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Abstract 

Neuroinflammation may be imaged using positron emission tomography (PET) and 

the tracer [
11

C]-PK11195. Accurate and precise quantification of 18 kilodalton Translocator 

Protein (TSPO) binding parameters in the brain has proven difficult with this tracer, due to an 

unfavourable combination of low target concentration in tissue, low brain uptake of the tracer 

and relatively high non-specific binding, all of which leads to higher levels of relative image 

noise. To address these limitations, research into new radioligands for the TSPO, with higher 

brain uptake and lower non-specific binding relative to [
11

C]-PK11195, is being conducted 

world-wide. However, factors other than radioligand properties are known to influence 

signal-to-noise ratio in quantitative PET studies, including the scanner sensitivity, image 

reconstruction algorithms and data analysis methodology. The aim of this thesis was to 

investigate and validate computational tools for predicting image noise in dynamic TSPO 

PET studies, and to employ those tools to investigate the factors that affect image SNR and 

reliability of TSPO quantification in the human brain. 

The feasibility of performing multiple (n≥40) independent Monte Carlo simulations 

for each dynamic [
11

C]-PK11195 frame- with realistic modelling of the radioactivity source, 

attenuation and PET tomograph geometries- was investigated. A Beowulf-type high 

performance computer cluster, constructed from commodity components, was found to be 

well suited to this task. Timing tests on a single desktop computer system indicated that a 

computer cluster capable of simulating an hour-long dynamic [
11

C]-PK11195 PET scan, with 

40 independent repeats, and with a total simulation time of less than 6 weeks, could be 

constructed for less than 10,000 Australian dollars. A computer cluster containing 44 

computing cores was therefore assembled, and a peak simulation rate of 2.84x10
5
 photon 

pairs per second was achieved using the GEANT4 Application for Tomographic Emission 

(GATE) Monte Carlo simulation software.  

A simulated PET tomograph was developed in GATE that closely modelled the 

performance characteristics of several real-world clinical PET systems in terms of spatial 

resolution, sensitivity, scatter fraction and counting rate performance. The simulated PET 

system was validated using adaptations of the National Electrical Manufacturers Association 

(NEMA) quality assurance procedures within GATE.  

Image noise in dynamic TSPO PET scans was estimated by performing n=40 

independent Monte Carlo simulations of an hour-long [
11

C]-PK11195 scan, and of an hour-
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long dynamic scan for a hypothetical TSPO ligand with double the brain activity 

concentration of [
11

C]-PK11195. From these data an analytical noise model was developed 

that allowed image noise to be predicted for any combination of brain tissue activity 

concentration and scan duration. The noise model was validated for the purpose of 

determining the precision of kinetic parameter estimates for TSPO PET. 

An investigation was made into the effects of activity concentration in tissue, 

radionuclide half-life, injected dose and compartmental model complexity on the 

reproducibility of kinetic parameters. Injecting 555 MBq of carbon-11 labelled TSPO tracer 

produced similar binding parameter precision to 185 MBq of fluorine-18, and a moderate 

(20%) reduction in precision was observed for the reduced carbon-11 dose of 370 MBq. 

Results indicated that a factor of 2 increase in frame count level (relative to [
11

C]-PK11195, 

and due for example to higher ligand uptake, injected dose or absolute scanner sensitivity) is 

required to obtain reliable binding parameter estimates for small regions of interest when 

fitting a two-tissue compartment, four-parameter compartmental model. However, 

compartmental model complexity had a similarly large effect, with the reduction of model 

complexity from the two-tissue compartment, four-parameter to a one-tissue compartment, 

two-parameter model producing a 78% reduction in coefficient of variation of the binding 

parameter estimates at each tissue activity level and region size studied. 

In summary, this thesis describes the development and validation of Monte Carlo 

methods for estimating image noise in dynamic TSPO PET scans, and analytical methods for 

predicting relative image noise for a wide range of tissue activity concentration and 

acquisition durations. The findings of this research suggest that a broader consideration of the 

kinetic properties of novel TSPO radioligands, with a view to selection of ligands that are 

potentially amenable to analysis with a simple one-tissue compartment model, is at least as 

important as efforts directed towards reducing image noise, such as higher brain uptake, in 

the search for the next generation of TSPO PET tracers. 
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Chapter 1  

1.1  Motivation for the Work 

Neuroinflammation is implicated in a wide range of neurological diseases, and is of 

considerable interest both clinically and as a focus of basic neuroscience research. Positron 

emission tomography (PET) has been employed successfully to image neuroinflammation via 

the tracer [
11

C]-PK11195- a radioligand for the 18 kilodalton Translocator Protein (TSPO). 

However accurate and precise quantification of the PET data has proven challenging due to a 

combination of adverse tracer properties, and the ubiquitous yet sparse distribution of the 

TSPO in the normal human brain. New radiotracers for the TSPO are under development in 

an attempt to address some of the well documented shortcomings of [
11

C]-PK11195: 

specifically tracers with higher levels of brain tissue uptake and lower non-specific binding 

are sought in order to improve image signal-to-noise ratio and allow more accurate and 

precise measurements of neuroinflammation. 

Estimation of image noise in PET is a challenging problem, due to the practical 

difficulties in obtaining a large number of independent repeated measurements and the 

complex way in which noise propagates through the PET image formation process and 

subsequent analysis algorithms. It is therefore difficult to predict the relative gains in image 

SNR that may be expected of novel TSPO radiotracers based on brain uptake alone, other 

than to say that ‘more uptake is better’. An accurate estimate of image SNR, for different 

levels of TSPO tracer uptake in the brain, would therefore allow more reliable predictions to 

be made concerning the changes in quantification precision associated with different tracers, 

and enable a more informed assessment of the relative importance of the various 

determinants of quantification reliability for TSPO PET.  

Recent advances in computer hardware and software technology mean that present-

day computer clusters built from inexpensive commodity hardware components can provide 

levels of computational power that, as recently as the late 1990’s, were available only from 

multi-million dollar supercomputers. Computing clusters are well suited to Monte Carlo 

simulation tasks, which are typically amenable to parallel execution with minimal 

modification to the code. Therefore the rapid improvement in computing cost-to-performance 

ratio due to commodity clusters has enhanced the feasibility and accessibility of Monte Carlo 
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simulations of greater complexity and scale, thus providing an ideal tool to study image 

signal-to-noise and its effect on quantification of TSPO PET scans. 

1.2  Overall Aims and Organisation of the Thesis 

The purpose of this research was to develop and validate computational tools that 

allow a detailed investigation to be undertaken of factors that impact on quantification error 

for TSPO PET studies, and to use those tools to investigate the relative contributions of these 

factors to image SNR and reliability of TSPO quantification in the human brain.  

This research was conducted with three broad aims: 

1. To design, develop and validate a low cost, high performance computing 

cluster dedicated to Monte Carlo simulation of clinical PET systems. 

Specifically, a system was required that was: capable of simulating a realistic 

[
11

C]-PK11195 dynamic scan of the human brain, of at least sixty minutes 

duration, including attenuation and scatter, with at least forty independent 

repeats, without the use of variance reduction and with a total simulation time 

of four weeks or less.  

2. Using the computing resources developed in stage 1; validate a Monte Carlo 

code for simulating a realistic human PET system, and develop and validate a 

noise model for predicting image noise from tissue time-activity data for the 

TSPO PET scans. 

3. Using the simulation tools developed in stages 1 and 2; investigate the image 

signal-to-noise properties of TSPO radiotracers in dynamic scanning of the 

human brain, and the subsequent effects of tracer properties on quantitative 

parameter estimation. 

The remainder of this thesis is organised as follows. In Chapter 2, a survey of the 

literature is made with respect to the estimation of image noise in PET. Monte Carlo 

simulation is then discussed, and the potential use of Monte Carlo as a tool for estimating 

image noise is explored. High performance computing with low-cost commodity hardware is 

introduced, and an argument is made for the suitability of such systems to Monte Carlo 

simulations for the study of PET image noise. Finally, a review of the current literature on 

TSPO PET brain imaging is presented, with an emphasis on the limitations of [
11

C]-PK11195, 

the development of new TSPO tracers and physiological quantification of TSPO PET images. 
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Chapter 2 concludes with a summary of the current state-of-the-art with respect to high 

performance computing and Monte Carlo software, and the state of knowledge regarding 

TSPO PET imaging. It is hypothesised that recent advances in high performance computer 

design, current Monte Carlo simulation software and methods for estimating noise in positron 

emission tomography (PET) might be combined to permit an analysis of image signal-to-

noise ratio (SNR) within the context of neuroinflammation imaging and TSPO PET tracers. 

In Chapter 3 the feasibility of constructing a high performance computer cluster from 

commodity components is explored, within the context of using the GEANT4 Application for 

Tomographic Emission (GATE) Monte Carlo software package to estimate image noise from 

realistic PET simulations. Pilot experiments are described from which an assessment was 

made of the computer hardware required and associated costs to meet the design goals 

articulated in the first aim above.  

In 3.2 methods available for accelerating GATE simulations are tested. In particular, 

the ‘fictitious interactions’ photon tracking algorithm and gamma discard energy settings are 

investigated with respect to their effect on execution time and the statistical properties of the 

output data. 

In 3.3 a design for a low cost computer cluster is presented, capable of meeting the 

specific goals articulated in the first aim above. 

In Chapter 4 the development and validation of a detailed model of a generic PET 

tomograph within the GATE software package, with performance characteristics broadly 

similar to modern clinical PET systems, is described. 

In 4.2 experiments are described in which the image SNR was estimated for a multi-

frame dynamic PET simulation of the human brain for the tracer 
11

C-PK11195, and for a 

second hypothetical tracer with twice the brain uptake. A total of forty independent noise 

realisations for each frame were obtained, allowing the standard deviation for each image 

voxel, and various regions-of-interest, to be calculated. Procedures for image reconstruction 

using a publicly available software package are also described and validated, including 

realistic corrections for random and scatter coincidences, attenuation and variable geometric 

detector efficiencies. 

In 4.3 a mathematical model is derived that relates the relative image noise to the 

tissue concentration of radioactivity in grey matter and scan duration, under the conditions 
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studied in the previous experiments. The validity of this model for estimating the reliability 

of kinetic parameter estimates for TSPO tracers is established. 

In Chapter 5 an investigation into the impact of various factors on the reliability of 

kinetic parameter estimation in TSPO PET is described. In particular, the relative contribution 

of brain uptake, region-of-interest size, radionuclide half-life and compartmental model 

complexity to the reliability of parameter estimates is explored. 

In Chapter 6 the main findings and conclusions of the work presented in this thesis are 

summarised, and potential for further investigation is discussed. 

 

1.3  Conference Proceedings 

Results presented in 4.2  were presented at the Australian and New Zealand Society of 

Nuclear Medicine Annual Scientific Meeting, 2012. 

Constable, C., Meikle, S., & Fulton, R. (2012). THE EFFECT OF TRACER UPTAKE AND 

IMAGE RECONSTRUCTION METHOD ON IMAGE NOISE FOR TSPO PET LIGANDS. 

Paper presented at the Australian and New Zealand Society of Nuclear Medicine Annual 

Scientific Meeting 2012, Melbourne. 
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Chapter 2 Background and Literature Review 

2.1  Overview 

Positron emission tomography (PET) is a functional medical imaging modality that 

may be used to study a variety of physiological processes in healthy and diseased states. 

Recently, PET has been used to study the process of neuroinflammation and the potential 

research and clinical applications of this technology are of increasing interest worldwide. 

