacology & Therapeutics 111: 384-399. 

126.  Rask-Madsen C, King GL (2005) Proatherosclerotic mechanisms involving 

protein kinase C in diabetes and insulin resistance. Arteriosclerosis Thrombosis 

and Vascular Biology 25: 487-496. 

127.  Griendling KK, FitzGerald GA (2003) Oxidative stress and cardiovascular 

injury - Part I: Basic mechanisms and in vivo monitoring of ROS. Circulation 

108: 1912-1916. 

128.  Steinberg D, Parthasarathy S, Carew TE, Khoo JC, Witztum JL (1989) Beyond 

cholesterol - modifications of low-density lipoprotein that increase its 

atherogenicity. New England Journal of Medicine 320: 915-924. 

129.  Steinberg D (2009) The LDL modification hypothesis of atherogenesis: an 

update. Journal of Lipid Research 50: S376-S381. 

130.  Stocker R, Keaney JF (2004) Role of oxidative modifications in atherosclerosis. 

Physiological Reviews 84: 1381-1478. 

131.  Kojda G, Harrison D (1999) Interactions between NO and reactive oxygen 

species: pathophysiological importance in atherosclerosis, hypertension, 

diabetes and heart failure. Cardiovascular Research 43: 562-571. 

132.  Giacco F, Brownlee M (2010) Oxidative stress and diabetic complications. 

Circulation Research 107: 1058-1070. 



260 
 

133.  Marchioli R (1999) Antioxidant vitamins and prevention of cardiovascular 

disease: Laboratory, epidemiological and clinical trial data. Pharmacological 

Research 40: 227-238. 

134.  Maxwell SRJ (1999) Antioxidant vitamin supplements - Update of their 

potential benefits and possible risks. Drug Safety 21: 253-266. 

135.  Goldin A, Beckman JA, Schmidt AM, Creager MA (2006) Advanced glycation 

end products - Sparking the development of diabetic vascular injury. Circulation 

114: 597-605. 

136.  Wolff SP, Dean RT (1987) Glucose autoxidation and protein modification - the 

potential role of autoxidative glycosylation in diabetes. Biochemical Journal 

245: 243-250. 

137.  Meerwaldt R, Links T, Zeebregts C, Tio R, Hillebrands JL, et al. (2008) The 

clinical relevance of assessing advanced glycation endproducts accumulation in 

diabetes. Cardiovascular Diabetology 7: 1-8. 

138.  Sparvero LJ, Asafu-Adjei D, Kang R, Tang DL, Amin N, et al. (2009) RAGE 

(Receptor for Advanced Glycation Endproducts), RAGE Ligands, and their role 

in Cancer and Inflammation. Journal of Translational Medicine 7: 1-21. 

139.  Yan SF, Ramasamy R, Schmidt AM (2008) Mechanisms of disease: advanced 

glycation end-products and their receptor in inflammation and diabetes 

complications. Nature Clinical Practice Endocrinology & Metabolism 4: 285-

293. 

140.  Turk B, Turk D, Turk V (2000) Lysosomal cysteine proteases: more than 

scavengers. Biochimica Et Biophysica Acta-Protein Structure and Molecular 

Enzymology 1477: 98-111. 

141.  Jandeleit-Dahm K, Cooper ME (2008) The role of AGEs in cardiovascular 

disease. Current Pharmaceutical Design 14: 979-986. 

142.  Fu MX, Wellsknecht KJ, Blackledge JA, Lyons TJ, Thorpe SR, et al. (1994) 

Glycation, glycoxidation, and cross-linking of collagen by glucose - kinetics, 

mechanisms, and inhibition of late stages of the maillard reaction. Diabetes 43: 

676-683. 

143.  Baynes JW, Thorpe SR (1999) Role of oxidative stress in diabetic complications 

- A new perspective on an old paradigm. Diabetes 48: 1-9. 

144.  Stadtman ER, Levine RL (2003) Free radical-mediated oxidation of free amino 

acids and amino acid residues in proteins. Amino Acids 25: 207-218. 

145.  Lo TWC, Westwood ME, McLellan AC, Selwood T, Thornalley PJ (1994) 

Binding and modification of proteins by methylglyoxal under physiological 

conditions - a kinetic and mechanistic study with n-alpha-acetylarginine, n-

alpha-acetylcysteine, and n-alpha-acetyllysine, and bovine serum-albumin. 

Journal of Biological Chemistry 269: 32299-32305. 

146.  Wellsknecht MC, Thorpe SR, Baynes JW (1995) Pathways of formation of 

glycoxidation products during glycation of collagen. Biochemistry 34: 15134-

15141. 

147.  Miyata T, Kurokawa K, de Strihou CV (2000) Relevance of oxidative and 

carbonyl stress to long-term uremic complications. Kidney International 58: 

S120-S125. 

148.  Yin DZ, Chen KJ (2005) The essential mechanisms of aging: Irreparable 

damage accumulation of biochemical side-reactions. Experimental Gerontology 

40: 455-465. 

149.  Artwohl M, Graier WF, Roden M, Bischof M, Freudenthaler A, et al. (2003) 

Diabetic LDL triggers apoptosis in vascular endothelial cells. Diabetes 52: 1240-

1247. 



261 
 

150.  Zimmermann R, Panzenbock U, Wintersperger A, Levak-Frank S, Graier W, et 

al. (2001) Lipoprotein lipase mediates the uptake of glycated LDL in fibroblasts, 

endothelial cells, and macrophages. Diabetes 50: 1643-1653. 

151.  Knott HM, Brown BE, Davies MJ, Dean RT (2003) Glycation and glycoxidation 

of low-density lipoproteins by glucose and low-molecular mass aldehydes - 

Formation of modified and oxidized particles. European Journal of Biochemistry 

270: 3572-3582. 

152.  Dan T, de Strihou CV, Miyata T (2011) Advanced Glycation End Products 

Inhibitor. Studies on Renal Disorders; Miyata T, Eckardt KU, Nangaku M, 

editors. New York: Springer pp. 389-406. 

153.  Inagi R (2011) Inhibitors of advanced glycation and endoplasmic reticulum 

stress. Methods in Enzymology, Vol 491: Unfolded Protein Response and 

Cellular Stress; Conn PM, editor. San Diego, USA: Elsevier Academic Press 

Incorporation 361-380 p. 

154.  Jandeleit-Dahm KA, Lassila M, Allen TJ (2005) Advanced glycation end 

products in diabetes associated atherosclerosis and renal disease - Interventional 

studies. Maillard Reaction: Chemistry at the Interface of Nutrition, Aging, and 

Disease; Baynes JW, Monnier VM, Ames JM, Thorpe SR, editors. New York, 

USA: New York Academy Sciences pp. 759-766. 

155.  Rahbar S, Figarola JL (2003) Novel inhibitors of advanced glycation 

endproducts. Archives of Biochemistry and Biophysics 419: 63-79. 

156.  Reddy VP, Beyaz A (2006) Inhibitors of the Maillard reaction and AGE 

breakers as therapeutics for multiple diseases. Drug Discovery Today 11: 646-

654. 

157.  Ahmed N, Thornalley PJ (2007) Advanced glycation endproducts: what is their 

relevance to diabetic complications? Diabetes Obesity & Metabolism 9: 233-

245. 

158.  Smit AJ, Lutgers HL (2004) The clinical relevance of advanced glycation 

endproducts (AGE) and recent developments in pharmaceutics to reduce AGE 

accumulation. Current Medicinal Chemistry 11: 2767-2784. 

159.  Jerums G, Panagiotopoulos S, Forbes J, Osicka T, Cooper M (2003) Evolving 

concepts in advanced glycation, diabetic nephropathy, and diabetic vascular 

disease. Archives of Biochemistry and Biophysics 419: 55-62. 

160.  Forbes JM, Soldatos G, Thomas MC (2005) Below the radar: advanced 

glycation end products that detour "around the side". Is HbA1c not an accurate 

enough predictor of long term progression and glycaemic control in diabetes? 

The Clinical Biochemist Reviews 26: 123-134. 

161.  Peng X, Ma J, Chen F, Wang M (2011) Naturally occurring inhibitors against 

the formation of advanced glycation end-products. Food & Function 2: 289-301. 

162.  Booth AA, Khalifah RG, Hudson BG (1996) Thiamine pyrophosphate and 

pyridoxamine inhibit the formation of antigenic advanced glycation end-

products: Comparison with aminoguanidine. Biochemical and Biophysical 

Research Communications 220: 113-119. 

163.  Bolton WK, Cattran DC, Williams ME, Adler SG, Appel GB, et al. (2004) 

Randomized trial of an inhibitor of formation of advanced glycation end 

products in diabetic nephropathy. American Journal of Nephrology 24: 32-40. 

164.  Guiotto A, Calderan A, Ruzza P, Borin G (2005) Carnosine and carnosine-

related antioxidants: A review. Current Medicinal Chemistry 12: 2293-2315. 

165.  Baguet A, Reyngoudt H, Pottier A, Everaert I, Callens S, et al. (2009) Carnosine 

loading and washout in human skeletal muscles. Journal of Applied Physiology 

106: 837-842. 



262 
 

166.  Jackson MC, Lenney JF (1996) The distribution of carnosine and related 

dipeptides in rat and human tissues. Inflammation Research 45: 132-135. 

167.  Gardner MLG, Illingworth KM, Kelleher J, Wood D (1991) Intestinal-

absorption of the intact peptide carnosine in man, and comparison with intestinal 

permeability to lactulose. Journal of Physiology-London 439: 411-422. 

168.  Teufel M, Saudek V, Ledig JP, Bernhardt A, Boularand S, et al. (2003) 

Sequence identification and characterization of human carnosinase and a closely 

related non-specific dipeptidase. Journal of Biological Chemistry 278: 6521-

6531. 

169.  Rashid I, van Reyk DM, Davies MJ (2007) Carnosine and its constituents inhibit 

glycation of low-density lipoproteins that promotes foam cell formation in vitro. 

FEBS Letters 581: 1067-1070. 

170.  Yeum KJ, Orioli M, Regazzoni L, Carini M, Rasmussen H, et al. (2010) 

Profiling histidine dipeptides in plasma and urine after ingesting beef, chicken or 

chicken broth in humans. Amino Acids 38: 847-858. 

171.  Quinn PJ, Boldyrev AA, Formazuyk VE (1992) Carnosine - its properties, 

functions and potential therapeutic applications. Molecular Aspects of Medicine 

13: 379-444. 

172.  Babizhayev MA (2004) Rejuvenation of visual functions in older adult drivers 

and drivers with cataract during a short-term administration of N-

acetylcarnosine lubricant eye drops. Rejuvenation Research 7: 186-198. 

173.  Babizhayev MA (2005) Analysis of lipid peroxidation and electron microscopic 

survey of maturation stages during human cataractogenesis: pharmacokinetic 

assay of Can-C N-acetylcarnosine prodrug lubricant eye drops for cataract 

prevention. Drugs in R&D 6: 345-369. 

174.  Babizhayev MA, Micans P, Guiotto A, Kasus-Jacobi A (2009) N-

Acetylcarnosine lubricant eyedrops possess all-in-one universal antioxidant 

protective effects of L-carnosine in aqueous and lipid membrane environments, 

aldehyde scavenging, and transglycation activities inherent to cataracts: A 

clinical study of the new vision-saving drug N-Acetylcarnosine eyedrop therapy 

in a database population of over 50,500 patients. American Journal of 

Therapeutics 16: 517-533. 

175.  Kaczor T (2010) L-carnosine effects of cataract development. Natural Medicine 

Journal 2: 13-17. 

176.  Meijer AJ, Codogno P (2009) Autophagy: Regulation and role in disease. 

Critical Reviews in Clinical Laboratory Sciences 46: 210-240. 

177.  Peters JM, Franke WW, Kleinschmidt JA (1994) Distinct 19-S and 20-S 

subcomplexes of the 26-S proteasome and their distribution in the nucleus and 

the cytoplasm. Journal of Biological Chemistry 269: 7709-7718. 

178.  Konstantinova IM, Tsimokha AS, Mittenberg AG (2008) Role of proteasomes in 

cellular regulation. International Review of Cell and Molecular Biology Volume 

267; Jeon KW, editor., San Diego, USA: Elsevier Academic Press Incorporation 

pp 59-124. 

179.  McNaught KSP, Olanow CW, Halliwell B, Isacson O, Jenner P (2001) Failure 

of the ubiquitin-proteasome system in Parkinson's disease. Nature Reviews 

Neuroscience 2: 589-594. 

180.  Lutgens SPM, Cleutjens K, Daemen M, Heeneman S (2007) Cathepsin cysteine 

proteases in cardiovascular disease. FASEB Journal 21: 3029-3041. 

181.  Wolters PJ, Chapman HA (2000) Importance of lysosomal cysteine proteases in 

lung disease. Respiratory Research 1: 170-177. 

182.  Turk V, Turk B, Turk D (2001) Lysosomal cysteine proteases: facts and 

opportunities. EMBO Journal 20: 4629-4633. 