Neuroinflammation is characteristic of many diseases of the central nervous system. The 

radiotracer [
11

C]-PK11195, which binds to the 18 kilodalton (18kDa) Translocator Protein 

(TSPO), has been used successfully as an imaging probe for this process in subjects with a 

range of neurological diseases. Nonetheless, accurate and precise quantification of 

neuroinflammation with this TSPO PET tracer has proven challenging, due to an 

unfavourable combination of adverse tracer properties and the sparse yet ubiquitous 

distribution of TSPO in the normal brain. In an attempt to address some of the well 

documented shortcomings of the tracer [
11

C]-PK11195, considerable research effort has been 

expended in developing new radioligands for the TSPO. In particular, ligands with higher 

levels of brain tissue uptake and lower non-specific binding are sought in order to reduce 

image noise and allow more accurate and precise measurements of neuroinflammation. This 

review will cover the causes, effects and measurement of image noise in PET, how this noise 

relates to the quantification challenges associated with [
11

C]-PK11195 PET, and how modern 

developments in high performance computer technology and Monte Carlo simulation 

software might be exploited to investigate the factors that affect accurate and precise 

quantification of neuroinflammation with TSPO tracers. 

2.2  Positron Emission Tomography 

2.2.1  Introduction to Positron Emission Tomography 

Positron emission tomography is a medical imaging modality that operates on the 

detection of the dual 511 keV gamma photon emissions that follow the annihilation of a 

positron and an electron. A positron emitting radionuclide is introduced into the biological 

system under investigation. An emitted positron then combines with an electron from the 

surrounding matter, releasing two annihilation gamma photons of exactly 511 keV energy 

each. PET scanners exploit the simultaneous and 180° separation of these 511 keV photons to 
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provide information on the location of the positron emission: a ‘prompt coincident’ event is 

recorded between two opposing detectors only if both detectors register an event within a 

very narrow time window, typically less than 10 nanoseconds duration. Over a period of 

several minutes, enough coincident events are collected to permit images of the spatial 

distribution of positron emitting radionuclide within the scanner’s field-of-view to be 

reconstructed into three-dimensional tomographic (i.e. cross-sectional) images (Figure 2.1 

and Figure 2.2). 

 

Figure 2.1. Diagram illustrating the production of two 511 keV photons following a positron decay. An unstable 

nucleus undergoes positron decay, emitting a positron- the antiparticle of the electron. The positron typically undergoes 

several scattering interactions in surrounding matter before annihilating with a nearby electron. Upon annihilation, two 

gamma photons of 511 keV are emitted in opposite directions. Typically the range travelled by the positron in soft tissue is a 

few millimetres or less, depending on its kinetic energy. The angle of separation of the two 511 keV photons is 180° ± 

0.5°FWHM (Cherry, Sorenson, & Phelps, 2003).  
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Figure 2.2. Schematic illustration of a PET scanner. Detectors are arranged in a 360° array and operated in 

‘coincidence’ mode: two photons that are detected by opposing detectors within a narrow time window (typically 5-10 

nanoseconds) are accepted as ‘prompt coincident’ events. These coincident events are assumed to originate from a single 

positron/electron annihilation lying somewhere along the ‘line-of-response’, which is really the volume defined by the two 

detectors. By collecting a large number (typically 107 – 108) of such events, an image may be reconstructed that represents 

the spatial distribution of positron emitting radionuclide within the field-of-view. Modern PET systems employ multiple 

rings of radiation detectors optimised for the efficient detection of 511 keV photons. A typical clinical (human) scanner has a 

ring diameter of around 80-100 cm and an axial field-of-view of 15-25 cm. 

Inorganic scintillators such as Bismuth Germanate (BGO), Gadolinium 

Oxyorthosilicate (GSO) or Lutetium Oxyorthosilicate (LSO) are the dominant type of 

radiation detector used in modern PET scanners, due to their generally favourable 

combinations of low cost, high detection efficiency at 511 keV, good energy resolution and 

timing resolution (Phelps, 2006). Individual detectors are generally cut from larger blocks or 

assembled into panels, containing tens or hundreds of individual detectors separated by a 

small gap, and arranged in a cylindrical configuration around the central axis of the scanner. 

Detectors are usually square or rectangular cuboids, measuring between 4 to 6 mm in the 

shortest two dimensions and between 20 to 30 mm in the longest dimension for clinical 

(human use) systems. Detector-to-detector diameter of a modern clinical scanner is typically 

80 cm to 100 cm, and the axial field-of-view is usually between 15 cm and 25 cm. 

A distinction is made between two-dimensional (2D) and three-dimensional (3D) 

acquisition mode PET scanners. A PET system that collects data in 2D mode does so with the 

presence of axial septa: lead or tungsten shields which limit the angle of acceptance of 
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coincident events to those originating within a narrowly defined number of axial image slices. 

A PET system operating in 3D mode does so without such axial septa, thereby accepting 

coincident events over a much wider range of axial slices. Most modern PET systems are of 

the ‘3D’ type, and have a much higher sensitivity than older 2D systems (Phelps, 2006).  

Spatial resolution of a PET scanner is specified by the full width half maximum 

(FWHM) of the image profile of a very small point source of radioactivity, or the ‘point 

response function’. Current clinical PET systems can achieve spatial resolutions of around 4-

6 mm FWHM. Higher spatial resolution systems dedicated for imaging the human brain, and 

small animal research systems, can achieve spatial resolutions down to about 1 mm FWHM 

(Phelps, 2006; Zanzonico, 2011). This resolution is somewhat poorer than other medical 

imaging modalities like Computed Tomography (≈0.1 mm) and Magnetic Resonance Imaging 

(≈1 mm) (Bourne, 2010).  

Sensitivity of a PET scanner is defined generally as the number of coincidence events 

detected per unit time per unit activity in the field-of-view. Sensitivity at the centre of the 

field-of-view depends on the exact geometry of the system and mode of operation, but is 

generally around 5% to 10% for modern ‘3D mode’ PET scanners (Phelps, 2006).  

A prompt coincident event recorded by two detectors in a PET scanner may be one of 

four types: a true coincident event, a random coincident event, a scattered coincident event or 

a multiple coincident event (Cherry et al., 2003). As their name suggests, true coincident 

events (‘trues’) result from the detection of a pair of 511 keV photons that arise from single 

positron-electron annihilations occurring between the two detectors. Random coincident 

events (‘randoms’) result from the detection of two unrelated photons, as do multiple 

coincident events. Random events are approximately evenly distributed across the field-of-

view, and the rate of random event collection increases exponentially as the activity within 

the field-of-view increases, and linearly as the coincidence timing acceptance window is 

widened. Scattered coincident events (‘scatters’) result from the detection of a pair of photons 

that arise from single positron-electron annihilations, one or both of which have undergone a 

scattering interaction before being detected. Scattering causes a photon to lose energy and 

change direction, and usually results in the affected photon arriving somewhat ‘off-target’ 

with respect to the detectors. Scatter distribution across the field-of-view is partly correlated 

with the distribution of radioactivity and matter within the scanner’s field-of-view, and unlike 

random events, the rate of scatter collection is not dependent on the quantity of gamma 
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photons striking the detectors. Figure 2.3 illustrates the four types of coincidence event in 

PET. 

 

Figure 2.3. Four types of coincidence events in PET. Only true coincidences carry useful information about the 

location of positron-emitting radionuclide within the field-of-view. 

True coincident events are the only desirable type of coincident event in PET because 

they alone carry useful information on the location of positron-emitting radionuclides within 

the scanner’s field-of-view. Randoms and scatters are nuisance events that tend to add an 

approximately uniform background signal to the PET data. Accurate correction for random 

and scattered events is therefore very important to ensure that the PET images accurately 

reflect the distribution of positron emitting nuclide within the object being scanned. 

Scintillator detectors used in PET are capable of energy discrimination, and this ability is 

used to screen out many scattered photons which are less than 511 keV. However the energy 

resolution of the PET detectors is limited, and many scattered photons have an energy only 
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slightly less than 511 keV (Phelps, 2006), so many scattered events are still accepted and 

must be corrected for by other means.  

Data correction methods vary, but usually involve estimation of the scatter and/or 

random contribution, followed by subtraction of this estimate from the original data prior to 

or during image reconstruction (Meikle & Badawi, 2003). The rate of random coincidence 

events may be estimated with a delayed coincidence circuit, or by applying a model that 

relates the singles count rate data to the rate of random coincidences for each detector block 

or panel (Brasse et al., 2005). Scatter correction methods may employ multiple energy 

windows (Grootoonk, Spinks, Sashin, Spyrou, & Jones, 1996), Monte Carlo simulation 

(Holdsworth, 2002) or analytical modelling (Ollinger, 1996; Watson, Newport, & Casey, 

1996) to arrive at an estimate of the scatter in the raw PET data.  

Attenuation of photons in matter is another nuisance issue that affects PET. Many 

gamma photons will be scattered and absorbed by the matter within the body or object being 

scanned before they can reach the detectors. Attenuation therefore reduces the number of 

detected events relative to what would be expected in the absence of attenuation. The 

likelihood of photon attenuation is greater for those originating deep within the object, and 

less for those originating near the surface. However, since two annihilation photons are 

required for a true coincident event to be recorded, photon attenuation along the entire line-

of-response (LOR) between two detectors will affect the observed number of coincidences 

for that LOR. In human brain scanning, up to 30% of coincidence counts may be lost within 

some LORs. As is the case for scatter and random coincidences, attenuation must also be 

corrected for in PET. This correction usually involves measurement or estimation of the 

attenuation properties of the object being scanned, and application of a correction factor for 

each LOR during image reconstruction. Measured attenuation correction factors may be 

obtained from an externally located source of radioactivity or, in the case of combined 

PET/CT scanners, a Computed Tomography (CT) scan carried out at the same time as the 

PET scan (Beyer et al., 2000; Zaidi, Montandon, & Meikle, 2007).  

Detector normalization, whereby inevitable variations in sensitivity between different 

detectors is compensated for, is another correction that must be performed on PET data. 

Detectors may vary in efficiency due to electronic errors, differences in crystal composition, 

mechanical misalignments or geometrical effects. Correction factors are usually determined 

via long-duration acquisitions from a uniform source phantom at pre-defined service 
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intervals, usually in combination with pre-determined correction factors describing the long-

term stable components of non-uniformity for a particular scanner (Oakes, Sossi, & Ruth, 

1998). 

All methods of data correction described above have the potential to introduce random 

noise into the PET data, especially if the measurements used for estimating the corrections 

are themselves noisy. Structural errors may also be introduced by data corrections, 

manifesting as image artefacts. The concept of the noise equivalent counts (NEC) attempts to 

take the effects of randoms and scatter subtraction on image signal-to-noise ratio into account 

(Strother, Casey, & Hoffman, 1990), and is defined as: 

RST

T
NEC




2

2

          (1) 

where T is the total number of true coincidences, S is the total scatter coincidences and R is 

the total random coincidences, and α is equal to 1 or 2, depending on the method of randoms 

correction. The α factor takes a value of 2 when the randoms correction propagates noise into 

the data, as is the case for the delayed event subtraction algorithm. When the relative noise 

level of the randoms estimate is considered low, then the α factor takes a value of 1. As the 

above equation implies, maximising NEC is achieved by minimising the contribution of 

random and scattered coincidences, while maximising the sensitivity of the scanner to true 

coincidences. Noise equivalent count rate (NECR) is defined similarly, where T, S and R in 

equation 1 are expresses as count rates, typically counts per second (cps) or kilocounts per 

second (kcps). 

Image reconstruction is the process of converting the coincident event projection data 

from the PET scanner into a three-dimensional image of the spatial distribution of positron 

emitting radionuclide. Prior to reconstruction, PET projection data are commonly sorted into 

two-dimensional digital arrays called ‘sinograms’, with each sinogram element corresponding 

to a particular LOR location and angle (Figure 2.4). Scanners operated in 3D mode produce 

large sinogram arrays, and compression of these 3D sinograms down to 2D equivalent 

sinograms is often done as a means of speeding up image reconstruction and saving storage 

space. Direct storage of individual event locations and times in a ‘list mode’ file is also 

possible. 
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Figure 2.4. PET sinogram formation, single 2D slice example. By convention, the horizontal axis (x) of the 

sinogram represents the distance of a LOR from the transverse centre of the scanner and the vertical axis (θ) represents the 

angular displacement of the LOR. In (a) parallel LORs form a horizontal line at θ=0°. In (b) all LORs formed between the 

top crystal and those opposite form a diagonal line in the sinogram. (Diagram courtesy of Dr Andre Kyme, University of 

Sydney). 

Currently there are two broad classes of reconstruction algorithm applied in PET: 

Analytic reconstruction methods, of which filtered back projection (FBP) is the most 

common and iterative reconstruction methods, of which the Maximum Likelihood 

Expectation Maximisation with Ordered Subsets acceleration (OS-EM) is most often used. 

Corrections for the above mentioned effects (scatter, randoms, attenuation and normalization) 

are applied to the PET sinograms prior to FBP reconstruction, while corrections may be 

applied prior to or during reconstruction with the OS-EM algorithm. 
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Figure 2.5. Image reconstruction in PET. In this example a representative sinogram corresponding to one transverse 

slice through the human brain is shown. Coincidence counts are sorted into a series of 2D arrays called ‘sinograms’. 

Corrections for randoms, scatters, relative detector efficiency and attenuation are applied prior to image reconstruction. 

Iterative reconstruction algorithms may also incorporate these corrections directly into the reconstruction process. Note the 

effects of applying the corrections on the sinogram data: scattered and random events, which are especially evident towards 

the darker edges of the sinogram outside the main object, are removed. Attenuation correction boosts the sinogram values 

towards the middle of the object where attenuation effects are greatest. Detector normalization has also been applied, 

however its effects are harder to discern visually due to the presence of noise in this example. (Sinograms generated by 

Monte Carlo simulation using a digital model of the human head). 

2.2.2  Radiotracers 

A tracer is a substance that, when introduced into a biological or other system, allows 

measurements to be made of dynamic processes within that system (Hevesy, 1923). To 

qualify as a tracer, the mass of the substance introduced must be very small relative to the 

system being studied, so as not to disturb the system and influence the obtained 

measurements. In order to allow measurement, a tracer must also be amenable to some kind 

of external detection. The tracer principle is applied in PET: a positron emitting radionuclide 

is chemically ‘labelled’ to a molecule that interacts with the biological system of interest. A 

quantity of this labelled substance- the radiotracer- is administered into the system: for 

human and animal studies this is usually accomplished by intravenous injection of the tracer 

in liquid form. The radiotracer then localises in the subject’s body according to the 

biochemical properties of the tracer, and the physiological or pathophysiological pathway that 

the tracer is designed to follow.  Images are then obtained that accurately represent the spatial 

and temporal distribution of the radiotracer within the body.  
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Some examples of positron emitting radionuclides (and their half-lives) commonly 

used in PET include: fluorine-18 (110 minutes), carbon-11 (20 minutes), nitrogen-13 (10 

minutes) oxygen-15 (2 minutes), rubidium-82 (76 seconds) and gallium-68 (68 minutes). 

Positron emitters include several of the elements most commonly found in biological 

systems, and this makes them particularly suited to the study of living systems, since 

biologically active molecules may be labelled for use as tracers by chemically substituting 

carbon-12 for carbon-11, nitrogen-14 for nitrogen-13 and so on. Although no positron 

emitting isotope of hydrogen exists, fluorine-18 may be substituted for OH
-
 in large 

molecules with negligible change to their chemical properties (Bourne, 2010). 

With the exception of the coincidence detection methodology and the energy of the 

emitted gamma photons, PET has much in common with other imaging modalities that utilise 

radionuclides and the tracer principle, such as Single Photon Emission Computed 

Tomography (SPECT) and planar scintigraphy. PET may therefore be characterised as a 

nuclear medicine modality, as well as a molecular imaging modality. 

2.2.3  Clinical and Research Applications of PET 

The majority of clinical PET scans performed on humans today are whole body 

metabolism studies with the radiotracer 2-[
18

F]-fluorodeoxy-D-glucose (FDG). An analogue 

of glucose that follows a very similar metabolic pathway to glucose in the body, FDG is 

widely used to study the location and metabolic activity of malignant tumours. Other 

applications of PET include functional imaging of the human brain and heart (Herholz, 

Herscovitch, & Heiss, 2004). To date, brain scanning with PET has largely been focused on 

the detection and measurement of such aspects of neuronal function as regional cerebral 

glucose metabolism, using the radiotracer FDG, and regional cerebral blood flow, using 

H2
15

O. In addition to these two common applications, radiotracers that bind to specific neuro-

receptors in the brain have been developed, such as [
18

F]-FDOPA for assessment of dopamine 

synthesis (Garnett, Firnau, & Nahmias, 1983), [
11

C] –raclopride for assessment of dopamine 

D2 receptor function (Farde et al., 1985), or [
11

C]-flumazenil for assessment of Central 

Benzodiazepine Receptor function (Persson et al., 1985). Many other neuro-receptors have 

been studied with PET, along with other biological processes in the brain, such as amino acid 

uptake into tumours (Herholz et al., 2004). 
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In addition to its clinical applications, PET is used extensively as a research tool to 

study physiological processes non-invasively in humans and animals (Bentourkia & Zaidi, 

2006). 

2.2.4  Quantification and Kinetic Modelling in PET 

Image quantification in combination with the tracer principle allows PET to measure 

regional physiological parameters in living tissue. These measurements are spatially discrete 

and specific to regions of the human body typically in the order of 10 – 20 mm
3
 in volume 

(Herholz et al., 2004).  

It is well recognised that the accuracy of PET quantification is dependent on the 

ability to accurately calibrate the scanner’s sensitivity to radioactivity, and to accurately 

measure or estimate corrections for the various sources of error inherent in PET imaging. 

These errors include the loss of information due to photon attenuation and scatter, random 

coincidence events, system dead time counting losses, variations in detector efficiency and 

partial volume averaging effects (Meikle & Badawi, 2003). All the above sources of error, 

with the possible exception of partial volume effects, are routinely corrected for on modern 

PET systems either during scanning or during image reconstruction (Phelps, 2006). In 

addition, other potential sources of error specific to an individual PET study might include 

blurring due to in-voluntary patient motion, and technical errors such as an imperfect 

intravenous injection, radioactive contamination or scanner malfunction. 

Assuming that accurate calibration and corrections have been made as outlined above, 

and that other sources of error have been eliminated, then each PET image voxel (three-

dimensional pixel) will hold a value that accurately represents the absolute radioactivity 

concentrations at that location, in units such as kilobequerels per millilitre (kBq/mL). In other 

words, the images are quantitative spatial representations of the underlying PET tracer 

distribution in-vivo at the time of scanning. For absolute physiological quantification, these 

activity concentration measurements must now be translated into physiologically relevant 

measurements. This is done through the application of a mathematical model that describes 

the kinetic behaviour of the radiotracer in the body. Kinetic modelling requires accurate 

measurements of the regional tracer concentration in the body in four dimensions: three 

spatial dimensions and time. Therefore, a dynamic PET scan, starting at the same time as 

tracer injection, is usually required. Most commonly in PET, the kinetic model used is a 

compartmental model (Huang & Phelps, 1986). 
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Compartmental models incorporate known information about the tracer and its 

interaction with the physiological process under study, providing a framework within which 

to interpret the PET data (Huang & Phelps, 1986). A ‘compartment’ represents a physical or 

chemical form in which the tracer exists, which may or may not correspond to a discrete 

physical space. The rate at which tracer leaves one compartment is proportional to the 

concentration of tracer in that compartment, and is described by a first order linear equation 

with rate constant ‘k’, in units of inverse time. A rate constant equal to 0.2/minute therefore 

means that twenty per cent of the tracer will exit the compartment every minute. The 

following diagram (Figure 2.6) presents an example of a compartmental model with three 

tissue compartments and an arterial plasma compartment. 

 

Figure 2.6. Example of a compartmental model that describes the kinetic behaviour of a neuro-receptor binding 

radiotracer in brain tissue. There are four compartments and six rate constants in this model. The PET image 

measurement will incorporate all three ‘tissue compartments’ on the right, as well as some of the blood plasma 

compartment on the left. The values of the rate constants in an individual PET study may be estimated using non-

linear least squares curve fitting. 

By convention in PET imaging, rate constants are numbered sequentially from left to 

right in a compartmental model (Huang & Phelps, 1986). It is the estimation of these rate 

constants describing the kinetic behaviour of the tracer in tissue that provides the 

physiological parameters of interest in a PET study (Bentourkia & Zaidi, 2006). In particular, 

for neuro-receptor studies the parameter known as binding potential (BP) is most often 

sought, and is usually defined as the ratio of k3/k4 (Laruelle, Slifstein, & Huang, 2003), 

although the exact definition can depend on what model is used (see 2.2.5). These parameters 

may be calculated for a collection of anatomically or functionally related image voxels- 
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known as a region-of-interest (ROI), or for each image voxel individually- resulting in a 

parametric image.  

In the compartmental model illustrated above (Figure 2.6), the first compartment 

represents the time varying concentration of free (i.e. not bound to proteins) radiotracer in 

blood plasma that is available for transport into tissue (Cplasma(t)). The tracer is typically 

administered by intravenous injection as a single bolus over thirty seconds or less, so the 

arterial concentration of tracer in plasma usually rises to a peak early and then drops rapidly 

as the tracer is taken up into the tissues of the body. This plasma time-activity curve is also 

known as the input function to the model, and it is usually necessary to measure this 

separately from the PET scan using arterial blood samples taken during the PET study. This 

arterial sampling requirement is often considered the most invasive and technically 

challenging part of a quantitative PET examination, and alternative methods for obtaining the 

arterial input data are often sought. These methods include measurement of arterial time-

activity functions from the dynamic PET images directly over a large blood pool structure 

like the heart or large blood vessels in the brain, or using a pre-determined population 

average input function, scaled to each patient using a reduced number of arterial or even 

venous blood samples  (Bentourkia & Zaidi, 2006). 

The other three tissue compartments in Figure 2.6 represent three possible binding 

states in which this hypothetical radioligand is expected to exist within the tissues of interest: 

free (i.e. in the intracellular or interstitial fluid and not bound to any site), specifically bound 

(to the imaging target), and non-specifically bound (to other non-target sites). A system of 

differential equations describing the rate of change over time (t) of the net tracer 

concentration (C) for each tissue compartment in Figure 2.6 is given below in equations 2, 3 

and 4 (PMOD Technologies Ltd., 2010): 
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Each voxel or region within the PET scan image will contain a contribution from all 

three of the tissue compartments, as well as a contribution from the tracer that is still 

circulating in the blood. Fractional blood volume in the tissue of interest (VB), as well as 

blood concentration of tracer at each time point (t) during the PET acquisition (Cblood(t)), are 

required to estimate the contribution of blood-borne tracer to the total signal from a region of 

interest. Therefore the activity concentration of tracer as measured by PET at time t (CPET(t)) 

is the sum of the tissue compartment activity concentrations at time t (Ctissue(t)) plus the blood 

activity concentration at time t. Equation 5 (PMOD Technologies Ltd., 2010) expresses this 

concept: 

     )()(1)( tCVtCVtC bloodBtissueBPET        5 

A value between 2 – 5% is sometimes assumed for VB in human brain tissue, although 

higher values have been reported for some tracers (Kropholler et al., 2005). 