263 
 

183.  Kuester D, Lippert H, Roessner A, Krueger S (2008) The cathepsin family and 

their role in colorectal cancer. Pathology Research and Practice 204: 491-500. 

184.  Colbert JD, Matthews SP, Miller G, Watts C (2009) Diverse regulatory roles for 

lysosomal proteases in the immune response. European Journal of Immunology 

39: 2955-2965. 

185.  Stoka V, Turk B, Turk V (2005) Lysosomal cysteine proteases: Structural 

features and their role in apoptosis. IUBMB Life 57: 347-353. 

186.  Sasaki M, Miyakoshi M, Sato Y, Nakanuma Y (2010) Autophagy mediates the 

process of cellular senescence characterizing bile duct damages in primary 

biliary cirrhosis. Laboratory Investigation 90: 835-843. 

187.  Sukhova GK, Shi GP, Simon DI, Chapman HA, Libby P (1998) Expression of 

the elastolytic cathepsins S and K in human atheroma and regulation of their 

production in smooth muscle cells. Journal of Clinical Investigation 102: 576-

583. 

188.  Mattock KL, Gough PJ, Humphries J, Burnand K, Patel L, et al. (2010) 

Legumain and cathepsin-L expression in human unstable carotid plaque. 

Atherosclerosis 208: 83-89. 

189.  Liu J, Sukhova GK, Yang JT, Sun JS, Ma LK, et al. (2006) Cathepsin L 

expression and regulation in human abdominal aortic aneurysm, atherosclerosis, 

and vascular cells. Atherosclerosis 184: 302-311. 

190.  Chen JQ, Tung CH, Mahmood U, Ntziachristos V, Gyurko R, et al. (2002) In 

vivo imaging of proteolytic activity in atherosclerosis. Circulation 105: 2766-

2771. 

191.  Lutgens E, Lutgens SPM, Faber BCG, Heeneman S, Gijbels MMJ, et al. (2006) 

Disruption of the Cathepsin K gene reduces atherosclerosis progression and 

induces plaque fibrosis but accelerates macrophage foam cell formation. 

Circulation 113: 98-107. 

192.  Sukhova GK, Zhang Y, Pan JH, Wada Y, Yamamoto T, et al. (2003) Deficiency 

of cathepsin S reduces atherosclerosis in LDL receptor-deficient mice. Journal 

of Clinical Investigation 111: 897-906. 

193.  Rodgers KJ, Watkins DJ, Miller AL, Chan PY, Karanam S, et al. (2006) 

Destabilizing role of cathepsin S in murine atherosclerotic plaques. 

Arteriosclerosis Thrombosis and Vascular Biology 26: 851-856. 

194.  Sasaki T, Kuzuya M, Nakamura K, Cheng XW, Hayashi T, et al. (2010) AT1 

blockade attenuates atherosclerotic plaque destabilization accompanied by the 

suppression of cathepsin S activity in apo E-deficient mice. Atherosclerosis 210: 

430-437. 

195.  Podgorski I (2009) Future of anticathepsin K drugs: dual therapy for skeletal 

disease and atherosclerosis? Future Medicinal Chemistry 1: 21-34. 

196.  Tang J, Wong RNS (1987) Evolution in the structure and function of aspartic 

proteases. Journal of Cellular Biochemistry 33: 53-63. 

197.  Benes P, Vetvicka V, Fusek M (2008) Cathepsin D-Many functions of one 

aspartic protease. Critical Reviews in Oncology Hematology 68: 12-28. 

198.  Abd-Elgaliel WR, Tung C-H (2010) Selective detection of Cathepsin E 

proteolytic activity. Biochimica Et Biophysica Acta-General Subjects 1800: 

1002-1008. 

199.  Haidar B, Kiss RS, Sarov-Blat L, Brunet R, Harder C, et al. (2006) Cathepsin D, 

a lysosomal protease, regulates ABCA1-mediated lipid efflux. Journal of 

Biological Chemistry 281: 39971-39981. 

200.  Jormsjo S, Wuttge DM, Sirsjo A, Whatling C, Hamsten A, et al. (2002) 

Differential expression of cysteine and aspartic proteases during progression of 



264 
 

atherosclerosis in apolipoprotein E-deficient mice. American Journal of 

Pathology 161: 939-945. 

201.  Wu KK, Huan YM (2007) Diabetic atherosclerosis mouse models. 

Atherosclerosis 191: 241-249. 

202.  Plump AS, Breslow JL (1995) Apolipoprotein-E and the apolipoprotein E-

deficient mouse. Annual Review of Nutrition 15: 495-518. 

203.  Zhang SH, Reddick RL, Piedrahita JA, Maeda N (1992) Spontaneous 

hypercholesterolemia and arterial lesions in mice lacking apolipoprotein-E. 

Science 258: 468-471. 

204.  Nakashima Y, Plump AS, Raines EW, Breslow JL, Ross R (1994) Apo E-

deficient mice develop lesions of all phases of atherosclerosis throughout the 

arterial tree. Arteriosclerosis and Thrombosis 14: 133-140. 

205.  Forbes JM, Yee LTL, Thallas V, Lassila M, Candido R, et al. (2004) Advanced 

glycation end product interventions reduce diabetes-accelerated atherosclerosis. 

Diabetes 53: 1813-1823. 

206.  Johnson J, Carson K, Williams H, Karanam S, Newby A, et al. (2005) Plaque 

rupture after short periods of fat feeding in the apolipoprotein E-knockout mouse 

- Model characterization and effects of pravastatin treatment. Circulation 111: 

1422-1430. 

207.  Martinic G, Hazell L, Stocker R (2003) Vascular microdissection, perfusion, and 

excision of the murine arterial tree for use in atherogenic disease investigations. 

Contemporary Topics in Laboratory Animal Science 42: 47-52. 

208.  Zuccollo A, Shi CM, Mastroianni R, Maitland-Toolan KA, Weisbrod RM, et al. 

(2005) The thromboxane A(2) receptor antagonist S18886 prevents enhanced 

atherogenesis caused by diabetes mellitus. Circulation 112: 3001-3008. 

209.  Renard CB, Kramer F, Johansson F, Lamharzi N, Tannock LR, et al. (2004) 

Diabetes and diabetes-associated lipid abnormalities have distinct effects on 

initiation and progression of atherosclerotic lesions. Journal of Clinical 

Investigation 114: 659-668. 

210.  Wendt T, Harja E, Bucciarelli L, Wu Q, Lu Y, et al. (2006) RAGE modulates 

vascular inflammation and atherosclerosis in a murine model of type 2 diabetes. 

Atherosclerosis 185: 70-77. 

211.  Candido R, Allen TJ, Lassila M, Cao ZM, Thallas V, et al. (2004) Irbesartan but 

not amlodipine suppresses diabetes-associated atherosclerosis. Circulation 109: 

1536-1542. 

212.  Tse J, Martin-McNaulty B, Halks-Miller M, Kauser K, DelVecchio V, et al. 

(1999) Accelerated atherosclerosis and premature calcified cartilaginous 

metaplasia in the aorta of diabetic male Apo E knockout mice can be prevented 

by chronic treatment with 17 beta-estradiol. Atherosclerosis 144: 303-313. 

213.  Hayek T, Hussein K, Aviram M, Coleman R, Keidar S, et al. (2005) 

Macrophage-foam cell formation in streptozotocin-induced diabetic mice: 

Stimulatory effect of glucose. Atherosclerosis 183: 25-33. 

214.  Kanasaki K, Koya D (2011) Biology of Obesity: Lessons from Animal Models 

of Obesity. Journal of Biomedicine and Biotechnology 2011:1-11. 

215.  Tesch GH, Lim AKH (2011) Recent insights into diabetic renal injury from the 

db/db mouse model of type 2 diabetic nephropathy. American Journal of 

Physiology-Renal Physiology 300: F301-F310. 

216.  Alpers CE, Hudkins KL (2011) Mouse models of diabetic nephropathy. Current 

Opinion in Nephrology and Hypertension 20: 278-284. 

217.  Violaine Rolland KC, Isabelle Dugail,  Bernard Guy-Grand,  Arnaud Basdevant, 

Philippe Fropel ML (1998) Leptin receptor gene in a large cohort of massively 



265 
 

obese subjects: No indication of the fa/fa rat mutation. Detection of an intronic 

variant with no association with obesity. Obesity Research 6: 122-127. 

218.  Matsuoka N, Ogawa, Y.,  Hosoda, K.,  Matsuda, H. Masuzaki, J., Miyawaki, T.,  

Azuma, N.,  Natsui, K., Nishimura H, Yoshimasa,  Y.,  Nishi, S., Thompson, 

D.B. ,  Nakao, K. (1997) Human leptin receptor gene in obese Japanese subjects: 

evidence against either obesity-causing mutations or association of sequence 

variants with obesity. Diabetologia 40: 1204–1210. 

219.  Vickers SP, Jackson, H. C. and Cheetham, S. C (2011) The utility of animal 

models to evaluate novel anti-obesity agents. British Journal of Pharmacology 

164: 1248-1262. 

220.  West DB, Boozer, C. N.,  Moody, D. L.and  Atkinson, R. L. (1992) Dietary 

obesity in nine inbred mouse strains. American Journal of Physiology-Cell 

Physiology 262: R1025-R1032. 

221.  Srinivasan KaR, P (2007) Animal models in type 2 diabetes research: An 

overview. Indian Journal of Medical Research 125: 451-472.  

222.  Speakman J, Hambly, C., Mitchell, S., Krol, E. (2007) Animal models of 

obesity. Obesity Reviews 8: 55-61.  

223.  Clee SMaA, A. D. (2007) The genetic landscape of type 2 diabetes in mice. 

Endocrine Reviews 28: 48-83. 

224.  Wang CY, Liao JK (2012) A mouse model of diet-induced obesity and insulin 

resistance. mTOR Methods and Protocols; Weichhart T, editor. Totowa, NJ, 

USA: Humana Press Incorporation pp. 421-433. 

225.  Guo JE, Hall KD (2011) Predicting changes of body weight, body fat, energy 

expenditure and metabolic fuel selection in C57BL/6 mice. Plos One 6: 1-9. 

226.  Williams TD, Chambers JB, Roberts LM, Henderson RP, Overton JM (2003) 

Diet-induced obesity and cardiovascular regulation in C57BL/6J mice. Clinical 

and Experimental Pharmacology and Physiology 30: 769-778. 

227.  Lijnen HR, Maquoi E, Holvoet P, Mertens A, Lupu F, et al. (2001) Adipose 

tissue expression of gelatinases in mouse models of obesity. Thrombosis and 

Haemostasis 85: 1111-1116. 

228.  Garner B, Dean RT, Jessup W (1994) Human macrophage-mediated oxidation 

of low-density-lipoprotein is delayed and independent of superoxide production. 

Biochemical Journal 301: 421-428. 

229.  Headlam HA, Gracanin M, Rodgers KJ, Davies MJ (2006) Inhibition of 

cathepsins and related proteases by amino acid, peptide, and protein 

hydroperoxides. Free Radical Biology and Medicine 40: 1539-1548. 

230.  Yan C, Lian XM, Li Y, Dai Y, White A, et al. (2006) Macrophage-specific 

expression of human lysosomal acid lipase corrects inflammation and 

pathogenic phenotypes in lal(-/-) mice. American Journal of Pathology 169: 916-

926. 

231.  Park L, Raman KG, Lee KJ, Lu Y, Ferran LJ, et al. (1998) Suppression of 

accelerated diabetic atherosclerosis by the soluble receptor for advanced 

glycation endproducts. Nature Medicine 4: 1025-1031. 

232.  McRobb L, Handelsman DJ, Heather AK (2009) Androgen-induced progression 

of arterial calcification in apolipoprotein E-null mice is uncoupled from plaque 

growth and lipid levels. Endocrinology 150: 841-848. 

233.  Bursill CA, Choudhury RP, Ali Z, Greaves DR, Channon KM (2004) Broad-

spectrum CC-chemokine blockade by gene transfer inhibits macrophage 

recruitment and atherosclerotic plaque formation in apolipoprotein E-knockout 

mice. Circulation 110: 2460-2466. 



266 
 

234.  Reimers GJ, Jackson CL, Rickards J, Chan PY, Cohn JS, et al. (2011) Inhibition 

of rupture of established atherosclerotic plaques by treatment with 

apolipoprotein A-I. Cardiovascular Research 91: 37-44. 

235.  Ross R (1999) Mechanisms of disease - Atherosclerosis - An inflammatory 

disease. New England Journal of Medicine 340: 115-126. 

236.  Davidson JA, Parkin CG (2009) Is Hyperglycemia a Causal Factor in 

Cardiovascular Disease? Does proving this relationship really matter? Yes. 

Diabetes Care 32: S331-S333. 

237.  Yan ZQ, Hansson GK (2007) Innate immunity, macrophage activation, and 

atherosclerosis. Immunological Reviews 219: 187-203. 

238.  Weber C, Zernecke A, Libby P (2008) The multifaceted contributions of 

leukocyte subsets to atherosclerosis: lessons from mouse models. Nature 

Reviews Immunology 8: 802-815. 