Comprehensive compartmental models that describe every identifiable compartment 

for a given tracer are rarely applicable to PET studies, because of limitations in the signal-to-

noise ratio of the PET data, limitations to the temporal sampling rates that may be achieved, 

and the high degree of uncertainty associated with estimating many parameters at once (non-

uniqueness of parameters). For these reasons, model simplification, whereby the number of 

compartments is reduced, is usually required before the model can be considered practically 

applicable to PET (Koeppe, Holthoff, Frey, Kilbourn, & Kuhl, 1991). Two compartments 

may be merged into one when the rate constants describing the transport between them are 

much larger (i.e. faster) than the rate constants describing the transport in and out of the 

combined compartment (Huang & Phelps, 1986; Koeppe et al., 1991). Using the example 

from Figure 2.6 above, if the rate constants k5 and k6 are known to be relatively large 

compared to K1, k2, k3 and k4, then the model may be simplified from four compartments 

down to three compartments. In this case, the ‘free’ and ‘non-specifically bound’ ligand 

compartments should equilibrate rapidly relative to the other compartments and relative to the 

overall scan duration, and so may be combined into one compartment without significant loss 

of model accuracy. This yields a simpler model for which parameter estimation is likely to be 

more precise than was the case for the original six-parameter model. This model is hereafter 

referred to as a two-tissue compartmental model (2TCM) and is illustrated in Figure 2.7 

below. 
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Figure 2.7. Simplified kinetic model with three compartments and four rate constants. The ‘free’ and ‘non-

specifically bound’ ligand compartments from Figure 2.6 have been merged into one compartment. This is valid only if the 

rate constants k5 and k6 are much larger than the other rate constants, causing the ‘non-specifically bound’ compartment to 

equilibrate rapidly with the ‘free ligand’ compartment. 

Differential equations describing the rate of change over time (t) of the net tracer 

concentration (C) for each tissue compartment in Figure 2.7 are shown below in equations 6 

and 7: 
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Further simplification of this model is possible. If one can assume that the k3 and k4 

rate constants are large (i.e. rapid exchange) with respect to the K1 and k2 rate constants, then 

the last two compartments may be merged into a single tissue compartment (Figure 2.8). This 

level of model simplification has been shown to provide an adequate description of the 

kinetics of some radiotracers in PET, for example [
ll
C]-flumazenil in the human brain 

(Koeppe et al., 1991). This model is hereafter referred to as a one-tissue compartmental 

model (1TCM). 

 

Figure 2.8. Simplified one-tissue compartmental model, with only two rate constants. The ‘ligand in tissue’ 

compartment now includes specifically bound, non-specifically bound and free ligand in tissue. 
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In the case of Figure 2.8, a single differential equation (equation 8) describes the rate 

of change over time (t) of the net tracer concentration in tissue (Ctissue): 
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dt
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tissue         8 

In terms of their general kinetic properties, tracers that might be adequately described 

by a simple model should, as far as possible, have: kinetics that are specifically related only 

to the process being studied; low extraction fraction from the blood into tissue- to reduce 

dependence on blood flow; trapping of the tracer in a 'slow turnover pool' after the tracer has 

gone through the main process of interest; rapid turnover rates for the non-specific 

compartment to allow merging of this compartment with others and rapid reduction of 

background signal in the kinetic data at later times; fast plasma clearance to reduce the 

relative blood volume signal in the PET data and to reduce the time taken to reach a steady-

state; and no radiolabelled metabolites or changes in chemical form of the tracer in the blood 

or tissue (Huang & Phelps, 1986). 

Using a-priori information to assign a fixed value to one or more rate constants is an 

alternative to model simplification for reducing uncertainty in the parameter estimation 

process. In this case, model complexity is not reduced; instead the number of parameters to 

be estimated is reduced. To yield accurate parameter estimates, this method requires accurate 

knowledge of the true value of the parameter(s) being fixed. Sometimes assumptions are 

made: for example that the value of K1 or the ratio of K1/k2 is constant across all regions 

within an organ or system for a given tracer (Kropholler et al., 2005). 

Reference region models are an alternative to arterial input compartmental models for 

neuro-receptor imaging. They are non-invasive and more suited to routine clinical application 

because they do not require arterial blood sampling, but instead rely on a region of reference 

tissue that is assumed to contain insignificant levels of specific tracer binding (Hume et al., 

1992). This reference region is often defined anatomically based on the expected spatial 

distribution of target receptors in the brain. The simplified reference tissue model (SRTM) 

was developed (Lammertsma & Hume, 1996) and makes the further assumption that the 

exchange between the free and specifically bound compartments is rapid- which is to say that 

a one-tissue model adequately represents the exchange of tracer from blood to specific 

binding sites. The SRTM requires that only three parameters be estimated, and can provide a 
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reliable estimate of binding potential, which is the most often sought parameter from neuro-

receptor PET studies (Figure 2.9).  

Brain PET image volumes usually contain around 10
6
 voxels; therefore parametric 

image generation is only feasible when, in addition to being accurate and reliable, the 

parameter estimation procedure is computationally efficient. For example, a parameter 

estimation algorithm that took 0.5 seconds to fit one TAC would require approximately 6 

days to fit the TACs of 10
6
 image voxels. Further evolution of the SRTM method has allowed 

its application to individual image voxels (Gunn, Lammertsma, Hume, & Cunningham, 

1997), allowing parametric images of receptor binding potential to be generated within period 

of minutes or less. 

 

Figure 2.9. Reference tissue model. A two-tissue four parameter compartmental model is assumed for the target 

tissue, while a one-tissue two parameter model is assumed for the reference tissue. The reference tissue is assumed to be 

devoid of specific binding sites, and is often selected anatomically based on the expected location of the target receptors in 

the brain. 

In many clinical applications of PET, a semi-quantitative index known as the 

Standardized Uptake Value (SUV) is used in preference to the more time consuming and 

slightly more invasive procedures associated with ‘true’ physiological modelling (Huang, 

2000). The SUV is simply the concentration of radioactivity within a pixel or region at a 

single time point after injection, normalised to the injected dose of radioactivity and some 

measure of the subject’s size, such as their body weight or surface area. Due to the simplicity 

of its application (no blood sampling and only one short scan), the SUV is usually preferred 
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in clinical PET applications where scanner time and patient compliance are finite (Basu et al., 

2007; Carson, 2003). Indeed, the SUV is the most widely employed semi-quantitative index 

in clinical PET studies worldwide, particularly in relation to the uptake of FDG into 

malignant tumours (Basu et al., 2007).  

The SUV has long been criticised due to the numerous assumptions that underpin its 

derivation, and the various sources of error to which it is subject (Huang, 2000; Keyes, 1995). 

Such semi-quantitative measurements make the implicit assumption that the observed tracer 

uptake in tissue at a certain time after injection represents exclusively the underlying process 

of interest. For many research studies and those involving novel radiotracers, full 

quantification using kinetic modelling is preferred because it can provide a more complete 

description of the tracer’s behaviour in-vivo, and more relevant information about the 

underlying physiology of interest (receptor density, metabolic rate, perfusion etc.), without 

having to make this assumption. 

2.2.5  Quantification of Neuro-receptor Function in PET 

 Radiotracers exist that may be used to image specific receptors in the brain with PET. 

Two examples are: [
11

C]-raclopride for imaging dopaminergic D2 receptors, and [
11

C]-AFM 

for imaging serotonin receptors. The fundamental goal of any neuro-receptor imaging with 

PET is to obtain an image that accurately quantifies the regional concentration of receptor in 

the brain. Compartmental modelling provides a suitable tool to achieve this. 

Binding potential is the outcome measure of most interest for neuro-receptor PET 

studies. Binding potential is not a direct measure of receptor concentration, but rather a 

unitless index of receptor availability (Schiffer, 2011), and is defined as the ratio of receptor 

density (Bmax) to the affinity (KD) of the radioligand for that receptor, which is also equal to 

the ratio of specifically bound (B) to free radioligand (F) at tracer doses (Laruelle et al., 

2003): 

F

B

K

B
BP

D

 max
          (9) 

Affinity in this equation is represented by the dissociation constant (KD), and is a 

measure of how tightly a ligand binds to a particular protein or receptor. Conceptually, a high 

affinity ligand introduced into a region of high receptor density (Bmax) therefore has a high 

binding potential in that region. At tracer doses, occupancy of the target sites is expected to 
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be less than 1% (Hume, Gunn, & Jones, 1998) to avoid compromising the measurement of 

binding potential. If the fraction of free unmetabolised radioligand in plasma is known (f1), 

then binding potential may be calculated from the parameters of the two-tissue model in 

Figure 2.7 as: 

142
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BP             (10) 

Other definitions of binding potential may be used, depending on the information 

available for its derivation. Most often, it is defined as: 
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The above definition of binding potential is widely used, however it is not related to 

receptor density alone, and is dependent also on the level of non-specific binding in the brain 

(Laruelle et al., 2003). Estimation of binding potential using a reference region in the brain 

that is devoid of the receptors of interest is usually a more robust method of estimating 

binding potential, but requires the selection of an appropriate region of reference, and the 

assumption that the reference tissue has the same non-specific binding characteristics as the 

target region (Laruelle, Slifstein, & Huang, 2002).  

Distribution volume (V) of a compartment is defined as the equilibrium ratio of tracer 

concentration in that compartment to the concentration of free tracer in arterial blood 

(Laruelle et al., 2003): 
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           (12) 

Where C is concentration of tracer, subscript i refers to compartment i, subscript a 

refers to arterial plasma and f1 is the fraction of free tracer in plasma. The distribution volume 

known as V2 is defined as the distribution volume of the second compartment (i.e. the free 

and non-specifically bound tracer compartment in Figure 2.7). The distribution volume 

known as V3 is defined as the distribution volume of the third compartment (i.e. specifically 

bound tracer compartment in Figure 2.7). Total distribution volume (VT) is the sum of V1 and 

V2. These compartments may also be referred to as the non-displaceable (second) and 

displaceable (third) compartments, which relates to the ability of a large quantity of ‘cold’ 
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ligand to displace the tracer from these compartments in so-called ‘displacement’ experiments 

(Laruelle et al., 2003). 

2.3  Image Noise in PET 

Accurate image quantification is dependent on the ability to accurately calibrate the 

scanner system, and to apply accurate corrections for the various sources of error inherent in 

PET imaging, such as photon attenuation, scatter, dead time counting losses and partial 

volume averaging effects (Meikle & Badawi, 2003). Accuracy of image quantification will 

also be affected by the signal-to-noise ratio (SNR) of the PET data; however the sources of 

noise, in particular statistical noise, are complex in PET and are not solely due to the number 

of counts collected, as is usually the case for single photon counting situations. The image 

signal-to-noise ratio is partly determined by the total number of true, scatter and random co-

incidence events collected in a scan, with the SNR increasing as true events increase and 

decreasing as random and scatter events increase (Hoffman & Phelps, 1986). Noise may then 

be added or amplified by the various methods employed to correct the data for the physical 

effects listed above. Noise will also be greatly influenced by the choice of image 

reconstruction algorithm and the various parameters and filters that may be applied therein 

(Hutton, Nuyts, & Zaidi, 2006). 

2.3.1  Definition of Noise and Signal-to-Noise Ratio in PET 

Noise in PET imaging refers to the uncertainty associated with any measurement, such 

as the value of an image voxel or group of voxels. Noise can be classified as either random 

noise: originating from the statistical uncertainty inherent with radiation counting 

measurements, or structured noise: originating from more systematic errors caused by the 

application of imperfect PET data corrections, artefacts introduced during image 

reconstruction, equipment malfunctions or undesired uptake of the radiotracer in or near an 

area of interest (Cherry et al., 2003; Hoffman & Phelps, 1986).  

Signal-to-noise ratio (SNR) may be defined in imaging as the mean or expected value 

of a pixel divided by the standard deviation of the mean (σ), or an estimate thereof (Cherry et 

al., 2003): 



Mean
SNR             (13) 
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The primary source of noise in PET measurements is the random noise associated with 

the radioactive decay and photon detection process (Haynor & Woods, 1989), and is 

described mathematically by the Poisson distribution (Cherry et al., 2003): 

 
!
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



           (14) 

Where P(N;λ) is the probability of detecting N counts if the expected (or ‘true’) value 

is λ. The variance of the Poisson distribution is equal to the expected value, λ. The Poisson 

distribution is defined only for non-negative integer values of N (Stroud, 2001). When λ ≈ 20 

or more, the Poisson distribution becomes very similar to the Gaussian distribution (Cherry et 

al., 2003). 