239.  Jerome WG (2006) Advanced atherosclerotic foam cell formation has features 

of an acquired lysosomal storage disorder. Rejuvenation Research 9: 245-255. 

240.  Brown BE, Rashid I, van Reyk DM, Davies MJ (2007) Glycation of low-density 

lipoprotein results in the time-dependent accumulation of cholesteryl esters and 

apolipoprotein B-100 protein in primary human monocyte-derived macrophages. 

FEBS Journal 274: 1530-1541. 

241.  Dunlop RA, Brunk UT, Rodgers KJ (2009) Oxidized Proteins: Mechanisms of 

Removal and Consequences of Accumulation. IUBMB Life 61: 522-527. 

242.  Moheimani F, Morgan PE, van Reyk DM, Davies MJ (2010) Deleterious effects 

of reactive aldehydes and glycated proteins on macrophage proteasomal 

function: Possible links between diabetes and atherosclerosis. Biochimica Et 

Biophysica Acta-Molecular Basis of Disease 1802: 561-571. 

243.  Zeng JM, Dunlop RA, Rodgers KJ, Davies MJ (2006) Evidence for inactivation 

of cysteine proteases by reactive carbonyls via glycation of active site thiols. 

Biochemical Journal 398: 197-206. 

244.  Moheimani F, Kim CHJ, Rahmanto AS, van Reyk DM, Davies MJ (2012) 

Inhibition of lysosomal function in macrophages incubated with elevated 

glucose concentrations: A potential contributory factor in diabetes-associated 

atherosclerosis. Atherosclerosis 223: 144-151. 

245.  Kisugi R, Kouzuma T, Yamamoto T, Akizuki S, Miyamoto H, et al. (2007) 

Structural and glycation site changes of albumin in diabetic patient with very 

high glycated albumin. Clinica Chimica Acta 382: 59-64. 

246.  Urbich C, Dernbach E, Rossig L, Zeiher AM, Dimmeler S (2008) High glucose 

reduces cathepsin L activity and impairs invasion of circulating progenitor cells. 

Journal of Molecular and Cellular Cardiology 45: 429-436. 

247.  Thornalley PJ (1996) Pharmacology of methylglyoxal: Formation, modification 

of proteins and nucleic acids, and enzymatic detoxification - A role in 

pathogenesis and antiproliferative chemotherapy. General Pharmacology 27: 

565-573. 

248.  Patschan S, Goligorsky MS (2008) Auotphagy: The missing link between non-

enzymatically glycated proteins inducing apoptosis and premature senescence of 

endothelial cells. Autophagy 4: 521-523. 

249.  Ishibashi F (2006) Chronic high glucose inhibits albumin reabsorption by 

lysosomal alkalinization in cultured porcine proximal tubular epithelial cells 

(LLC-PK1). Diabetes Research and Clinical Practice 72: 223-230. 

250.  Hideshima T, Bradner JE, Chauhan D, Anderson KC (2005) Intracellular protein 

degradation and its therapeutic implications. Clinical Cancer Research 11: 8530-

8533. 



267 
 

251.  Finegold DN, Coates PM (1984) Effect of diabetes and insulin therapy on 

human mononuclear leukocyte lysosomal acid lipase activity. Metabolism-

Clinical and Experimental 33: 85-89. 

252.  Henze K, Chait A (1981) Lysosomal enzyme-activities and low-density 

lipoprotein receptors in circulating mononuclear-cells - effect of insulin therapy 

in diabetic-patients. Diabetologia 20: 625-629. 

253.  Du H, Sheriff S, Bezerra J, Leonova T, Grabowski GA (1998) Molecular and 

enzymatic analyses of lysosomal acid lipase in cholesteryl ester storage disease. 

Molecular Genetics and Metabolism 64: 126-134. 

254.  Wolman M (1995) Wolman-disease and its treatment. Clinical Pediatrics 34: 

207-212. 

255.  Zschenker O, Illies T, Ameis D (2006) Overexpression of lysosomal acid lipase 

and other proteins in atherosclerosis. Journal of Biochemistry 140: 23-38. 

256.  Heltianu C, Robciuc A, Botez G, Musina C, Stancu C, et al. (2011) Modified 

low density lipoproteins decrease the activity and expression of lysosomal acid 

lipase in human endothelial and smooth muscle cells. Cell Biochemistry and 

Biophysics 61: 209-216. 

257.  Liu J, Ma LK, Yang JT, Ren A, Sun ZM, et al. (2006) Increased serum cathepsin 

S in patients with atherosclerosis and diabetes. Atherosclerosis 186: 411-419. 

258.  Vivanco F, Martin-Ventura JL, Duran MC, Barderas MG, Blanco-Colio L, et al. 

(2005) Quest for novel cardiovascular biomarkers by proteomic analysis. 

Journal of Proteome Research 4: 1181-1191. 

259.  Oberg G, Hallgren R, Moberg L, Venge P (1986) Bactericidal proteins and 

neutral proteases in diabetes neutrophils. Diabetologia 29: 426-429. 

260.  Sodha NR, Clements RT, Boodhwani M, Xu SH, Laham RJ, et al. (2009) 

Endostatin and angiostatin are increased in diabetic patients with coronary artery 

disease and associated with impaired coronary collateral formation. American 

Journal of Physiology-Heart and Circulatory Physiology 296: H428-H434. 

261.  Miyata S, Liu BP, Shoda H, Ohara T, Yamada H, et al. (1997) Accumulation of 

pyrraline-modified albumin in phagocytes due to reduced degradation by 

lysosomal enzymes. Journal of Biological Chemistry 272: 4037-4042. 

262.  Lougheed M, Zhang HF, Steinbrecher UP (1991) Oxidized low-density-

lipoprotein is resistant to cathepsins and accumulates within macrophages. 

Journal of Biological Chemistry 266: 14519-14525. 

263.  Brunk UT, Terman A (2002) Lipofuscin: Mechanisms of age-related 

accumulation and influence on cell function. Free Radical Biology and Medicine 

33: 611-619. 

264.  Ylaherttuala S, Palinski W, Rosenfeld ME, Parthasarathy S, Carew TE, et al. 

(1989) Evidence for the presence of oxidatively modified low-density 

lipoprotein in atherosclerotic lesions of rabbit and man. Journal of Clinical 

Investigation 84: 1086-1095. 

265.  Palinski W, Rosenfeld ME, Ylaherttuala S, Gurtner GC, Socher SS, et al. (1989) 

Low-density lipoprotein undergoes oxidative modification in vivo. Proceedings 

of the National Academy of Sciences of the United States of America 86: 1372-

1376. 

266.  Ylaherttuala S, Palinski W, Rosenfeld ME, Steinberg D, Witztum JL (1990) 

Lipoproteins in normal and atherosclerotic aorta. European Heart Journal 11: 88-

99. 

267.  Morgan PE, Dean RT, Davies MJ (2002) Inactivation of cellular enzymes by 

carbonyls and protein-bound glycation/glycoxidation products. Archives of 

Biochemistry and Biophysics 403: 259-269. 



268 
 

268.  Stolzing A, Widmer R, Jung T, Voss P, Grune T (2006) Degradation of glycated 

bovine serum albumin in microglial cells. Free Radical Biology and Medicine 

40: 1017-1027. 

269.  Grimm S, Horlacher M, Catalgol B, Hoehn A, Reinheckel T, et al. (2012) 

Cathepsins D and L reduce the toxicity of advanced glycation end products. Free 

Radical Biology and Medicine 52: 1011-1023. 

270.  Xiang G, Schinzel R, Simm A, Sebekova K, Heidland A (2001) Advanced 

glycation end products impair protein turnover in LLC-PK1: amelioration by 

trypsin. Kidney International. Supplement 78: S53-57. 

271.  Sebekova K, Schinzel R, Ling H, Simm A, Xiang GS, et al. (1998) Advanced 

glycated albumin impairs protein degradation in the kidney proximal tubules cell 

line LLC-PK1. Cellular and Molecular Biology 44: 1051-1060. 

272.  Moheimani F, Tan JTM, Brown BE, Heather AK, van Reyk DM, et al. (2011) 

Effect of exposure of human monocyte-derived macrophages to high, versus 

normal, glucose on subsequent lipid accumulation from glycated and acetylated 

low-density lipoproteins. Experimental Diabetes Research 2011 : 1-10. 

273.  Grune T, Merker K, Sandig G, Davies KJA (2003) Selective degradation of 

oxidatively modified protein substrates by the proteasome. Biochemical and 

Biophysical Research Communications 305: 709-718. 

274.  Grimm S, Ernst L, Grotzinger N, Hohn A, Breusing N, et al. (2010) Cathepsin D 

is one of the major enzymes involved in intracellular degradation of AGE-

modified proteins. Free Radical Research 44: 1013-1026. 

275.  Davidson JA, Parkin CG (2009) Is hyperglycemia a causal factor in 

cardiovascular disease? Does proving this relationship really matter? Yes. 

Diabetes Care 32 Suppl 2: S331-S333. 

276.  Park L, Raman KG, Lee KJ, Lu Y, Ferran LJ, et al. (1998) Suppression of 

accelerated diabetic atherosclerosis by the soluble receptor for advanced 

glycation endproducts. Nature Medicine 4: 1025-1031. 

277.  Hsueh WA, Abel ED, Breslow JL, Maeda N, Davis RC, et al. (2007) Recipes for 

creating animal models of diabetic cardiovascular disease. Circulation Research 

100: 1415-1427. 

278.  Jandeleit-Dahm K, Cooper ME (2008) The role of AGEs in cardiovascular 

disease. Current Pharmaceutical Design 14: 979-986. 

279.  Harris RC, Tallon MJ, Dunnett M, Boobis L, Coakley J, et al. (2006) The 

absorption of orally supplied β-alanine and its effect on muscle carnosine 

synthesis in human vastus lateralis. Amino Acids 30: 279-289. 

280.  Hipkiss AR (2009) Carnosine and its possible roles in nutrition and health. 

Advances in Food & Nutrition Research 57: 87-154. 

281.  Rashid I, van Reyk DM, Davies MJ (2007) Carnosine and its constituents inhibit 

glycation of low-density lipoproteins that promote foam cell formation in vitro. 

FEBS Letters 581: 1067-1070. 

282.  Menini S, Iacobini C, Ricci C, Scipioni A, Fantauzzi CB, et al. (2012) D-

carnosine octylester attenuates atherosclerosis and renal disease in ApoE null 

mice fed a Western diet through reduction of carbonyl stress and inflammation. 

British Journal of Pharmacology 166: 1344-1356. 

283.  Mong M, Chao C, Yin M (2011) Histidine and carnosine alleviated hepatic 

steatosis in mice consumed high saturated fat diet. European Journal of 

Pharmacology 653: 82-88. 

284.  Asatoor AM, Bandoh JK, Lant AF, Milne MD, Navab F (1970) Intestinal 

absorption of carnosine and its constituent amino acids in man. Gut 11: 250-254. 



269 
 

285.  Fontana M, Pinnen F, Lucente G, Pecci L (2002) Prevention of peroxynitrite-

dependent damage by carnosine and related sulphonamido pseudodipeptides. 

Cellular and Molecular Life Sciences 59: 546-551. 

286.  Cacciatore I, Cocco A, Costa M, Fontana M, Lucente G, et al. (2005) 

Biochemical properties of new synthetic carnosine analogues containing the 

resdiue of 2,3-diaminopropionic acid: the effect of N-acetylation. Amino Acids 

28: 77-83. 

287.  Stvolinsky SL, Bulygina ER, Fedorova TN, Meguro K, Sato T, et al. (2010) 

Biological Activity of Novel Synthetic Derivatives of Carnosine. Cellular and 

Molecular Neurobiology 30: 395-404. 

288.  Lee Y-T, Hsi C-C, Lin M-H, Liu K-S, Yimn M-C (2005) Histidine and 

carnosine delay diabetic deterioration in mice and protect human low density 

lipoprotein against oxidation and glycation. European Journal of Pharmacology 

513: 145-150. 

289.  Aldini G, Orioli M, Rossoni G, Savi F, Braidotti P, et al. (2011) The carbonyl 

scavenger carnosine ameliorates dyslipidemia and renal function in Zucker 

obese rats. Journal of Cellular Molecular Medicine 15: 1339-1356. 

290.  Park YJ, Volpe SL, Decker EA (2005) Quantitation of carnosine in humans 

plasma after dietary consumption of beef. Journal of Agriculture Food 

Chemistry 53: 4736-4739. 

291.  Nestel P, Fujii A, Allen T (2006) The cis-9,trans-11 isomer of conjugated 

linoleic acid (CLA) lowers plasma triglyceride and raises HDL cholesterol 

concentrations but does not suppress aortic atherosclerosis in diabetic apo E-

deficient mice. Atherosclerosis 189: 282-287. 

292.  Yamano T, Niijima A, Iimori S, Tsuruoka N, Kiso Y, et al. (2001) Effect of L-

carnosine on the hyperglycemia caused by intracranial injection of 2-deoxy-D-

glucose in rats. Neuroscience Letters 313: 78-82. 

293.  McClellan AC, Phillips SA, Thornalley PJ (1992) The assay of methylglyoxal in 

biological systems by derivatization with 1,2-diamino-4,5-dimethoxybenzene. 

Analytical Biochemistry 206: 17-23. 

294.  Odani H, Shinzato T, Matsumoto Y, Usami J, Maeda K (1999) Increase in three 

a,b-dicarbonyl compound levels in human uremic plasma: specific in vivo 

determination of intermediates in advanced Maillard reaction. Biochemical and 

Biophysical Ressearch Communications 256: 89-93. 

295.  Lapolla A, Flamini R, dalla Vedova A, Senesi A, Reitano R, et al. (2003) 

Glyoxal and methylglyoxal levels in diabetic patients: quantitative determination 

by a new GC/MS method. Clinical Chemistry and Laboratory Medicine 41: 

1166-1173. 

296.  Mukhopadhyay S, Sen S, Majhi B, Das KP, Kar M (2007) Methyl glyoxal 

elevation is associated with oxidative stress in rheumatoid arthritis. Free Radical 

Research 41: 507 - 514. 

297.  Lo TWC, Westwood ME, McLellan AC, Selwood T, Thornalley PJ (1994) 

Binding and modification of proteins by methylglyoxal under physiological 

conditions. A kinetic and mechanistic study with Na-acetylarginine, Na-

acetylcysteine, and Na-acetyllysine, and bovine serum albumin. Journal of 

Biolological Chemistry 269: 32299-32305. 

298.  Small DM, Shipley GG (1974) Physical-chemical basis of lipid deposition in 

atherosclerosis. Science 185: 222-229. 

299.  Levi Z, Shaish A, Yacov N, Levkovitz H, Trestman S, et al. (2003) 

Rosiglitazone (PPAR-g-agonist) attenuates atherogenesis with no effect on 

hyperglycaemia in a combined diabetes-atherosclerosis mouse model. Diabetes, 

Obesity and Metabolism 5: 45-50. 



270 
 

300.  Finn AV, Nakano M, Narula J, Kolodgie FD, Virmani R (2010) Concept of 

vulnerable/unstable plaque. Arteriosclerosis Thrombosis and Vascular Biology 

30: 1282-1292. 

301.  van der Wal AC, Becker AE (1999) Atherosclerotic plaque rupture - pathologic 

basis of plaque stability and instability. Cardiovascular Research 41: 334-344. 

302.  Koskinas KC SG, Baker AB, Papafaklis MI, Chatzizisis YS, Coskun AU, 

Quillard T, Jonas M, Maynard C, Antoniadis AP, Shi GP, Libby P, Edelman ER, 

Feldman CL, Stone PH. (2013) Thin-capped atheromata with reduced collagen 

content in pigs develop in coronary arterial regions exposed to persistently low 

endothelial shear stress. Arteriosclerosis Thrombosis and Vascular Biology 33: 

1494-1504. 

303.  Toutouzas K, Synetos A, Nikolaou C, Tsiamis E, Tousoulis D, et al. (2012) 

Matrix metalloproteinases and vulnerable atheromatous plaque. Current Topics 

in Medicinal Chemistry 12: 1166-1180. 

304.  Graham I, Cooney M-T, Bradley D, Dudina A, Reiner Z (2012) Dyslipidemias 

in the prevention of cardiovascular disease: risks and causality. Current 

Cardiology Reports 14: 709-720. 

305.  Singhal A (2013) Early growth and later atherosclerosis. World Review of 

Nutrition and Dietetics 106: 162-167. 

306.  Manduteanu I, Simionescu M (2012) Inflammation in atherosclerosis: a cause or 

a result of vascular disorders? Journal of Cellular and Molecular Medicine 16: 

1978-1990. 

307.  Shanker J, Rao VS, Ravindran V, Dhanalakshmi B, Hebbagodi S, et al. (2012) 

Relationship of adiponectin and leptin to coronary artery disease, classical 

cardiovascular risk factors and atherothrombotic biomarkers in the IARS cohort. 

Thrombosis and Haemostasis 108: 769-780. 

308.  Rudkowska I, Dewailly E, Hegele RA, Boiteau V, Dube-Linteau A, et al. (2013) 

Gene-diet interactions on plasma lipid levels in the Inuit population. British 

Journal of Nutrition 109: 953-961. 

309.  Alciati A, Gesuele F, Casazza G, Foschi D (2013) The Relationship between 

Childhood Parental Loss and Metabolic Syndrome in Obese Subjects. Stress and 

Health 29: 5-13. 

310.  Carroll MD, Lacher DA, Sorlie PD, Cleeman JI, Gordon DJ, et al. (2005) Trends 

in serum lipids and lipoproteins of adults, 1960-2002. JAMA-Journal of the 

American Medical Association 294: 1773-1781. 

311.  Kanthe PS, Patil BS, Shrilaxmi B, Anita D, Shaikh GB, et al. (2012) 

Atherogenic index as a predictor of cardiovascular risk among women with 

different grades of obesity. International Journal of Collaborative Research on 

Internal Medicine and Public Health (IJCRIMPH) 4: 1767-1774. 

312.  Enos RT, Davis JM, Velazquez KT, McClellan JL, Day SD, et al. (2013) 

Influence of dietary saturated fat content on adiposity, macrophage behavior, 

inflammation, and metabolism: composition matters. Journal of Lipid Research 

54: 152-163. 

313.  Choi Y, Kim Y, Park S, Lee KW, Park T (2012) Indole-3-carbinol prevents diet-

induced obesity through modulation of multiple genes related to adipogenesis, 

thermogenesis or inflammation in the visceral adipose tissue of mice. Journal of 

Nutritional Biochemistry 23: 1732-1739. 

314.  Lee YS, Cha BY, Choi SS, Choi BK, Yonezawa T, et al. (2013) Nobiletin 

improves obesity and insulin resistance in high-fat diet-induced obese mice. 

Journal of Nutritional Biochemistry 24: 156-162. 

315.  Scott NJA, Cameron VA, Raudsepp S, Lewis LK, Simpson ER, et al. (2012) 

Generation and characterization of a mouse model of the metabolic syndrome: 



271 
 

apolipoprotein E and aromatase double knockout mice. American Journal of 

Physiology-Endocrinology and Metabolism 302: E576-E584. 

316.  Park Y, Booth FW, Lee S, Laye MJ, Zhang CH (2012) Physical activity opposes 

coronary vascular dysfunction induced during high fat feeding in mice. Journal 

of Physiology-London 590: 4255-4268. 

317.  Forbes JM, Cooper ME (2013) Mechanisms of diabetic complications. 

Physiological Reviews 93: 137-188. 

318.  Wattanakit K, Lutsey PL, Bell EJ, Gornik H, Cushman M, et al. (2012) 

Association between cardiovascular disease risk factors and occurrence of 

venous thromboembolism A time-dependent analysis. Thrombosis and 

Haemostasis 108: 508-515. 

319.  Jeppesen J, Hein HO, Suadicani P, Gyntelberg F (1998) Triglyceride 

concentration and ischemic heart disease - An eight-year follow-up in the 

Copenhagen Male Study. Circulation 97: 1995-1995. 

320.  Di Angelantonio E, Sarwar N, Perry P, Kaptoge S, Ray KK, et al. (2009) Major 

lipids, apolipoproteins, and risk of vascular disease. JAMA-Journal of the 

American Medical Association 302: 1993-2000. 

321.  Gluba A, Mikhailidis DP, Lip GYH, Hannam S, Rysz J, et al. (2013) Metabolic 

syndrome and renal disease. International Journal of Cardiology 164: 141-150. 

322.  Li Z, Deng ML, Tseng C-H, Heber D (2013) Hypertriglyceridemia is a practical 

biomarker of metabolic syndrome in individuals with abdominal obesity. 

Metabolic Syndrome and Related Disorders 11: 87-91. 

323.  Garcia C, Feve B, Ferre P, Halimi S, Baizri H, et al. (2010) Diabetes and 

inflammation: Fundamental aspects and clinical implications. Diabetes & 

Metabolism 36: 327-338. 

324.  Altay U, Gurgan CA, Agbaht K (2013) Changes in inflammatory and metabolic 

parameters after periodontal treatment in patients with and without obesity. 

Journal of Periodontology 84: 13-23. 

325.  Dallal RM, Hatalski A, Trang A, Chernoff A (2012) Longitudinal analysis of 

cardiovascular parameters after gastric bypass surgery. Surgery for Obesity and 

Related Diseases 8: 703-709. 

326.  Giannetti M, Piaggi P, Ceccarini G, Mazzeo S, Querci G, et al. (2012) Hepatic 

left lobe volume is a sensitive index of metabolic improvement in obese women 

after gastric banding. International Journal of Obesity 36: 336-341. 

327.  Algahim MF, Sen S, Taegtmeyer H (2012) Bariatric surgery to unload the 

stressed heart: a metabolic hypothesis. American Journal of Physiology-Heart 

and Circulatory Physiology 302: H1539-H1545. 

328.  Moustarah F, Gilbert A, Despres JP, Tchernof A (2012) Impact of 

gastrointestinal surgery on cardiometabolic risk. Current Atherosclerosis 

Reports 14: 588-596. 

329.  Kenary AY, Notash AY, Nazari M, Borjian A, Afshin N, et al. (2012) 

Measuring the rate of weight gain and the influential role of diet in patients 

undergoing elective laparoscopic cholecystectomy: a 6-month follow-up study. 

International Journal of Food Sciences and Nutrition 63: 645-648. 

330.  Mitchell JB, Xavier S, DeLuca AM, Sowers AL, Cook JA, et al. (2003) A low 

molecular weight antioxidant decreases weight and lowers tumor incidence. Free 

Radical Biology and Medicine 34: 93-102. 

331.  Mitchell JB, Anver MR, Sowers AL, Rosenberg PS, Figueroa M, et al. (2012) 

The antioxidant TEMPOL reduces carcinogenesis and enhances survival in mice 

when administered after nonlethal total body radiation. Cancer Research 72: 

4846-4855. 



272 
 

332.  Cotrim AP, Sowers AL, Lodde BM, Vitolo JM, Kingman A, et al. (2005) 

Kinetics of TEMPOL for prevention of xerostomia following head and neck 

irradiation in a mouse model. Clinical Cancer Research 11: 7564-7568. 

333.  Vissink A, Mitchell JB, Baum BJ, Limesand KH, Jensen SB, et al. (2010) 

Clinical management of salivary gland hypofunction and xerostomia in head-

and-neck cancer patients: successes and barriers. International Journal of 

Radiation Oncology Biology Physics 78: 983-991. 

334.  Metz JM, Smith D, Mick R, Lustig R, Mitchell J, et al. (2004) A phase I study of 

topical TEMPOL for the prevention of alopecia induced by whole brain 

radiotherapy. Clinical Cancer Research 10: 6411-6417. 

335.  Metz JM, Smith D, Mick R, Lustig R, Steal B, et al. (2006) A phase I/II study of 

the safety, pharmacokinetics, and preliminary efficacy of MTS-01 for the 

prevention of alopecia induced by whole brain radiotherapy (WBRT). 

International Journal of Radiation Oncology Biology Physics 66: S537-S538. 

336.  Wilcox CS, Pearlman A (2008) Chemistry and antihypertensive effects of 

TEMPOL and other nitroxides. Pharmacological Reviews 60: 418-469. 

337.  Schnackenberg CG, Welch WJ, Wilcox CS (1998) Normalization of blood 

pressure and renal vascular resistance in SHR with a membrane-permeable 

superoxide dismutase mimetic - Role of nitric oxide. Hypertension 32: 59-64. 

338.  Zicha J, Dobesova Z, Kunes J (2001) Relative deficiency of nitric oxide-

dependent vasodilation in salt-hypertensive Dahl rats: the possible role of 

superoxide anions. Journal of Hypertension 19: 247-254. 

339.  Park JB, Touyz RM, Chen X, Schiffrin EL (2002) Chronic treatment with a 

superoxide dismutase mimetic prevents vascular remodeling and progression of 

hypertension in salt-loaded stroke-prone spontaneously hypertensive rats. 

American Journal of Hypertension 15: 78-84. 

340.  Ebenezer PJ, Mariappan N, Elks CM, Haque M, Francis J (2009) Diet-induced 

renal changes in Zucker rats are ameliorated by the superoxide dismutase 

mimetic TEMPOL. Obesity 17: 1994-2002. 

341.  Knight SF, Yuan JH, Roy S, Imig JD (2010) Simvastatin and TEMPOL protect 

against endothelial dysfunction and renal injury in a model of obesity and 

hypertension. American Journal of Physiology-Renal Physiology 298: F86-F94. 

342.  Samuni Y, Cook JA, Choudhuri R, DeGraff W, Sowers AL, et al. (2010) 

Inhibition of adipogenesis by TEMPOL in 3T3-L1 cells. Free Radical Biology 

and Medicine 49: 667-673. 

343.  Asghar M, Lokhandwala MF (2006) Antioxidant TEMPOL lowers age-related 

increases in insulin resistance in Fischer 344 rats. Clinical and Experimental 

Hypertension 28: 533-541. 