An important feature of this distribution is that larger numbers of collected photon 

counts are associated with smaller relative uncertainties, and hence with less relative noise. 

Therefore any improvement in imaging procedure that gives rise to more collected counts 

over the volume of interest will, in general, result in a higher image SNR. Specific methods 

for increasing the counts in PET include: increasing the imaging time, increasing the injected 

dose of radiotracer, increasing the sensitivity of the scanner to valid coincident events, and 

using a different radiotracer with higher levels of uptake at the site(s) of interest. A 

convenient feature of Poisson counting statistics is that the standard deviation (σ) associated 

with a mean number of collected counts (N) is given by: 

N            (15) 

Although the image SNR depends fundamentally on the total collected counts, the 

exact relationship between collected counts and image SNR in PET is more complicated than 

equation 15 implies. The application of corrections to the data, image reconstruction and 

filtering operations all tend to add either random or structured noise to the data. Some 

operations, such as filtering, are applied for the purpose of suppressing image noise (Cherry 

et al., 2003). The spatial distribution of radiotracer being imaged can also have an effect on 

regional image SNR and image reconstruction also tends to produce images in which the 

pixel noise is highly correlated (Hoffman & Phelps, 1986). Because of this, the final pixel 

values of reconstructed PET images, and subsequently derived time-activity curves (TACs), 

contain noise that is combined from a large number of sources and is often assumed to be 
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represented by the Gaussian distribution (Cherry et al., 2003; Haynor & Woods, 1989), the 

mean and standard deviation of which must usually be determined empirically. 

2.3.2  Effects of Image Noise on Quantitative Modelling in PET 

Noise in the images and TACs limits both the reliability of physiological parameter 

estimation and the complexity of the compartmental model that may be used and is therefore 

of prime concern when attempting to derive such parameters (Carson, 2003). Parameter 

estimation by non-linear least squares fitting suffers from very high levels of uncertainty, 

expressed as the coefficient of variation (CoV) of the parameters, when the input data are 

noisy. Despite this uncertainty, the method is free from bias even when the input data are 

quite noisy. Linear least squares fitting and graphical methods are less prone to parameter 

uncertainty, but suffer from bias when input data are noisy (Ikoma, Watabe, Shidahara, 

Naganawa, & Kimura, 2008).  

Regions-of-interest (ROIs) are a collection of image voxels grouped together for the 

purpose of analysis. This has the effect of reducing noise substantially, since an average of all 

voxel values is taken. It is therefore expected that large ROIs will contain much lower levels 

of noise than smaller ROIs and individual voxels. For this reason, methods for generating 

parametric images must be robust with respect to image noise because they operate on 

individual voxels. 

Measuring the noise levels in dynamic PET images is therefore of potential interest in 

the study of image quantification and modelling. Since quantitative analysis is highly 

dependent on the image noise, a method to accurately predict the noise levels would allow 

studies into the precision and accuracy of kinetic modelling, and the development of optimal 

quantification strategies. 

2.3.3  Estimating Image SNR in PET 

Estimation of the SNR in PET images is not a straight forward problem. The most 

direct way to measure noise is to perform repeated measurements (i.e. multiple PET 

acquisitions) of the same subject under identical conditions and then to calculate the mean 

and standard deviation for each pixel or ROI. Signal-to-noise ratio would then be the mean of 

the repeated measures- which is an estimate of the true signal for each pixel or region- 

divided by the standard deviation- which is a measure of the variability. Performing repeated 

data acquisitions is impractical for most imaging situations because a large number of 
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acquisitions are required to obtain a reliable estimate of the mean and standard deviation, 

while radioisotope decay, time, radiation exposure constraints and compliance limitations that 

apply when imaging living subjects make this impossible (Dahlbom, 2002). Phantoms 

containing long-lived positron emitting radionuclides do allow such repeated measurements 

to be made, however one is limited to the fixed source distribution and geometry of the 

phantom. 

Consequently most methods for estimating noise in PET employ either an empirically 

derived formula to calculate the pixel variance as a function of collected counts (Budinger, 

Derenzo, Greenberg, Gullberg, & Huesman, 1978) or use statistical resampling methods to 

derive pseudo-repeat datasets from which the mean and σ may be calculated. An example of 

an empirical formula for calculating image pixel SNR in PET is (Cherry et al., 2003; Phelps, 

Mazziota, & Schelbert, 1986): 
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         (16) 

Where N = the number of true coincidence counts collected, D = the reconstructed 

image size and Δr = the projection linear sampling interval and also the reconstructed pixel 

size. This formula is simplistic in that it makes a series of assumptions about the imaging 

situation which are rarely true in practice, including: a uniform tracer distribution, the 

application of filtered back projection reconstruction with a ramp filter only, image pixels that 

are exactly equivalent to the projection linear sampling interval, and sufficient angular 

sampling to avoid additional noise in the form of streaking artefacts. Nor does this formula 

take into account the potentially degrading effects of attenuation, random and scattered events 

in the PET data acquisition process. Despite these shortcomings, it does illustrate the general 

relationship between collected counts, image spatial sampling and SNR in PET. Specifically, 

this equation implies that SNR improves in proportion to the square root of the number of 

counts collected, and that as spatial resolution is improved (i.e. as sampling distance Δr is 

decreased) the counts required to maintain image SNR are inversely proportional to the cube 

of Δr. In numerical terms, a factor of two improvement in the spatial resolution would require 

a factor of 8 increase in collected counts in order to maintain image SNR. It should be noted 

that noise equivalent counts (NEC) could be substituted for N in this equation to better take 

the effects of scatter and random coincidences into account. 
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Another commonly used approach to estimating image noise is to calculate the pixel 

mean and σ within a large region of interest covering a volume in which the radioactivity is 

assumed to be uniformly distributed. Although straightforward to perform, this method is 

considered suboptimal due to the absence of such ideal uniform regions in most clinical 

imaging situations and because the noise in any given pixel is not necessarily independent of 

other pixels in the image (Haynor & Woods, 1989). Dahlbom (2002) also demonstrated that it 

provides an inadequate estimation of image noise when compared to the repeated scan and 

bootstrap resampling methods, even when applied to a radioactive test phantom of near 

perfect uniform spatial distribution. 

An alternative approach to estimating noise in PET images is to use bootstrap 

resampling techniques (Dahlbom, 2002; Haynor & Woods, 1989). These methods use 

statistical resampling of one or more raw PET datasets to generate a series of pseudo-repeat 

PET data sets from the original PET scan. These datasets are then reconstructed and the mean 

and variance for each pixel are calculated directly from the pseudo-repeated measurements. 

Bootstrap methods have an advantage over empirical formulae such Equation 8: they do not 

require any assumptions to be made concerning the various sources of noise or their 

propagation through to the final image. The bootstrap methods have been shown to provide 

accurate estimates of image variance, achieving similar results to actual repeated PET scans 

on phantom acquisitions. Their primary drawback is that they are computationally intense, 

being described by one author as the “brute force” method (Dahlbom, 2002).  

A recent study compared several bootstrap resampling methods for 3D PET (Lartizien, 

Aubin, & Buvat, 2010), including the methods of Haynor & Woods and Dahlbom, and found 

that at very low counts, bootstrap resampling from a single scan dataset did not produce a 

good estimate of the mean and variance in PET images reconstructed with 3D Filtered Back 

Projection and 2D Ordered Subset Expectation Maximisation (OSEM). Bootstrap resampling 

based on fifty independent scans performed much better. The authors hypothesised that the 

resampling methods would likely perform better at ‘clinical’ count levels. These findings 

indicate that care should be exercised when using bootstrap methods to study noise levels in 

PET, especially for very low count (noisy) data. 

Monte Carlo simulation is another method for estimating noise in PET and is now 

discussed in more detail in section 2.4 . 
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2.4  Monte Carlo Simulation 

2.4.1  Applications of Monte Carlo Simulation to PET 

Monte Carlo methods are a class of computational algorithms that use random 

sampling to solve problems for which deterministic algorithms are unsuitable. Modern Monte 

Carlo algorithms rely on fast digital computers and pseudo-random number generators to 

provide a sufficient number of samples within an acceptable period of time. Monte Carlo 

methods may be used to simulate complex systems, and to study the outcomes given a set of 

starting variables (Upton, 2011; Zaidi, 2006).  

Predicting the passage of photons through matter is a problem well suited to the Monte 

Carlo methodology, and several algorithms and software packages have been developed for 

this task, for example the Electron Gamma Shower (EGS) package (Rogers, Bielajew, 

Nelson, & Hirayama, 1986) and GEANT4 package (Agostinelli et al., 2003). Since the raw 

data in PET is essentially the result of the transport of many photons through tissue and the 

detectors, Monte Carlo methods may be used to simulate a PET scan. In addition to accurate 

modelling of the physics of photon interactions with matter, realistic and relevant simulations 

require that the PET acquisition itself be modelled accurately, taking into account the 

physical geometry and composition of the detectors in the scanner and the distribution of 

radioactivity and attenuating matter in the digital phantom. Subsequent data processing and 

image reconstruction algorithms must be similar or identical to those used in real-world 

systems. 

The large number of computations required to accurately model a complete PET scan 

necessitates the use of very fast computers. The increasing availability of faster computer 

systems has led to a steady increase in the use of Monte Carlo simulation to study the 

physical properties of PET and SPECT over the last decade-and-a-half (Buvat & Lazaro, 

2006). There are now several software packages dedicated to Monte Carlo simulations of 

PET and SPECT, for example: Simulation System for Emission Tomography (SimSET) 

(Harrison, 2011), PET Simulation of Realistic Tridimensional Emitting Objects (PET Sorteo) 

(Reilhac, 2013), PeneloPET (Espana et al., 2009) and the Geant4 Application for 

Tomographic Emission (GATE) (Jan et al., 2004). 
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2.4.2  Image Noise Estimation with Monte Carlo Simulation 

Monte Carlo simulation allows noise to be measured by repeated data acquisitions in a 

way that is difficult to achieve with phantom studies, and impossible with real human or 

animal studies. Noise in PET data originates from the Poisson distribution of detected 

radiation counts and is inherently associated with the random nature of radioactive decay and 

the passage of radiation through matter. Monte Carlo simulation, which seeks to model these 

processes by random sampling, is therefore suited to estimating image noise in PET. 

Assuming that the statistical properties of the output data are equivalent to the real-world 

data, Monte Carlo simulations can provide realistic PET data with the same statistical 

properties as real-world PET data. By acquiring data from repeated simulations under 

identical conditions (but with different random number generator seeds), noise due to random 

fluctuations in photon counts in the raw sinograms and reconstructed images may be 

estimated by calculating a measure of spread across the independent noise realisations, such 

as the standard deviation or variance. 

An alternative to Monte Carlo methods for estimating noise levels are the bootstrap 

resampling methods (Dahlbom, 2002; Haynor & Woods, 1989) discussed previously in 2.3.3. 

Although these methods have been shown to provide good estimates of the image variance, 

they may not perform so well for very noisy data (Lartizien et al., 2010). They also require 

one or more original scan datasets from a patient PET scan. Monte Carlo simulation avoids 

these limitations, allowing the underlying radioactivity and matter distribution to be 

controlled by the investigator. Some Monte Carlo codes also allow the PET scanner geometry 

to be likewise controlled. 