344.  Fujita H, Fujishima H, Chida S, Takahashi K, Qi ZH, et al. (2009) Reduction of 

renal superoxide dismutase in progressive diabetic nephropathy. Journal of the 

American Society of Nephrology 20: 1303-1313. 

345.  Frances DE, Ronco MT, Ingaramo PI, Monti JA, Pisani GB, et al. (2011) Role 

of reactive oxygen species in the early stages of liver regeneration in 

streptozotocin-induced diabetic rats. Free Radical Research 45: 1143-1153. 

346.  Patel K, Chen YF, Dennehy K, Blau J, Connors S, et al. (2006) Acute 

antihypertensive action of nitroxides in the spontaneously hypertensive rat. 

American Journal of Physiology-Regulatory Integrative and Comparative 

Physiology 290: R37-R43. 

347.  Welch WJ, Mendonca M, Blau J, Karber A, Dennehy K, et al. (2005) 

Antihypertensive response to prolonged TEMPOL in the spontaneously 

hypertensive rat. Kidney International 68: 179-187. 



273 
 

348.  Virdis A, Santini F, Colucci R, Duranti E, Salvetti G, et al. (2011) Vascular 

generation of tumor necrosis factor-alpha reduces nitric oxide availability in 

small arteries from visceral fat of obese patients. Journal of the American 

College of Cardiology 58: 238-247. 

349.  Thomas SR, Witting PK, Drummond GR (2008) Redox control of endothelial 

function and dysfunction: Molecular mechanisms and therapeutic opportunities. 

Antioxidants & Redox Signaling 10: 1713-1765. 

350.  Haghjooyejavanmard S, Nematbakhsh M (2008) Endothelial function and 

dysfunction: clinical significance and assessment. Journal of Research in 

Medical Sciences 13: 207-221. 

351.  Panza JA, Cannon RO, III (1999) Endothelium, nitric oxide, and atherosclerosis: 

From basic mechanisms to clinical implications; Panza JA, Cannon RO, III, 

editors. New York, USA: Futura Publishing Company, Incorporation pp. 320. 

352.  Deanfield J, Donald A, Ferri C, Giannattasio C, Halcox J, et al. (2005) 

Endothelial function and dysfunction. Part I: Methodological issues for 

assessment in the different vascular beds: A statement by the working group on 

endothelin and endothelial factors of the European Society of Hypertension. 

Journal of Hypertension 23: 7-17. 

353.  Brunner H, Cockcroft JR, Deanfield J, Donald A, Ferrannini E, et al. (2005) 

Endothelial function and dysfunction. Part II: Association with cardiovascular 

risk factors and diseases. A statement by the working group on endothelins and 

endothelial factors of the European Society of Hypertension. Journal of 

Hypertension 23: 233-246. 

354.  Subramanian S, Chait A (2012) Hypertriglyceridemia secondary to obesity and 

diabetes. Biochimica Et Biophysica Acta-Molecular and Cell Biology of Lipids 

1821: 819-825. 

355.  Rodriguez A, Doshi RR (2003) Potential therapeutic agents that raise high-

density lipoprotein cholesterol levels. Expert Opinion on Therapeutic Patents 13: 

167-175. 

356.  Tian L, Fu MD (2010) The relationship between high density lipoprotein 

subclass profile and plasma lipids concentrations. Lipids in Health and Disease 

9. 

357.  Subramanian S, Turner M, Ding Y, Kim J, Buckner J, et al. (2013) An increased 

complement of natural killer t cells contributes to metabolic dysfunction and 

atherosclerosis in obese mice. Journal of Investigative Medicine 61: 113-114. 

358.  Norata GD, Raselli S, Grigore L, Garlaschelli K, Vianello D, et al. (2009) Small 

dense LDL and VLDL predict common carotid artery IMT and elicit an 

inflammatory response in peripheral blood mononuclear and endothelial cells. 

Atherosclerosis 206: 556-562. 

359.  Rizzo M, Berneis K (2006) Low-density lipoprotein size and cardiovascular 

prevention. European Journal of Internal Medicine 17: 77-80. 

360.  Salles J, Tardif N, Landrier JF, Mothe-Satney I, Guillet C, et al. (2012) TNF 

alpha gene knockout differentially affects lipid deposition in liver and skeletal 

muscle of high-fat-diet mice. Journal of Nutritional Biochemistry 23: 1685-

1693. 

361.  Arya AK, Pokharia D, Bhan S, Tripathi R, Tripathi K (2012) Correlation 

between IL-7 and MCP-1 in diabetic chronic non healing ulcer patients at higher 

risk of coronary artery disease. Cytokine 60: 767-771. 

362.  Gobel RJ, Larsen N, Jakobsen M, Molgaard C, Michaelsen KF (2012) Probiotics 

to Adolescents With Obesity: Effects on Inflammation and Metabolic 

Syndrome. Journal of Pediatric Gastroenterology and Nutrition 55: 673-678. 



274 
 

363.  Filippin-Monteiro FB, de Oliveira EM, Sandri S, Knebel FH, Albuquerque RC, 

et al. (2012) Serum amyloid A is a growth factor for 3T3-L1 adipocytes, inhibits 

differentiation and promotes insulin resistance. International Journal of Obesity 

36: 1032-1039. 

364.  Nakarai H, Yamashita A, Nagayasu S, Iwashita M, Kumamoto S, et al. (2012) 

Adipocyte-macrophage interaction may mediate LPS-induced low-grade 

inflammation: Potential link with metabolic complications. Innate Immunity 18: 

164-170. 

365.  Faty A, Ferre P, Commans S (2012) The acute phase protein serum amyloid A 

induces lipolysis and inflammation in human adipocytes through distinct 

pathways. Plos One 7: 1-10. 

366.  Olza J, Aguilera CM, Gil-Campos M, Leis R, Bueno G, et al. (2012) 

Myeloperoxidase is an early biomarker of inflammation and cardiovascular risk 

in prepubertal obese children. Diabetes Care 35: 2373-2376. 

367.  Zur B, Look M, Holdenrieder S, Stoffel-Wagner B (2011) Elevated plasma 

myeloperoxidase concentration in adults with obesity. Clinica Chimica Acta 

412: 1891-1892. 

368.  Yadav A, Kataria MA, Saini V, Yadav A (2013) Role of leptin and adiponectin 

in insulin resistance. Clinica Chimica Acta; International Journal of Clinical 

Chemistry 417: 80-84. 

369.  Yamauchi T, Kadowaki T (2013) Adiponectin receptor as a key player in 

healthy longevity and obesity-related diseases. Cell Metabolism 17: 185-196. 

370.  Wang Y, Lam KSL, Xu AM (2006) Adiponectin as a therapeutic target for 

obesity-related metabolic and cardiovascular disorders. Drug Development 

Research 67: 677-686. 

371.  Xie X, Yang S, Zou Y, Cheng S, Wang Y, et al. (2013) Influence of the core 

circadian gene "Clock" on obesity and leptin resistance in mice. Brain Research 

1491: 147-155. 

372.  Boumaiza I, Omezzine A, Rejeb J, Rebhi L, Ben Rejeb N, et al. (2012) 

Association between four resistin polymorphisms, obesity, and metabolic 

syndrome parameters in tunisian volunteers. Genetic Testing and Molecular 

Biomarkers 16: 1356-1362. 

373.  Judkins CP, Dusting GJ, Drummond GR (2006) The effects of chronic 

TEMPOL treatment on athersclerosis vary from attenuation to exacerbation 

depending on treatment duration. Journal of Hypertension 24: 326-326. 

374.  Wang H, Luo W, Wang JT, Guo C, Wang XH, et al. (2012) Obesity-induced 

endothelial dysfunction is prevented by deficiency of P-selectin glycoprotein 

ligand-1. Diabetes 61: 3219-3227. 

375.  Cannizzo B, Lujan A, Estrella N, Lembo C, Cruzado M, et al. (2012) Insulin 

resistance promotes early atherosclerosis via increased proinflammatory proteins 

and oxidative stress in fructose-Fed ApoE-KO mice. Experimental Diabetes 

Research 2012: 1-8. 

376.  Dong YZ, Zhang M, Liang B, Xie ZL, Zhao ZX, et al. (2010) Reduction of 

AMP-activated protein kinase alpha 2 increases endoplasmic reticulum stress 

and atherosclerosis in vivo. Circulation 121: 792-803. 

377.  Ankel EG, Lai CS, Hopwood LE, Zivkovic Z (1987) Cytotoxicity of commonly 

used nitroxide radical spin probes. Life Sciences 40: 495-498. 

378.  Johnstone PAS, Degraff WG, Mitchell JB (1995) Protection from radiation-

induced chromosomal-aberrations by the nitroxide TEMPOL. Cancer 75: 2323-

2327. 



275 
 

379.  Gallez B, Demeure R, Debuyst R, Leonard D, Dejehet F, et al. (1992) 

Evaluation of nonionic nitroxyl lipids as potential organ-specific contrast agents 

for magnetic-resonance-imaging. Magnetic Resonance Imaging 10: 445-455. 

380.  Hahn SM, Tochner Z, Krishna CM, Glass J, Wilson L, et al. (1992) TEMPOL, a 

stable free-radical, is a novel murine radiation protector. Cancer Research 52: 

1750-1753. 

381.  Kroll C, Borchert HH (1999) Metabolism of the stable nitroxyl radical 4-oxo-

2,2,6,6-tetramethylpiperidine-N-oxyl (TEMPONE). European Journal of 

Pharmaceutical Sciences 8: 5-9. 

382.  Miller AA, De Silva M, Judkins CP, Diep H, Drummond GR, et al. (2010) 

Augmented superoxide production by Nox2-Containing NADPH oxidase causes 

cerebral artery dysfunction during hypercholesterolemia. Stroke 41: 784-789. 

383.  Dandona P, Weinstock R, Thusu K, Abdel-Rahman E, Aljada A, et al. (1998) 

Tumor necrosis factor-alpha in sera of obese patients: Fall with weight loss. 

Journal of Clinical Endocrinology & Metabolism 83: 2907-2910. 

384.  Dandona P, Aljada A, Chaudhuri A, Mohanty P, Garg R (2005) Metabolic 

syndrome - A comprehensive perspective based on interactions between obesity, 

diabetes, and inflammation. Circulation 111: 1448-1454. 

385.  Hotamisligil GS, Shargill NS, Spiegelman BM (1993) Adipose expression of 

tumor-necrosis-factor-alpha - direct role in obesity-linked insulin resistance. 

Science 259: 87-91. 

386.  Picchi A, Gao X, Belmadani S, Potter BJ, Focardi M, et al. (2006) Tumor 

necrosis factor-alpha induces endothelial dysfunction in the prediabetic 

metabolic syndrome. Circulation Research 99: 69-77. 

387.  Volk T, Hensel M, Schuster H, Kox WJ (2000) Secretion of MCP-1 and IL-6 by 

cytokine stimulated production of reactive oxygen species in endothelial cells. 

Molecular and Cellular Biochemistry 206: 105-112. 

388.  Araki Y, Sugihara H, Hattori T (2006) The free radical scavengers edaravone 

and TEMPOL suppress experimental dextran sulfate sodium-induced colitis in 

mice. International Journal of Molecular Medicine 17: 331-334. 

389.  Chatterjee PK, Cuzzocrea S, Brown PAJ, Zacharowski K, Stewart KN, et al. 

(2000) TEMPOL, a membrane-permeable radical scavenger, reduces oxidant 

stress-mediated renal dysfunction and injury in the rat. Kidney International 58: 

658-673. 

390.  El-Sayed NS, Mahran LG, Khattab MM (2011) TEMPOL, a membrane-

permeable radical scavenger, ameliorates lipopolysaccharide-induced acute lung 

injury in mice: A key role for superoxide anion. European Journal of 

Pharmacology 663: 68-73. 

391.  Queiroz RF, Jordao AK, Cunha AC, Ferreira VF, Brigagao M, et al. (2012) 

Nitroxides attenuate carrageenan-induced inflammation in rat paws by reducing 

neutrophil infiltration and the resulting myeloperoxidase-mediated damage. Free 

Radical Biology and Medicine 53: 1942-1953. 

392.  Kumon Y, Suehiro T, Hashimoto K, Nakatani K, Sipe JD (1999) Local 

expression of acute phase serum amyloid A mRNA in rheumatoid arthritis 

synovial tissue and cells. Journal of Rheumatology 26: 785-790. 

393.  O'Hara R, Murphy EP, Whitehead AS, FitzGerald O, Bresnihan B (2004) Local 

expression of the serum amyloid a and formyl peptide receptor-like 1 genes in 

synovial tissue is associated with matrix metalloproteinase production in patients 

with inflammatory arthritis. Arthritis and Rheumatism 50: 1788-1799. 

394.  Poitou C, Viguerie N, Cancello R, De Matteis R, Cinti S, et al. (2005) Serum 

amyloid A: production by human white adipocyte and regulation by obesity and 

nutrition. Diabetologia 48: 519-528. 



276 
 

395.  Meek RL, Urielishoval S, Benditt EP (1994) Expression of apolipoprotein serum 

amyloid-A messenger-RNA in human atherosclerotic lesions and cultured 

vascular cells - implications for serum amyloid-A function. Proceedings of the 

National Academy of Sciences of the United States of America 91: 3186-3190. 

396.  Eren MA, Vural M, Cece H, Camuzcuoglu H, Yildiz S, et al. (2012) Association 

of serum amyloid A with subclinical atherosclerosis in women with gestational 

diabetes. Gynecological Endocrinology 28: 1010-1013. 

397. Jernas M, Palming J, Sjoholm K, Jennische E, Svensson PA, et al. (2006) 

Separation of human adipocytes by size: hypertrophic fat cells display distinct 

gene expression. FASEB Journal 20: 1540-1542. 

398.  Hattori Y, Akimoto K, Gross SS, Hattori S, Kasai K (2005) Angiotensin-II-

induced oxidative stress elicits hypoadiponectinaemia in rats. Diabetologia 48: 

1066-1074. 

399.  Villarreal-Molina MT, Antuna-Puente B (2012) Adiponectin: Anti-inflammatory 

and cardioprotective effects. Biochimie 94: 2143-2149. 

400.  Qin FZ, Siwik DA, Luptak I, Hou XY, Wang L, et al. (2012) The polyphenols 

resveratrol and S17834 prevent the structural and functional sequelae of diet-

induced metabolic heart disease in mice. Circulation 125: 1757-U1127. 

401.  Vecoli C, Cao J, Neglia D, Inoue K, Sodhi K, et al. (2011) Apolipoprotein A-I 

mimetic peptide L-4F prevents myocardial and coronary dysfunction in diabetic 

mice. Journal of Cellular Biochemistry 112: 2616-2626. 

402.  Lee S, Park Y, Dellsperger KC, Zhang CH (2011) Exercise training improves 

endothelial function via adiponectin-dependent and independent pathways in 

type 2 diabetic mice. American Journal of Physiology-Heart and Circulatory 

Physiology 301: H306-H314. 

403.  Arita Y, Kihara S, Ouchi N, Takahashi M, Maeda K, et al. (2012) Paradoxical 

decrease of an adipose-specific protein, adiponectin, in obesity. Biochemical and 

Biophysical Research Communications 425: 560-564. 

404.  Kumada M, Kihara S, Sumitsuji S, Kawamoto T, Matsumoto S, et al. (2003) 

Association of hypoadiponectinemia with coronary artery disease in men. 

Arteriosclerosis Thrombosis and Vascular Biology 23: 85-89. 

405.  Rubio-Martin E, Soriguer F, Gutierrez-Repiso C, Garrido-Sanchez L, de Adana 

MSR, et al. (2013) C-reactive protein and incidence of type 2 diabetes in the 

Pizarra study. European Journal of Clinical Investigation 43: 159-167. 

406.  Al-Daghri NM, Al-Attas OS, Alokail MS, Alkharfy KM, Charalampidis P, et al. 

(2013) Visceral adiposity index is highly associated with adiponectin values and 

glycaemic disturbances. European Journal of Clinical Investigation 43: 183-189. 

407.  Sans S, Padro T, Tuomilehto J, Badimon L (2013) Incidence of diabetes and 

serum adipokines in Catalonian men. The ADIPOCAT study. Annals of 

Medicine 45: 97-102. 

408.  Chen CY, Asakura M, Asanuma H, Hasegawa T, Tanaka J, et al. (2012) Plasma 

adiponectin levels predict cardiovascular events in the observational Arita 

Cohort Study in Japan: the importance of the plasma adiponectin levels. 

Hypertension Research 35: 843-848. 

409.  Gerrits AJ, Gitz E, Koekman CA, Visseren FL, van Haeften TW, et al. (2012) 

Induction of insulin resistance by the adipokines resistin, leptin, plasminogen 

activator inhibitor-1 and retinol binding protein 4 in human megakaryocytes. 

Haematologica-the Hematology Journal 97: 1149-1157. 

410.  Singh AK, Tiwari S, Gupta A, Natu SM, Mittal B, et al. (2012) Association of 

resistin with metabolic syndrome in Indian subjects. Metabolic syndrome and 

Related Disorders 10: 286-291. 



277 
 

411.  Dick GM, Katz PS, Farias M, Morris M, James J, et al. (2006) Resistin impairs 

endothelium-dependent dilation to bradykinin, but not acetylcholine, in the 

coronary circulation. American Journal of Physiology-Heart and Circulatory 

Physiology 291: H2997-H3002. 

412.  Kwakernaak AJ, Lambert G, Dullaart RPF (2012) Relationship of proprotein 

convertase subtilisin-kexin type 9 levels with resistin in lean and obese subjects. 

Clinical Biochemistry 45: 1522-1524. 

413.  Beltowski J, Jamroz-Wisniewska A, Borkowska E, Nazar J, Marciniak A (2005) 

Antioxidant treatment normalizes renal Na+, K+-ATPase activity in leptin-

treated rats. Pharmacological Reports 57: 219-228. 

414.  Wen YS, Gu JL, Li SL, Reddy MA, Natarajan R, et al. (2006) Elevated glucose 

and diabetes promote interleukin-12 cytokine gene expression in mouse 

macrophages. Endocrinology 147: 2518-2525. 

415.  Wan WZ, Murphy PM (2013) Regulation of atherogenesis by chemokines and 

chemokine receptors. Archivum Immunologiae Et Therapiae Experimentalis 61: 

1-14. 

416.  Zykova SN, Jenssen TG, Berdal M, Olsen R, Myklebust R, et al. (2000) Altered 

cytokine and nitric oxide secretion in vitro by macrophages from diabetic type 

II-like db/db mice. Diabetes 49: 1451-1458. 

417.  Josefsen K, Nielsen H, Lorentzen S, Damsbo P, Buschard K (1994) Circulating 

monocytes are activated in newly-diagnosed type-1 diabetes-mellitus patients. 

Clinical and Experimental Immunology 98: 489-493. 

418.  Desfaits AC, Serri O, Renier G (1998) Normalization of plasma lipid peroxides, 

monocyte adhesion, and tumor necrosis factor-alpha production in NIDDM 

patients after gliclazide treatment. Diabetes Care 21: 487-493. 

419.  Hill HR, Augustine NH, Rallison ML, Santos JI (1983) Defective monocyte 

chemotactic responses in diabetes-mellitus. Journal of Clinical Immunology 3: 

70-77. 

420.  Geisler C, Almdal T, Bennedsen J, Rhodes JM, Kolendorf K (1982) Monocyte 

functions in diabetes-mellitus. Acta Pathologica Microbiologica Et 

Immunologica Scandinavica Section C-Immunology 90: 33-37. 

421.  Tegos TJ, Kalodiki E, Sabetai MM, Nicolaides AN (2001) The genesis of 

atherosclerosis and risk factors: A review. Angiology 52: 89-98. 

422.  Brown MS, Basu SK, Falck JR, Ho YK, Goldstein JL (1980) The scavenger cell 

pathway for lipoprotein degradation - specificity of the binding-site that 

mediates the uptake of negatively-charged LDL by macrophages. Journal of 

Supramolecular Structure 13: 67-81. 

423.  Jerome WG (2010) Lysosomes, cholesterol and atherosclerosis. Clinical 

Lipidology 5: 853-865. 

424.  Luan JJ, Li WP, Han J, Zhang W, Gong HL, et al. (2012) Renal protection of in 

vivo administration of TEMPOL in streptozotocin-induced diabetic rats. Journal 

of Pharmacological Sciences 119: 167-176. 

425.  Morita M, Yano S, Yamaguchi T, Sugimoto T (2013) Advanced glycation end 

products-induced reactive oxygen species generation is partly through NF-kappa 

B activation in human aortic endothelial cells. Journal of Diabetes and its 

Complications 27: 11-15. 

426.  Han YH, Park WH (2012) TEMPOL inhibits growth of As4.1 juxtaglomerular 

cells via cell cycle arrest and apoptosis. Oncology Reports 27: 842-848. 

427.  Yilmaz O, Kucuk M, Kebapcilar L, Altindag T, Yuksel A, et al. (2012) 

Macrophage migration-inhibitory factor is elevated in pregnant women with 

gestational diabetes mellitus. Gynecological Endocrinology 28: 76-79. 



278 
 

428.  Saksida T, Stosic-Grujicic S, Timotijevic G, Sandler S, Stojanovic I (2012) 

Macrophage migration inhibitory factor deficiency protects pancreatic islets 

from palmitic acid-induced apoptosis. Immunology and Cell Biology 90: 688-

698. 

429.  Muller, II, Muller KAL, Schonleber H, Karathanos A, Schneider M, et al. (2012) 

Macrophage migration inhibitory factor is enhanced in acute coronary 

syndromes and is associated with the inflammatory response. Plos One 7: 1-7. 

430.  Kong YZ, Huang XR, Ouyang X, Tan JJ, Fingerle-Rowson G, et al. (2005) 

Evidence for vascular macrophage migration inhibitory factor in destabilization 

of human atherosclerotic plaques. Cardiovascular Research 65: 272-282. 

431.  Pan JH, Sukhova GK, Yang JT, Wang B, Xie T, et al. (2004) Macrophage 

migration inhibitory factor deficiency impairs atherosclerosis in low-density 

lipoprotein receptor-deficient mice. Circulation 109: 3149-3153. 

432.  Verschuren L, Kooistra T, Bernhagen J, Voshol PJ, Ouwens DM, et al. (2009) 

MIF deficiency reduces chronic inflammation in white adipose tissue and 

impairs the development of insulin resistance, glucose intolerance, and 

associated atherosclerotic disease. Circulation Research 105: 99-U275. 

433.  Kamchybekov U, Figulla HR, Gerdes N, Jung C (2012) Macrophage migration 

inhibitory factor is elevated in obese adolescents. Archives of Physiology and 

Biochemistry 118: 204-209. 

434.  Zernecke A, Bernhagen J, Weber C (2008) Macrophage migration inhibitory 

factor in cardiovascular disease. Circulation 117: 1594-1602. 

435.  Herder C, Illig T, Baumert J, Muller M, Klopp N, et al. (2008) Macrophage 

migration inhibitory factor (MIF) and risk for coronary heart disease: Results 

from the MONICA/KORA Augsburg case-cohort study, 1984-2002. 

Atherosclerosis 200: 380-388. 

436.  Toso C, Emamaullee JA, Merani S, Shapiro AMJ (2008) The role of 

macrophage migration inhibitory factor on glucose metabolism and diabetes. 

Diabetologia 51: 1937-1946. 

437.  Thompson D, Pepys MB, Wood SP (1999) The physiological structure of human 

C-reactive protein and its complex with phosphocholine. Structure with Folding 

& Design 7: 169-177. 

438.  Rivero A, Mora C, Muros M, Garcia J, Herrera H, et al. (2009) Pathogenic 

perspectives for the role of inflammation in diabetic nephropathy. Clinical 

Science 116: 479-492. 

439.  Navarro JF, Mora C (2006) Diabetes, inflammation, proinflammatory cytokines, 

and diabetic nephropathy. The Scientific World Journal 6: 908-917. 

440.  Blake GJ, Ridker PM (2002) Tumour necrosis factor-alpha, inflammatory 

biomarkers, and atherogenesis. European Heart Journal 23: 345-347. 

441.  Greenfield JR, Campbell LV (2006) Relationship between inflammation, insulin 

resistance and type 2 diabetes: 'cause or effect'? Current Diabetes Reviews 2: 

195-211. 

442.  Pickup JC, Mattock MB, Chusney GD, Burt D (1997) NIDDM as a disease of 

the innate immune system: association of acute-phase reactants and interleukin-6 

with metabolic syndrome X. Diabetologia 40: 1286-1292. 

443.  Kaptoge S, Di Angelantonio E, Pennells L, Wood AM, White IR, et al. (2012) 

C-reactive protein, fibrinogen, and cardiovascular disease prediction. New 

England Journal of Medicine 367: 1310-1320. 

444.  Pepys MB, Hirschfield GM, Tennent GA, Gallimore JR, Kahan MC, et al. 

(2006) Targeting C-reactive protein for the treatment of cardiovascular disease. 

Nature 440: 1217-1221. 



279 
 

445.  Pepys MB, Hirschfield GM (2001) C-reactive protein and its role in the 

pathogenesis of myocardial infarction. Italian Heart Journal : Official Journal of 

the Italian Federation of Cardiology 2: 804-806. 

446.  Ballou SP, Lozanski G (1992) Induction of inflammatory cytokine release from 

cultured human monocytes by C-reactive protein. Cytokine 4: 361-368. 

447.  Wuensch T, Thilo F, Krueger K, Scholze A, Ristow M, et al. (2010) High 

glucose-induced oxidative stress increases transient receptor potential channel 

expression in human monocytes. Diabetes 59: 844-849. 

448.  Shanmugam N, Reddy MA, Guha M, Natarajan R (2003) High glucose-induced 

expression of proinflammatory cytokine and chemokine genes in monocytic 

cells. Diabetes 52: 1256-1264. 