Variance reduction techniques, like importance sampling and stratification, are often 

used as a means of accelerating Monte Carlo simulations (Haynor, Harrison, & Lewellen, 

1991). However variance reduction must be used with caution as it is known to affect the 

statistical properties of the simulated data. Buvat et al. (2005) reported a factor of five 

speedup when the forced detection option was activated for a PET simulation using the 

SimSET package, however the variance of the sinogram data output was markedly altered 

(Buvat, Castiglioni, Feuardent, & Gilardi, 2005). Therefore, when attempting to study the 

noise properties of PET scanning scenarios, acceleration methods that alter the variance 

reduction techniques should be avoided. 
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Despite the advantages over bootstrap resampling and other techniques, long 

computation times associated with repeated simulations and the necessity to avoid variance 

reduction techniques potentially makes Monte Carlo impractical as a method for estimating 

image noise. Repeated simulations numbering in the hundreds or thousands are not feasible 

with current computer systems and software, even at low count levels. For example, an 

investigation into acceleration methods for the Geant4 Application for Tomographic Emission 

(GATE) simulator (Rehfeld, Stute, Apostolakis, Soret, & Buvat, 2009) reported a 

computation time of just over 90 hours to simulate ten seconds of PET data acquisition at 

clinically realistic activity levels and attenuation distribution on a single modern computer. 

With acceleration methods applied, which included discarding low energy gamma photons 

and using a method known as ‘Woodcock tracking’ (Rehfeld et al., 2009), the computation 

time was reduced to around 5 hours. Extrapolating these results reveals that simulation of 10 

minutes of scan time with 500 repeats would take approximately 17 years on a single central 

processing unit (CPU) even at maximum acceleration. Without acceleration the computation 

time is over 300 years. It is noteworthy that the Woodcock tracking algorithm used to speed 

up the GATE simulations, also known as the ‘fictitious interactions’ algorithm, was found to 

preserve the statistical properties of the output data. 

Combining Monte Carlo with another noise estimation method might help to 

overcome the problem of long simulation time. Lartizien at al. (2010) suggest such an 

approach in the context of bootstrap resampling methods. Their results suggest that bootstrap 

resampling works best when multiple original samples are used rather than a single scan. 

Generation of around fifty independent scans using Monte Carlo is suggested, from which 

five hundred or more bootstrap resamples may be made to estimate the noise. Extrapolating 

again from the work of Rehfeld et al. (2009) it would take around 600 days to generate fifty 

independent scans of ten minutes duration using GATE on a single computer. With modern 

computer clusters, discussed in detail in 2.5 below, this could be reduced to a more 

manageable 2 weeks of simulation time. 

The analytical equation for image SNR (Equation 8 in previous section) has the 

advantage of being rapid to compute for a wide range of collected counts, while the main 

drawback is the need to make unrealistic assumptions about the PET scan, such as uniform 

source distribution and absent attenuation and scatter. Monte Carlo and bootstrap resampling 

methods avoid these assumptions by using an original scan, or a realistic simulation of one, to 

take these effects into account. It might be possible to combine Monte Carlo and the 
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analytical methods of noise estimation. A limited number of repeat Monte Carlo simulations 

at several different total count levels could be performed, allowing approximate noise levels 

to be calculated for each count level. Curve fitting of the Monte Carlo noise estimates as a 

function of collected counts could then be used to derive an analytical equation of similar 

form to Equation 8. Image noise could then be computed rapidly for any combination of 

radioactivity concentration and acquisition time, allowing noise to be predicted for a range of 

total count levels. The validity of the equation would be limited to the particular conditions of 

the original simulation: scanner geometry, source distribution, attenuating media, and data 

correction and reconstruction algorithms, making this technique most suitable for long-

duration dynamic acquisitions over a fixed region of the body. Another drawback is that the 

effects of variable system response characteristics at different count rates might not be taken 

into account with this method, limiting its suitability to low count rate studies on systems 

with relatively ‘fast’ detectors and electronics. However, this might be a reasonable 

assumption for dynamic neuro-receptor PET studies performed on modern PET hardware. 

2.5  Beowulf High Performance Computing Clusters: 

Application to Monte Carlo Simulations 

2.5.1  Definition and Historical Development 

A Beowulf cluster for high performance computing is a parallel multiprocessor 

computer system built from commodity hardware and freely available software (Gropp, 

2003). Originally developed by Donald Becker and Thomas Sterling in 1995 at the National 

Aeronautics and Space Administration’s Goddard Space Flight Centre (Becker, 1995; Warren, 

Becker, Goda, Salmon, & Sterling, 1997), Beowulf clusters have since become widespread 

due to their favourable cost-to-performance ratio, and have largely replaced the traditional 

supercomputer for high performance scientific applications (Gropp, 2003). 

The rapid and widespread adoption of the personal computer during the 1980’s and 

1990’s led to a marked reduction in the cost of their components due to economies of scale, 

and a rapid increase in the capacity to manufacture and distribute computers of increasingly 

higher performance at lower cost (Gropp, 2003). Meanwhile the large supercomputers, which 

were built by hand and in small numbers with dedicated software and operating systems, 

were becoming less attractive to institutions interested in high-performance scientific 

computing. Supercomputers were generally too expensive to replace at short intervals, and 

this weakness exposed them to competition from the rapidly improving commodity systems, 
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which could often rival the performance of a given supercomputer as it approached the end of 

its lifespan. 

2.5.2  Advantages of a Beowulf Cluster 

The original Beowulf project (Becker, 1995; Ridge, Becker, Merkey, & Sterling, 

1997) used sixteen commodity desktop personal computer systems that were commercially 

available at the time: each with a 100 MHz Intel x486 central processing unit (CPU), 500 

Mbyte hard disk and 256 Mbytes RAM. Communication between nodes was provided by 

dual Ethernet connections. The recently developed and free Linux operating system was also 

used. The authors reported floating point operation speeds within range of that expected from 

contemporary supercomputers, for applications that were well suited to parallel execution: 60 

megaflops (i.e. 60 million floating point operations or MFlops) was achieved on the Beowulf 

for a fluid dynamics simulation task, while a Cray T3D supercomputer performed “less than 

2.5 times better than Beowulf” (Becker, 1995). As was expected, applications that required 

more frequent inter-node communication of data performed less well on the Beowulf cluster 

compared to conventional supercomputers. Nonetheless, the use of only mass-produced 

commodity components and free software gave the Beowulf cluster a significant cost 

advantage over the traditional supercomputer. 

Although not stated by the authors, the cost in United States Dollars ($US) of the 

original sixteen-node Beowulf hardware components was reported by others to be less than 

$US 50,000 at the time of its construction (Adams & Brom, 2008; Ridge et al., 1997). For 

comparison, a Cray T3D supercomputer of the same era cost between $US 2.2 million and 

$US 31 million depending on the exact configuration ("Cray Duly Launches Its $2.2m to 

$31m Parallel T3D," 1993). 

2.5.3  Microwulf: The Personal Supercomputer 

In 2007, a Beowulf cluster was built that matched the floating point performance of 

one of the fastest supercomputers from eleven years prior: the 1996 Cray model T3D 

MC256-8/464. Named ‘Microwulf’, it was designed as a very low cost and portable tool for 

teaching parallel programming at a tertiary college, and was referred to by its creators as the 

personal Beowulf cluster “for every desk” (Figure 2.10). Microwulf had a total component 

cost of under $US 2,500 (Adams & Brom, 2008). For comparison, the U.S. Census Bureau 

reported median annual household income in the United States for 2007 was $US 52,673 
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(Semega, 2009), and the approximate retail costs of new desktop and laptop personal 

computers was reported in a consumer’s product review publication of the same year to range 

from $US 500 to $US 3,500 depending on specifications (Finnie, 2007). Microwulf was 

small by cluster computing standards: occupying 28 cm x 31 cm 43 cm, and could run from a 

single power outlet, drawing 450 watts under full load. No special cooling other than standard 

room air-conditioning was necessary. 

Innovative design features of this cluster included a ‘minimalist’ approach to hardware 

casing, favouring an open design with the motherboards, hard disk and power supply units 

mounted directly on scrap polycarbonate sheets and held up with threaded rods. Space, 

weight and cost were reduced by choosing not to mount the components in a conventional 

computer case or rack. Electrical grounding- usually provided by the metallic case of a 

desktop computer- was accomplished by the addition of grounding wires from each 

component to one of the power supplies. Microwulf was open to the external environment on 

all sides, which allowed air to flow more freely and removed the need for powerful and 

potentially noisy cooling fans.  Multi-core CPUs were exploited to help maximise the 

performance, space, cost and energy efficiency of the cluster. Space and cost were further 

reduced by using only a single shared hard disk for all nodes. Recycled or cast-off 

components were used where possible: the polycarbonate sheets, mouse and monitor were 

reportedly scavenged in this manner.  
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Figure 2.10. The original Microwulf cluster designed and built by Dr Joel Adams and Timothy Brom in 2007 at the 

Calvin College, Michigan. Microwulf was designed as a personal desktop cluster and required one standard power outlet and 

room air-conditioning to operate. Components cost less than $US 2,500 at January 2007 retail prices, and it could 

outperform a state-of-the-art Cray supercomputer from 1996. (Photo taken from Adams & Brom, 2008). 

The personal desktop nature of the Microwulf cluster, which was emphasized by its 

creators, is an important attribute of this system. A study conducted from 1982 to 1983 

(Quillard, 1983) on the introduction of personal computers into ten large commercial 

organisations, reported several advantages of moving from centralised time-shared computing 

to personal desktop computing. It was found that devolving responsibility of hardware and 

software selection to the end user meant that: there was a better matching of the user’s 

requirements to the computing resources purchased; hardware and software updates could be 

carried out more frequently in a more targeted and user-specific manner without disruption to 

the entire user community; and the overall cost of errors such as hardware failure or incorrect 

software choice was lower, being confined to just one user. They also noted a strong user 

preference for moving to personal desktop systems over the previous centralised time-share 

systems (although company managers who had recently purchased a large scale system 

reported less enthusiasm!) and that the end-users were often becoming more expert in the 

particular software packages they used than the information technology specialists within the 

company. Disadvantages noted at that time by the authors included: loss of strategic control 

over hardware and software purchasing and use by the organisation; and loss of information 

on system usage rates. Another problem identified was the increased burden of knowledge on 

the end users, who might require different forms of computer support and training than was 

previously the case. 
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It is reasonable to suppose that the advantages and disadvantages of transitioning to 

personal desktop computers recorded three decades ago will apply to the use of ‘personal 

clusters’ in scientific research today. If a small foot-print, high-performance computing 

machine can be constructed for around the cost of a premium desktop personal computer, as 

exemplified by the Microwulf project, then a user preference for such personal clusters over 

shared resources might be expected. Projects that have a large computational component 

running over several months or years might derive benefit from the low cost custom 

approach. End-users would be given responsibility for matching their own cluster’s 

characteristics to their particular problem and chosen software, rather than trying to fit the 

problem and software onto an existing shared system. Obsolescence of the hardware is still a 

problem, however the low initial cost of the equipment, and its dedication to a small number 

of projects, means that the cost and inconvenience of equipment obsolescence could be 

minimised, or at least confined to a small number of users. Inevitable hardware upgrades, or 

recycling of the components of the cluster, may be better coordinated with the project(s) for 

which it was built, thereby minimising inconvenient down-time on other researchers. A 

personal cluster might also offer more flexibility to an individual researcher for a particularly 

computationally intensive project by removing the administrative burden of negotiating for 

resources on a shared system. 

The disadvantages identified at the time of desktop PC introduction three decades ago 

might also apply to the personal cluster. Despite the dissemination of simpler cluster building 

tools, individual researchers might not have the expertise or time required to build and 

maintain their own system. Decentralization of high performance computing resources could 

also result in a loss of control and oversight by the organisation, and require a new level of 

support and training from existing information technology support staff. 