449.  Haidet J, Cifarelli V, Trucco M, Luppi P (2012) C-peptide reduces pro-

inflammatory cytokine secretion in LPS-stimulated U937 monocytes in 

condition of hyperglycemia. Inflammation Research 61: 27-35. 

450.  Ptak W, Klimek M, Bryniarski K, Ptak M, Majcher P (1998) Macrophage 

function in alloxan diabetic mice: expression of adhesion molecules, generation 

of monokines and oxygen and NO radicals. Clinical and Experimental 

Immunology 114: 13-18. 

451.  Gao X, Belmadani S, Picchi A, Xu XB, Potter BJ, et al. (2007) Tumor necrosis 

factor-alpha induces endothelial dysfunction in Lepr(db) mice. Circulation 115: 

245-254. 

452.  Xie XY, Kong PR, Wu JF, Li Y, Li YX (2013) Curcumin attenuates lipolysis 

stimulated by tumor necrosis factor-et or isoproterenol in 3T3-L1 adipocytes. 

Phytomedicine 20: 3-8. 

453.  El-Wakkad A, Hassan NE, Sibaii H, El-Zayat SR (2013) Proinflammatory, anti-

inflammatory cytokines and adipokines in students with central obesity. 

Cytokine 61: 682-687. 

454.  Skoog T, Dichtl W, Boquist S, Skoglund-Andersson C, Karpe F, et al. (2002) 

Plasma tumour necrosis factor-alpha and early carotid atherosclerosis in healthy 

middle-aged men. European Heart Journal 23: 376-383. 

455.  Ridker PM, Rifai N, Pfeffer M, Sacks F, Lepage S, et al. (2000) Elevation of 

tumor necrosis factor-alpha and increased risk of recurrent coronary events after 

myocardial infarction. Circulation 101: 2149-2153. 

456.  Ansari N, Hasan A, Owais M (2012) A study of inflammatory markers and their 

correlation with severity, in patients with chronic heart failure. Biomedical 

Research-India 23: 408-415. 

457.  Kosar F, Aksoy Y, Ozguntekin G, Ozerol I, Varol E (2006) Relationship 

between cytokines and tumour markers in patients with chronic heart failure. 

European Journal of Heart Failure 8: 270-274. 

458.  Levine B, Kalman J, Mayer L, Fillit HM, Packer M (1990) Elevated circulating 

levels of tumor-necrosis-factor in severe chronic heart-failure. New England 

Journal of Medicine 323: 236-241. 

459.  Talvani A, Rocha MOC, Barcelos LS, Gomes YM, Ribeiro AL, et al. (2004) 

Elevated concentrations of CCL2 and tumor necrosis factor-alpha in chagasic 

cardiomyopathy. Clinical Infectious Diseases 38: 943-950. 

460.  Kherbeck N, Tamby MC, Bussone G, Dib H, Perros F, et al. (2013) The role of 

inflammation and autoimmunity in the pathophysiology of pulmonary arterial 

hypertension. Clinical Reviews in Allergy & Immunology 44: 31-38. 

461.  Samaras K, Botelho NK, Chisholm DJ, Lord RV (2010) Subcutaneous and 

visceral adipose tissue gene expression of serum adipokines that predict type 2 

diabetes. Obesity 18: 884-889. 



280 
 

462.  Kennedy A, Gruen ML, Gutierrez DA, Surmi BK, Orr JS, et al. (2012) Impact 

of macrophage inflammatory protein-1 alpha deficiency on atherosclerotic lesion 

formation, hepatic steatosis, and adipose tissue expansion. Plos One 7: 1-12. 

463.  Vistnes M (2012) Macrophage inflammatory protein-1 beta: a novel prognostic 

biomarker in atherosclerosis? Cardiology 121: 149-151. 

464.  Schulte BM, Lanke KHW, Piganelli JD, Kers-Rebel ED, Bottino R, et al. (2012) 

Cytokine and chemokine production by human pancreatic islets upon 

enterovirus infection. Diabetes 61: 2030-2036. 

465.  Tang SCW, Leung JCK, Lai KN (2011) Diabetic tubulopathy: An emerging 

entity. Diabetes and the kidney; Lai KN, Tang SCW, editors. Basel, 

Switzerland: Karger pp. 124-134. 

466.  Cherney DZI, Scholey JW, Sochett E, Bradley TJ, Reich HN (2011) The acute 

effect of clamped hyperglycemia on the urinary excretion of inflammatory 

cytokines/chemokines in uncomplicated type 1 diabetes a pilot study. Diabetes 

Care 34: 177-180. 

467.  Rosa JS, Oliver SR, Mitsuhashi M, Flores RL, Pontello AM, et al. (2008) 

Altered kinetics of interleukin-6 and other inflammatory mediators during 

exercise in children with type 1 diabetes. Journal of Investigative Medicine 56: 

701-713. 

468.  Yang MX, Gan H, Shen Q, Tang WX, Du XG, et al. (2012) Proinflammatory 

CD14(+)CD16(+) monocytes are associated with microinflammation in patients 

with type 2 diabetes mellitus and diabetic nephropathy uremia. Inflammation 35: 

388-396. 

469.  Alpert E, Altman H, Totary H, Gruman A, Barnea D, et al. (2004) 4-hydroxy 

TEMPOL-induced impairment of mitochondrial function and augmentation of 

glucose transport in vascular endothelial and smooth muscle cells. Biochemical 

Pharmacology 67: 1985-1995. 

470.  May JM, Qu ZC, Juliao S, Cobb CE (2005) Ascorbic acid decreases oxidant 

stress in endothelial cells caused by the nitroxide TEMPOL. Free Radical 

Research 39: 195-202. 

471.  Muniyappa R, Srinivas PR, Ram JL, Walsh MF, Sowers JR (1998) Calcium and 

protein kinase C mediate high-glucose-induced inhibition of inducible nitric 

oxide synthase in vascular smooth muscle cells. Hypertension 31: 289-295. 

472.  Dasu MR, Jialal I (2011) Free fatty acids in the presence of high glucose amplify 

monocyte inflammation via Toll-like receptors. American Journal of 

Physiology-Endocrinology and Metabolism 300: E145-E154. 

473.  Williams CR, Lu XH, Sutliff RL, Hart CM (2012) Rosiglitazone attenuates NF-

kappa B-mediated Nox4 upregulation in hyperglycemia-activated endothelial 

cells. American Journal of Physiology-Cell Physiology 303: C213-C223. 

474.  Tang C, Koulajian K, Schuiki I, Zhang L, Desai T, et al. (2012) Glucose-

induced beta cell dysfunction in vivo in rats: link between oxidative stress and 

endoplasmic reticulum stress. Diabetologia 55: 1366-1379. 

475.  Malhotra JD, Miao H, Zhang K, Wolfson A, Pennathur S, et al. (2008) 

Antioxidants reduce endoplasmic reticulum stress and improve protein secretion. 

Proceedings of the National Academy of Sciences of the United States of 

America 105: 18525-18530. 

476.  Urano F, Wang XZ, Bertolotti A, Zhang YH, Chung P, et al. (2000) Coupling of 

stress in the ER to activation of JNK protein kinases by transmembrane protein 

kinase IRE1. Science 287: 664-666. 

477.  Tang C, Han P, Oprescu AI, Lee SC, Gyulkhandanyan AV, et al. (2007) 

Evidence for a role of superoxide generation in glucose-induced beta-cell 

dysfunction in vivo. Diabetes 56: 2722-2731. 



281 
 

478.  Erbagci AB, Tarakcioglu M, Coskun Y, Sivasli E, Namiduru ES (2001) 

Mediators of inflammation in children with type I diabetes mellitus: cytokines in 

type I diabetic children. Clinical Biochemistry 34: 645-650. 

479.  Cifarelli V, Libman IM, Deluca A, Becker D, Trucco M, et al. (2007) Increased 

expression of monocyte CD11b (Mac-1) in overweight recent-onset type 1 

diabetic children. The Review of Diabetic Studies 4: 112-117. 

480.  Devaraj S, Cheung AT, Jialal I, Griffen SC, Nguyen D, et al. (2007) Evidence of 

increased inflammation and microcirculatory abnormalities in patients with type 

1 diabetes and their role in microvascular complications. Diabetes 56: 2790-

2796. 

481.  Saraheimo M, Teppo AM, Forsblom C, Fagerudd J, Groop PH, et al. (2003) 

Diabetic nephropathy is associated with low-grade inflammation in Type 1 

diabetic patients. Diabetologia 46: 1402-1407. 

482.  Schalkwijk CG, Ter Wee PM, Stehouwer CDA (2005) Plasma levels of AGE 

peptides in type 1 diabetic patients are associated with serum creatinine and not 

with albumin excretion rate: Possible role of AGE peptide-associated endothelial 

dysfunction. Maillard Reaction: Chemistry at the Interface of Nutrition, Aging, 

and Disease; Baynes JW, Monnier VM, Ames JM, Thorpe SR, editors. New 

York, USA: Annals of New York Academy of Sciences pp. 662-670. 

483.  Schram MT, Chaturvedi N, Schalkwijk C, Giorgino F, Ebeling P, et al. (2003) 

Vascular risk factors and markers of endothelial function as determinants of 

inflammatory markers in type 1 diabetes - The EURODIAB prospective 

complications study. Diabetes Care 26: 2165-2173. 

484.  Tofovic SP, Salah EM, Jackson EK, Melhem M (2007) Early renal injury 

induced by caffeine consumption in obese, diabetic ZSF(1) rats. Renal Failure 

29: 891-902. 

485.  Togashi N, Maeda T, Yoshida H, Koyama M, Tanaka M, et al. (2012) 

Angiotensin II receptor activation in youth triggers persistent insulin resistance 

and hypertension-a legacy effect? Hypertension Research 35: 334-340. 

486.  Combadiere C, Potteaux S, Rodero M, Simon T, Pezard A, et al. (2008) 

Combined inhibition of CCL2, CX3CR1, and CCR5 abrogates Ly6C(hi) and 

Ly6C(lo) monocytosis and almost abolishes atherosclerosis in 

hypercholesterolemic mice. Circulation 117: 1649-1657. 

487.  Potteaux S, Combadiere C, Esposito B, Lecureuil C, Ait-Oufella H, et al. (2006) 

Role of bone marrow-derived CC-chemokine receptor 5 in the development of 

atherosclerosis of low-density lipoprotein receptor knockout mice. 

Arteriosclerosis Thrombosis and Vascular Biology 26: 1858-1863. 

488.  Potteaux S, Combadiere C, Esposito B, Casanova S, Merval R, et al. (2005) 

Chemokine receptor CCRI disruption in bone marrow cells enhances 

atherosclerotic lesion development and inflammation in mice. Molecular 

Medicine 11: 16-20. 

489.  Zernecke A, Shagdarsuren E, Weber C (2008) Chemokines in atherosclerosis: 

an update. Arteriosclerosis Thrombosis and Vascular Biology 28: 1897-1908. 

490.  Braunersreuther V, Zernecke A, Arnaud C, Liehn EA, Steffens S, et al. (2007) 

Ccr5 but not Ccr1 deficiency reduces development of diet-induced 

atherosclerosis in mice. Arteriosclerosis Thrombosis and Vascular Biology 27: 

373-379. 

491.  Moos MPW, John N, Grabner R, Nossmann S, Gunther B, et al. (2005) The 

lamina adventitia is the major site of immune cell accumulation in standard 

chow-fed apolipoprotein E-deficient mice. Arteriosclerosis Thrombosis and 

Vascular Biology 25: 2386-2391. 



282 
 

492.  Wilcox JN, Nelken NA, Coughlin SR, Gordon D, Schall TJ (1994) Local 

expression of inflammatory cytokines in human atherosclerotic plaques. Journal 

of Atherosclerosis and Thrombosis 1 Suppl 1: S10-13. 

493.  Saraswathi V, Hasty AH (2006) The role of lipolysis in mediating the 

proinflammatory effects of very low density lipoproteins in mouse peritoneal 

macrophages. Journal of Lipid Research 47: 1406-1415. 

494.  Yang Y-P, Hu L-F, Zheng H-F, Mao C-J, Hu W-D, et al. (2013) Application and 

interpretation of current autophagy inhibitors and activators. Acta 

pharmacologica Sinica 34: 625-635. 

495. Rashid I, Brown BE, Van Reyk DM, Davies MJ (2006) The roles of protein 

glycation, glycoxidation, and advanced glycation end-product formation in 

diabetes-induced atherosclerosis. Biochemistry of Atherosclerosis Volume 1. 

Advances in Biochemistry in Health and Diseaes; Cheema, SK editor. New 

York, USA: Springer pp. 247-283. 

496.  Steinberg D (2004) An interpretive history of the cholesterol controversy: Part I. 

Journal of Lipid Research 45: 1583-1593. 

497.  Allen D, Hasanally D, Ravandi A (2013) Role of oxidized phospholipids in 

cardiovascular pathology. Clinical Lipidology 8: 205-215. 