2.5.4  Relevance to Monte Carlo Simulations 

Monte Carlo simulation of PET systems is computationally intensive, and the time 

needed to simulate a sufficient number of events has long motivated the use of parallel 

distributed computers (Zaidi, Labbe, & Morel, 1998). Clusters like the Beowulf perform very 

well when inter-process communication is low, because the Ethernet connection is often slow 

relative to the CPU and memory sizes (Becker, 1995). Tasks which require very little 

communication between processors during execution are said to be ‘coarse-grained’, while a 

task that requires no communication at all is categorised as ‘embarrassingly parallel’ (Scott, 
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2005). Monte Carlo simulations fit the description of an ‘embarrassingly parallel’ task 

because photon transport histories are independent of one another and so no communication 

between processes is required. Indeed it is well recognised that Monte Carlo simulations are 

suited to parallel implementation (De Beenhouwer et al., 2005; Zaidi et al., 1998) and the 

development of parallel systems has made Monte Carlo methods feasible for simulating 

complex PET and phantom geometries with high accuracy (Jan et al., 2004).  

Despite the ‘embarrassingly parallel’ nature of Monte Carlo simulations, there is still a 

communications overhead to consider when running one on a cluster: the task requires some 

form of splitting before execution and the output data must usually be merged at the end of a 

simulation. For a PET simulation involving large 3D sinogram or list mode data outputs, this 

can also impose a considerable transfer and storage space penalty for parallel execution (De 

Beenhouwer et al., 2005; De Beenhouwer, Staelens, D'Asseler, & Lemahieu, 2006).  

Limitations imposed by data housekeeping on parallel computing were first identified 

by Dr Gene M. Amdahl, and have since been formulated as ‘Amdahl’s Law’ (Amdahl, 1967). 

Essentially a law of diminishing returns, it predicts that for each additional CPU recruited to a 

given task, the additional burdens of task splitting and data merging reduce the incremental 

speedup that is achieved. Fractional data merging overheads associated with parallel 

implementation of Monte Carlo simulations must take into account many variables associated 

with the simulation task at hand, including the expected length of the simulation and the 

format of the output data. For example, a data merge time of thirty minutes might be deemed 

an unacceptably high cost of parallelizing a simulation run to seventy CPUs if the total 

simulation time on a single CPU is only twenty minutes. On the other hand, thirty minutes of 

data merging might be acceptable for a simulation expected to take seven days to run. 

De Beenhouwer et al. (2005) explored the implications of Amdahl’s law in relation to 

the Monte Carlo simulation of PET and SPECT scans using Geant4 Application for 

Tomographic Emission (GATE). They reported data output merging overheads of less than 

15% of total execution time for a seventy CPU cluster when running a SPECT simulation. 

This overhead increased to 70% for a high sensitivity PET simulation in which the data 

output rate was higher. They recommended that the fractional overheads be calculated from 

small scale simulation runs for the simulation task under consideration to determine the 

optimum number of computing cores that should be used for each job. Despite the data 
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merging issues reported for some simulations, they concluded that cluster computing 

represented the best way to accelerate GATE simulations for PET and SPECT. 

2.5.5  High Performance Computing Options for Monte Carlo: 

Shared Resources versus User-Built Systems 

Research projects requiring high performance computing resources have several 

options available, which may be broadly categorised as shared resource systems and 

dedicated user-built systems. Shared resources may take the form of a high-performance 

system dedicated for use within a laboratory or department, or a more centralised solution 

that is shared across an institution or wider geographic region. Cloud computing 

environments and grid solutions also exist that allow resources to be pooled across a wide 

area using local area networks and the internet, for example the European Grid Infrastructure 

(http://www.egi.eu).  

Shared resource solutions offer potential efficiencies for scientific applications: 

multiple users can queue jobs which are executed as appropriate resources become available, 

thereby minimising computer idle time and sharing the benefits (and the costs) of the high 

performance hardware between multiple users. Energy efficiency, due to consolidation of 

resources and high utilization rates, is also cited as an advantage of large-scale cloud 

computing and centralised high-performance computing facilities (Yelick, 2011). 

Nonetheless, potential disadvantages of shared resource systems include the necessity to wait 

in a job queue, and the possible uncertainty in knowing when the computations will be 

finished. Further administrative burdens might also exist with the need to justify and 

negotiate for resources, either locally or to an external agency. Other drawbacks identified 

include security concerns with transferring sensitive data, and limitations in transferring large 

volumes of input and/or output data across networks (Yelick, 2011). This last point is 

particularly relevant for PET simulations where the data output files may be measured in 

gigabytes: a large size relative to many currently available network speeds. 

On the other hand, personalised desktop clusters, such as the Microwulf cluster 

outlined in the previous section, are an emerging alternative to shared resource systems. 

Although energy efficiency and utilization rates are likely to be worse for personal clusters in 

comparison to shared resource systems- possibly leading to reduced cost-efficiency at the 

institutional level- they nonetheless have many potential advantages. Microwulf 

demonstrated that a high degree of efficiency with respect to cost, energy, space and 

http://www.egi.eu/
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computational speed could be achieved with the personal desktop cluster approach. 

Construction of this and similar systems is well documented on the World Wide Web (for 

example: (Adams, 2012), http://www.calvin.edu/~adams/research/microwulf/) and requires 

only a moderate degree of computer assembly and software installation experience. In 

keeping with the principles of the Beowulf cluster, the software and operating system is free, 

publicly available and in widespread use, therefore documentation and user-community 

support is often available. Other potential advantages of the personal cluster include: greater 

availability and flexibility of use, the ability to match the cluster hardware and software to the 

task at hand, and the option to upgrade or discard components in response to the likely 

obsolescence of components over time, in a manner that is coordinated with the project for 

which it was built. Administrative burdens associated with shared resource-type computing 

facilities, and the data upload and security issues identified above, are also minimised with 

the personal cluster approach.  

Taken together, these positive attributes of the Microwulf-type cluster, and the 

suitability of Monte Carlo simulations to parallel execution, make it feasible for small 

laboratories with modest resources to perform large scale PET simulations within a 

reasonable time frame. 

2.6  PET Imaging of Neuroinflammation 

2.6.1  Microglial, Neuroinflammation and the Role of PET 

Microglia are one type of glial cell, and along with astrocytes, oligodendrocytes and 

ependymal cells are found in the brain. In general, glial cells play a supporting role in the 

central nervous system (CNS) and are distinguished from neurons, to which the control and 

cognition functions of the CNS have traditionally been attributed (Tortora & Grabowski, 

1993). Microglia are distributed throughout the central nervous system and have an immune 

function, transforming into tissue macrophages as part of the neuroinflammatory response to 

brain injury. In the absence of brain injury or disease, microglia are considered to exist in a 

‘resting’ state, although recent studies have shown that such non-activated microglia are not 

entirely static, possessing numerous ramifications that are constantly extended and retracted 

into their immediate surroundings, carrying out what is presumed to be an immune 

surveillance function (Nimmerjahn, Kirchhoff, & Helmchen, 2005). In response to injury, 

microglia become ‘activated’, changing shape and increasing in number in a manner that is 

highly localised to the region of injury (Banati, 2002). Activated microglia can therefore 

http://www.calvin.edu/~adams/research/microwulf/
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serve as a marker of active brain disease, delineating such regions potentially before clinical 

or overt structural changes are evident (Kassiou, Meikle, & Banati, 2005). 

Upon activation, microglia express a number of molecules. One such molecule is the 

18kDa Translocator Protein, abbreviated to TSPO and previously known as the Peripheral 

Benzodiazepine Receptor or PBR (for additional notes on the historical nomenclature of this 

protein see appendix 7.1). Although distributed widely throughout the human body, the TSPO 

exists only in very low concentration in the normal brain, where it may be found on the outer 

mitochondrial membranes within astrocytes and microglia cells. However the abundance of 

the TSPO increases substantially and exclusively within activated microglia following 

neuronal injury (Banati, 2002). Radioligands that bind the TSPO therefore have the potential 

to be useful imaging tracers for delineating and quantifying regions of neuroinflammation. 

It should be noted that activated microglia are, in this context, a non-specific marker 

of disease: their presence is not specifically associated with one or another particular 

pathology or syndrome (Banati, 2003). However since the late 1990’s, there have been 

multiple reports in the literature of successful TSPO PET imaging studies that document the 

presence of neuroinflammation in human subjects who have clinically established 

neurological conditions. Many of these studies were conducted by comparing cohorts of 

healthy control subjects to cohorts of disease-affected subjects, and include studies involving:  

 Multiple Sclerosis (Banati et al., 2000; Debruyne et al., 2002; Debruyne et al., 

2003; Ratchford et al., 2012),  

 Neurodegenerative dementias (Cagnin, Kassiou, Meikle, & Banati, 2006; 

Cagnin, Rossor, Sampson, Mackinnon, & Banati, 2004; Doorduin, de Vries, 

Dierckx, & Klein, 2008; Edison et al., 2008; Groom, Junck, Foster, Frey, & 

Kuhl, 1993, 1995; Gulyas et al., 2011; Mackenzie, 2000; Tomasi et al., 2008; 

Venneti, Wiley, & Kofler, 2009; Yasuno et al., 2008; Yokokura et al., 2011),  

 Parkinson’s Disease (Gerhard et al., 2006; Ouchi et al., 2005),  

 Huntington’s Disease (Pavese et al., 2006; Tai et al., 2007),  

 Stroke (Gerhard, Schwarz, Myers, Wise, & Banati, 2005; Gulyas et al., 2012; 

Price et al., 2006; Thiel & Heiss, 2011),  

 Encephalitis (Banati et al., 1999),  

 Amyotrophic Lateral Sclerosis (Turner et al., 2004),  

 HIV/AIDS (Hammoud et al., 2005; Wiley et al., 2006), and  
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 Methamphetamine abuse (Sekine et al., 2008). An age related increase in 

overall TSPO expression in the human brain, in the absence of disease, has 

also been documented with PET (Cagnin A, 2001; Gulyas et al., 2011). 

Figure 2.11 shows a schematic representation of the TSPO and its relationship to other 

proteins in the outer mitochondrial membrane. The structure of the TSPO is believed to 

consist of five α-helices spanning an outer phospholipid layer of the mitochondrial membrane 

(Bernassau, Reversat, Ferrara, Caput, & Lefur, 1993). Cholesterol transport across the 

mitochondrial membrane is the best characterised function of the TSPO, which is essential 

for steroidogenesis, and explains the abundance of TSPO found in in steroidogenic tissues 

such as the gonads and adrenal gland (Chauveau et al., 2009; Papadopoulos et al., 2006).  
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Figure 2.11. Schematic diagram of the TSPO, illustrating its place in the outer mitochondrial membrane, and some 

of the functions attributed to it. Diagram taken from Papadopoulos et al. (2006).  

2.6.2  TSPO PET with [11C]-R-PK11195: Successes 

One of the earliest radioligands investigated for TSPO imaging, N-[
11

C] methyl, N-

(methyl-1 propyl), (chloro-2 phenyl)-1 Isoquinoleine Carboxamide-3, more widely known as 

[
11

C]-PK11195, is also the most widely employed to date for this purpose (Camsonne et al., 

1984; Chauveau et al., 2008). Due to its higher affinity for the TSPO (Shah, Hume, Pike, 

Ashworth, & McDermott, 1994), the R-enantiomer of this ligand, [
11

C]-R-PK11195, has been 

used in most studies to date (Chauveau et al., 2008). In many of the earlier studies listed 

above, the utility of TSPO PET imaging with [
11

C]-PK11195 was demonstrated by 
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correlating the observed radioligand binding on PET with the patient’s known neurological 

symptoms or anatomical lesions. This is somewhat unusual in that the normal biodistribution 

and kinetic behaviour of novel radiotracers is typically established in healthy volunteers, 

before applying the techniques thus developed to study neurological diseases. The virtual 

absence of TSPO expression in the healthy brain renders this strategy inadequate for TSPO 

radiotracers, hence the early application of TSPO PET to studying a wide variety of 

neurological pathologies.  In other studies that followed, [
11

C]-PK11195 PET was used as a 

tool to investigate neuroinflammation in various diseases. Examples of [
11

C]-PK11195 PET 

images are reproduced in Figure 2.12, Figure 2.13 and Figure 2.14 below.  