498.  Bernal-Lopez MR, Garrido-Sanchez L, Gomez-Carrillo V, Gallego-Perales JL, 

Llorente-Cortes V, et al. (2013) Antioxidized LDL antibodies are associated 

with different metabolic pathways in patients with atherosclerotic plaque and 

type 2 diabetes. Diabetes Care 36: 1006-1011. 

499.  Barski OA, Xie Z, Baba SP, Sithu SD, Agarwal A, et al. (2013) Dietary 

carnosine prevents early atherosclerotic lesion formation in apolipoprotein e-null 

mice. Arteriosclerosis, Thrombosis, and Vascular Biology 33: 1162-1170. 

500.  Brown BE, Dean RT, Davies MJ (2005) Glycation of low-density lipoproteins 

by methylglyoxal and glycolaldehyde gives rise to the in vitro formation of 

lipid-laden cells. Diabetologia 48: 361-369. 

501.  Calabresi L, Canavesi M, Bernini F, Franceschini G (1999) Cell cholesterol 

efflux to reconstituted high-density lipoproteins containing the apolipoprotein 

A-I-Milano dimer. Biochemistry 38: 16307-16314. 

502.  Hajj Hassan H, Blain S, Boucher B, Denis M, Krimbou L, et al. (2005) 

Structural modification of plasma HDL by phospholipids promotes efficient 

ABCA1-mediated cholesterol release. Journal of Lipid Research 46: 1457-1465. 

503.  Ohashi R, Mu H, Wang X, Yao Q, Chen C (2005) Reverse cholesterol transport 

and cholesterol efflux in atherosclerosis. QJM- An International Journal of 

Medicine 98: 845-856. 

504.  Patel DC, Albrecht C, Pavitt D, Paul V, Pourreyron C, et al. (2011) Type 2 

Diabetes Is Associated with Reduced ATP-Binding Cassette Transporter A1 

Gene Expression, Protein and Function. Plos One 6: 1-8. 

505.  Hayashi T, Juliet PAR, Miyazaki A, Ignarro LJ, Iguchi A (2007) High glucose 

downregulates the number of caveolae in monocytes through oxidative stress 

from NADPH oxidase: Implications for atherosclerosis. Biochimica Et 

Biophysica Acta-Molecular Basis of Disease 1772: 364-372. 

506.  Brown BE, Mahroof FM, Cook NL, van Reyk DM, Davies MJ (2006) 

Hydrazine compounds inhibit glycation of low-density lipoproteins and prevent 

the in vitro formation of model foam cells from glycolaldehyde-modified low-

density lipoproteins. Diabetologia 49: 775-783. 

507.  Nobecourt E, Davies MJ, Brown BE, Curtiss LK, Bonnet DJ, et al. (2007) The 

impact of glycation on apolipoprotein A-I structure and its ability to activate 

lecithin : cholesterol acyltransferase. Diabetologia 50: 643-653. 



283 
 

508.  Hadfield KA, Pattison DI, Brown BE, Hou LM, Rye KA, et al. (2013) 

Myeloperoxidase-derived oxidants modify apolipoprotein A-I and generate 

dysfunctional high-density lipoproteins: comparison of hypothiocyanous acid 

(HOSCN) with hypochlorous acid (HOCI). Biochemical Journal 449: 531-542. 

509.  Du H, Duanmu M, Witte D, Grabowski GA (1998) Targeted disruption of the 

mouse lysosomal acid lipase gene: long-term survival with massive cholesteryl 

ester and triglyceride storage. Human Molecular Genetics 7: 1347-1354. 

510.  Du H, Schiavi S, Wan N, Levine M, Witte DP, et al. (2004) Reduction of 

atherosclerotic plaques by lysosomal acid lipase supplementation. 

Arteriosclerosis Thrombosis and Vascular Biology 24: 147-154. 

511.  Du H, Schiavi S, Levine M, Mishra J, Heur M, et al. (2001) Enzyme therapy for 

lysosomal acid lipase deficiency in the mouse. Human Molecular Genetics 10: 

1639-1648. 

512.  Du H, Heur M, Duanmu M, Grabowski GA, Hui DY, et al. (2001) Lysosomal 

acid lipase-deficient mice: depletion of white and brown fat, severe 

hepatosplenomegaly, and shortened life span. Journal of Lipid Research 42: 

489-500. 

513.  Bobryshev YV, Shchelkunova, T.A.,Morozov,  I. A., Rubtsov, P.M., Sobenin 

IA, Orekhov, A. N., Smirnov, A. N. (2013) Changes of lysosomes in the earliest 

stages of the development of atherosclerosis. Journal of Cellular and Molecular 

Medicine: 1-10. 

514. Kawasaki M, Nakayama K, Wakatsuki S (2005) Membrane recruitment of 

effector proteins by Arf and Rab GTPases. Current Opinion in Structural 

Biology 15: 681-689. 

515.  Yoshida S, Hoppe AD, Araki N, Swanson JA (2009) Sequential signaling in 

plasma-membrane domains during macropinosome formation in macrophages. 

Journal of Cell Science 122: 3250-3261. 

516.  Pols MS, Lumperman J (2009) Trafficking and function of the tetraspanin 

CD63. Experimental Cell Research 315: 1584-1592. 

517.  Saito N, Pulford KAF, Bretongorius J, Masse JM, Mason DY, et al. (1991) 

Ultrastructural-localization of the CD68 macrophage-associated antigen in 

human blood neutrophils and monocytes. American Journal of Pathology 139: 

1053-1059. 

518.  Gough PJ, Gordon S, Greaves DR (2001) The use of human CD68 

transcriptional regulatory sequences to direct high-level expression of class A 

scavenger receptor in macrophages in vitro and in vivo. Immunology 103: 351-

361. 

519.  Kunisch E, Fuhrmann R, Roth A, Winter R, Lungershausen W, et al. (2004) 

Macrophage specificity of three anti-CD68 monoclonal antibodies (KP1, 

EBM11, and PGM1) widely used for immunohistochemistry and flow 

cytometry. Annals of the Rheumatic Diseases 63: 774-784. 

520.  Ichimura Y, Komatsu M (2010) Selective degradation of p62 by autophagy. 

Seminars in Immunopathology 32: 431-436. 

521.  Komatsu M, Ichimura Y (2010) Selective autophagy regulates various cellular 

functions. Genes to Cells 15: 923-933. 

522.  Komatsu M, Ichimura Y (2010) Physiological significance of selective 

degradation of p62 by autophagy. FEBS Letters 584: 1374-1378. 

523.  Nakanishi H, Amano T, Sastradipura DF, Yoshimine Y, Tsukuba T, et al. (1997) 

Increased expression of cathepsins E and D in neurons of the aged rat brain and 

their colocalization with lipofuscin and carboxy-terminal fragments of 

Alzheimer amyloid precursor protein. Journal of Neurochemistry 68: 739-749. 



284 
 

524.  Hipkiss AR (2009) Carnosine and its possible roles in nutrition and health. 

Advances in food and nutrition research; Taylor SL, editor. San Diego, USA: 

Elsevier Academic Press Incorporation pp. 87-154. 

525.  Lee YT, Hsu CC, Lin MH, Liu KS, Yin MC (2005) Histidine and carnosine 

delay diabetic, deterioration in mice and protect human low density lipoprotein 

against oxidation and glycation. European Journal of Pharmacology 513: 145-

150. 

526.  Makia NL, Bojang P, Falkner KC, Conklin DJ, Prough RA (2011) Murine 

hepatic aldehyde dehydrogenase 1a1 is a major contributor to oxidation of 

aldehydes formed by lipid peroxidation. Chemico-Biological Interactions 191: 

278-287. 

527.  Ishii T, Itoh K, Ruiz E, Leake DS, Unoki H, et al. (2004) Role of Nrf2 in the 

regulation of CD36 and stress protein expression in murine macrophages - 

Activation by oxidatively modified LDL and 4-hydroxynonenal. Circulation 

Research 94: 609-616. 

528.  Wang ZQ, Jiang YC, Liu NF, Ren LQ, Zhu YH, et al. (2012) Advanced 

glycation end-product N-epsilon-carboxymethyl-Lysine accelerates progression 

of atherosclerotic calcification in diabetes. Atherosclerosis 221: 387-396. 

529.  Li YH, Liu SY, Zhang ZY, Xu QB, Xie FK, et al. (2012) RAGE mediates 

accelerated diabetic vein graft atherosclerosis induced by combined mechanical 

stress and AGEs via synergistic ERK Activation. Plos One 7: 1-11. 

530.  Garcia-Heredia A, Kensicki E, Mohney RP, Rull A, Triguero I, et al. (2013) 

Paraoxonase-1 deficiency is associated with severe liver steatosis in mice fed a 

high-fat high-cholesterol diet: a metabolomic approach. Journal of Proteome 

Research 12: 1946-1955. 

531.  Ruotsalainen AK, Inkala M, Partanen ME, Lappalainen JP, Kansanen E, et al. 

(2013) The absence of macrophage Nrf2 promotes early atherogenesis. 

Cardiovascular Research 98: 107-115. 

532.  Motoyama K, Koyama H, Moriwaki M, Emura K, Okuyama S, et al. (2009) 

Atheroprotective and plaque-stabilizing effects of enzymatically modified 

isoquercitrin in atherogenic apoE-deficient mice. Nutrition 25: 421-427. 

533.  Kato M, Sada T, Mizuno M, Kitayama K, Inaba T, et al. (2005) Effect of 

combined treatment with an angiotensin II receptor antagonist and an HMG-

CoA reductase inhibitor on atherosclerosis in genetically hyperlipidemic rabbits. 

Journal of Cardiovascular Pharmacology 46: 556-562. 

534.  Cantero AV, Portero-Otin M, Ayala V, Auge N, Sanson M, et al. (2007) 

Methylglyoxal induces advanced glycation end product (AGEs) formation and 

dysfunction of PDGF receptor-beta: implications for diabetic atherosclerosis. 

FASEB Journal 21: 3096-3106. 

535.  Kislinger T, Tanji N, Wendt T, Qu W, Lu Y, et al. (2001) Receptor for advanced 

glycation end products mediates inflammation and enhanced expression of tissue 

factor in vasculature of diabetic apolipoprotein E-null mice. Arteriosclerosis 

Thrombosis and Vascular Biology 21: 905-910. 

536.  Yu PH, Wang M, Deng YL, Fan H, Shira-Bock L (2002) Involvement of 

semicarbazide-sensitive amine oxidase-mediated deamination in atherogenesis 

in KKAy diabetic mice fed with high cholesterol diet. Diabetologia 45: 1255-

1262. 

537.  Xie ZZ, Baba SP, Sweeney BR, Barski OA (2013) Detoxification of aldehydes 

by histidine-containing dipeptides: From chemistry to clinical implications. 

Chemico-Biological Interactions 202: 288-297. 

538.  Gustafson B, Gogg S, Hedjazifar S, Jenndahl L, Hammarstedt A, et al. (2009) 

Inflammation and impaired adipogenesis in hypertrophic obesity in man. 



285 
 

American Journal of Physiology-Endocrinology and Metabolism 297: E999-

E1003. 

539.  Maury E, Ehala-Aleksejev K, Guiot Y, Detry R, Vandenhooft A, et al. (2007) 

Adipokines oversecreted by omental adipose tissue in human obesity. The 

American Journal of Physiology- Endocrinology and Metabolism 293: E656-

E665. 

540.  Garcia C, Feve B, Ferre P, Halimi S, Baizri H, et al. (2010) Diabetes and 

inflammation: Fundamental aspects and clinical implications. Diabetes & 

Metabolism 36: 327-338. 

541.  Lassenius MI, Pietiläinen KH, Kaartinen K, Pussinen PJ, Syrjänen J, et al. 

(2011) Bacterial endotoxin activity in human serum is associated with 

dyslipidemia, insulin resistance, obesity, and chronic inflammation. Diabetes 

Care 34: 1809-1815. 

542.  Kopp A, Buechler C, Neumeier M, Weigert J, Aslanidis C, et al. (2009) Innate 

immunity and adipocyte function: ligand-specific activation of multiple toll-like 

receptors modulates cytokine, adipokine, and chemokine secretion in adipocytes. 

Obesity (Silver Spring, Md.) 17: 648-656. 

543.  Zu L, He J, Jiang H, Xu C, Pu S, et al. (2009) Bacterial Endotoxin Stimulates 

adipose lipolysis via toll-like receptor 4 and extracellular signal-regulated kinase 

Pathway. Journal of Biological Chemistry 284: 5915-5926. 

544.  Takenouchi Y, Kobayashi T, Matsumoto T, Kamata K (2009) Gender 

differences in age-related endothelial function in the murine aorta. 

Atherosclerosis 206: 397-404. 

545.  Sarre A, Gabrielli J, Vial G, Leverve XM, Assimacopoulos-Jeannet F (2012) 

Reactive oxygen species are produced at low glucose and contribute to the 

activation of AMPK in insulin-secreting cells. Free Radical Biology and 

Medicine 52: 142-150. 

 

 


	tITLE PAGE WITH NEW LOGO
	Final Preface
	Final thesis