 

Figure 2.12. Example images from of a patient with frontotemporal lobar degeneration. Avid binding of TSPO PET 

radioligand [11C]-PK11195 was seen in the frontal lobes in the image on the right (coloured pixels represent TSPO ligand 

Binding, overlaid with a co-registered MRI image), indicating the presence of activated microglia in a region of the brain 

that corresponds to the patient’s clinical symptoms and regions of cortical loss (Cagnin et al., 2004). 

 

Figure 2.13. Example images from a patient with Multiple Sclerosis. Significantly increased binding of TSPO PET 

radioligand [11C]-PK11195 was observed at some sites corresponding to structural lesions identified in the MRI of the brain. 

Colour scale represents Binding Potential of the TSPO radioligand (Banati et al., 2000). 
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Figure 2.14. Example of [11C]-PK11195 PET imaging of a patient with Huntington Disease (left) and a normal 

control subject (right). In this study, significantly increased levels of TSPO radioligand binding were reported in the striatum, 

fontal and parietal lobes of disease-affected patients. The extent of TSPO ligand binding was found to correlate with the 

clinical severity of the disease in this cohort of patients (Pavese et al., 2006).  

Ligands for the TSPO labelled with tritium (
3
H) have also been used in 

autoradiography studies of human and animal brain tissue. Pre-clinical PET imaging studies 

of small animals and non-human primates have also been carried out, especially in relation to 

the development of new radioligands for the TSPO  (Luus, Hanani, Reynolds, & Kassiou, 

2010). 

Kropholler et al. (2005) published the first tracer kinetic compartmental model with 

measured plasma input function for [
11

C]-R-PK11195 in the human brain (Figure 2.15). They 

found that a two-tissue, four rate constant model described the observed kinetics for this 

tracer in normal human grey matter most accurately. Values reported for the parameters of 

this model were: K1=0.06, k2=0.16, k3=0.06, k4=0.04. Binding potential was estimated at 1.6 

and relative blood volume (VB) was found to be 7%. It was further observed that for small 

ROIs, and therefore increasing noise in the data, fixing the ratio of K1/k2 to a value 

determined from a whole brain ROI provided the best compromise between accuracy and 

precision of the estimated parameters, due to the reduced number of parameters that required 

to be estimated. Reduction to a simple one-tissue, two-parameter model was also investigated 

but found to provide an inaccurate description of the tracer kinetics. 
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Figure 2.15. Compartmental model for [11C]-R-PK11195 in the normal human brain (Kropholler et al., 2005) 

The model in Figure 2.15 was the first published for the PK11195 tracer in humans, 

and somewhat unusually it appeared after at least seven other studies that had used a 

reference region analysis method to quantify TSPO expression with the tracer. Typically in 

PET, reference region models are validated against compartmental models already 

established. Kropholler et al. (2005) reported some discrepancies between the binding 

potential (BP) values estimated from his plasma input model and those published previously, 

with reference region methods tending to yield lower estimates of binding than the two-tissue 

plasma input model. Possible sources of this discrepancy were identified as a slowly 

equilibrating non-specific binding which inflated the BP for the two-tissue model, and 

possible inclusion of specific binding within the reference region which would tend to 

decrease the BP estimate for those models. 

These issues were further explored (Kropholler et al., 2006; Turkheimer et al., 2007). 

Clustering algorithms that extract the reference tissue TAC from voxels in the brain by 

comparing their shape to a set of pre-determined normal control TAC were employed (Gunn, 

Lammertsma, & Cunningham, 1998) and refined (Turkheimer et al., 2007) and were found to 

provide BP estimates that were well correlated to those determined by plasma input 

modelling. Turkheimer et al. (2007) reported a slowly equilibrating component, thought to 

originate from binding of PK11195 to the TSPO in vascular walls, using their supervised 

clustering analysis. The shape of this kinetic component was found to match that observed in 

a previous study of the canine heart (Charbonneau et al., 1986). Exclusion of these vascular 

voxels from the reference tissue TAC was found to improve the binding estimates in the 

brain.  

2.6.3  TSPO PET with [11C]-R-PK11195: Limitations 

Despite the apparent success of TSPO PET imaging with this tracer, it has several 

important limitations. It has long been recognised that the level of non-specific binding in the 

brain is very high, probably higher than 50% in normal brain tissue (Petittaboue et al., 1991; 
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Shah et al., 1994). High levels of [
11

C]-PK11195 binding to ά1-acid glycoprotein (AGP) in 

human plasma limit the availability of tracer for uptake in the brain. Plasma concentration of 

free tracer over time is also reported to vary between individuals (Banati et al., 2000). 

Because plasma levels of this protein may change during infections and inflammatory 

diseases, it has been identified as the primary cause of the observed variability in kinetic 

behaviour of [
11

C]-PK11195 (Lockhart et al., 2003). This might preclude the application of a 

population average arterial input function, a technique sometimes employed to simplify 

kinetic quantitative analysis of PET data by avoiding arterial blood sampling (Takikawa et al., 

1993; Takikawa et al., 1992). 

Low levels of brain uptake, even in the presence of pathology, and high levels of non-

specific binding in the brain are the most widely discussed limitations of [
11

C]-PK11195 in 

the literature, and it is these limitations that new TSPO tracers are expected to overcome. 

Additionally, the relatively short physical half-life of carbon-11 (20 minutes) is sometimes 

considered a limitation for logistical reasons, since it is not feasible to distribute such short-

lived tracers to remote imaging centres, thereby limiting the application of TSPO PET 

scanning to centres with an on-site cyclotron. The short half-life also precludes imaging at 

times greater than about one hour after injection, and generally means there are fewer counts 

available for collection (i.e. greater relative noise) when compared to fluorine-18 labelled 

tracers (half-life 110 minutes). 

Low brain uptake and short half-life fundamentally limit the image SNR by limiting 

the number of gamma photons available for collection over the brain. Referring again to 

Figure 2.12, Figure 2.13 and Figure 2.14, the high levels of image noise can be readily 

appreciated in the grainy appearance of the coloured [
11

C]-PK11195 binding images from 

each study. 

 High non-specific binding adversely affects image SNR by reducing the amount of 

signal that is related to the process of interest, in this case the density of TSPO expression in 

the brain. The non-specific binding that is observed throughout the brain with [
11

C]-PK11195 

is generally independent of pathology and represents a low spatial frequency ‘background’ 

upon which any useful signal must be superimposed. Low SNR reduces the ability to detect 

more subtle lesions and makes the quantification of TSPO density less precise and possibly 

less accurate (Chauveau et al., 2008; Luus et al., 2010).  
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2.6.3.1  Lesion Detection Problems with PK11195 

Problems with lesion detectability were encountered during the early use of [
11

C]-

PK11195 in humans. Positive findings of increased tracer uptake relative to normal grey 

matter in malignant brain tumours were reported as early as 1989 (Junck et al., 1989). 

However the same group reported no apparent increase in [
11

C]-PK11195 uptake in eight 

patients with a clinical diagnosis of mild to moderate Alzheimer’s Disease, despite observing 

regional brain metabolism changes on FDG PET in same patients (Groom et al., 1995). The 

report also discussed similar negative findings when attempting to image mesial temporal 

sclerosis in patients with medically refractory temporal lobe epilepsy using [
11

C]-PK11195, 

although these data were not published. The authors hypothesised that the levels of microglial 

activation in Alzheimer’s disease and mesial temporal sclerosis were insufficient to be 

detected using their methods. Using previously published autoradiographic data, they 

estimated that only a 2-fold increase in PK11195 binding was occurring in these lesions and 

“that an ~5-fold increase in PBBS density can be readily imaged with [11C] PK11195 and 

PET”… “but not (a 2-fold increase) in vivo, where the unbound and nonspecifically bound 

ligand are greater”. From this it may be inferred that the SNR was insufficient to allow 

detection of the expected brain pathology, due to an unfavourable combination of low 

inherent lesion contrast, small lesion size and high image noise levels. 

In contrast to these findings, a study published six years later showed “significantly 

increased regional [11C](R)-PK11195 binding in the entorhinal, temporoparietal, and 

cingulate cortex” of eight patients with mild to moderate Alzheimer’s disease (Cagnin et al., 

2001). The authors were aware of the previous study’s discordant findings and attributed their 

own success to the use of a more sensitive PET scanner operated in 3D mode, and their use of 

the higher affinity R-enantiomer (mirror-image stereoisomer) of [
11

C]-R- PK11195. Analysis 

of published performance data reveals the PET scanner that was used in the latter study, a 

Siemens ECAT953B, was approximately five times more sensitive at 13.8 cps/Bq/mL than 

the older scanner used in the original study, a Siemens ECAT931 operated in 2D mode, at 2.5 

cps/Bq/mL (Spinks et al., 1992; Spinks, Jones, Gilardi, & Heather, 1988). This means that the 

newer scanner was able to collect about five times as many counts over the same time period 

than the older system, thereby improving the image SNR. The exact improvement in image 

SNR is difficult to quantify, since the newer 3D scanner also had a much higher scatter 

fraction and random coincidence rate, and likely used different data correction and 

reconstruction methods than was used on the earlier system. Also the increase in brain uptake 
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due to the higher affinity R-enantiomer of PK11195 is difficult to predict: published data 

suggest an increased tissue uptake of around 20%, in a photochemically induced ischaemic 

lesion in rat brain, when using the R-enantiomer compared to the racemic ligand. 

2.6.3.2  Image Quantification Problems with PK11195 

High levels of non-specific binding and high levels of image noise is an unfortunate 

combination with respect to deriving accurate kinetic parameters from the [
11

C]-PK11195 

PET data. Noise in the images and TACs limits the accuracy and precision of physiological 

parameter estimation and the complexity of the compartmental model that may be used, and 

is therefore of prime concern when attempting to derive such parameters (Carson, 2003). In 

the case of TSPO imaging, noise has been shown to increase bias in physiological parameter 

estimation for [
11

C]-PK11195 (Yaqub, Boellaard, Kropholler, Lubberink, & Lammertsma, 

2004). The authors conclude that reducing bias in the estimation of parameters such as 

Binding Potential would best be achieved by reducing noise in the TAC. Kropholler et al. 

(2005) demonstrated that bias and variance in the estimation of parameters for [
11

C]-PK11195 

increased with increasing noise when using a reversible two-tissue compartmental model of 

tracer kinetics (Kropholler et al., 2005). However the high noise levels make application of 

the (more complex) four parameter model feasible for large regions of interest only, where 

averaging of image voxels reduces the relative noise substantially.  

Application of reference tissue models, which are typically less sensitive to noise and 

may be applied at the image voxel level, are affected by another unique challenge associated 

with [
11

C]-PK11195: the very low level of ubiquitous TSPO expression in the normal brain 

(Rao & Butterworth, 1997). The specific uptake found in small and medium sized artery 

walls, as well as blood-borne cells and even in the normal brain tissues contributes a 

significant amount to the low level background signal in PET, independent of anatomical 

region (Turkheimer et al., 2007). Indeed, the slowly equilibrating vascular component 

identified by Turkheimer et al. (2007) was found to be responsible for approximately three-

quarters of the total grey matter radioactivity by one hour post injection.  

Calculation of quantitative parameters using reference tissue models requires a region 

of reference, which by definition must be devoid of specific tracer binding (Gunn, 

Lammertsma, Hume, & Cunningham, 1997). Since such a region is difficult to define 

anatomically in the brain with respect to the TSPO, application of the simplified reference 

tissue model is less straightforward than for other PET tracers. Some investigators have used 
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the cerebellum as reference region, acknowledging the potential error this might involve. 

Others have applied a sophisticated cluster analysis method to extract a reference TAC from 

voxels that are identified as having a similar kinetic profile to those of grey matter TACs in 

healthy control subjects. Considerable success has been reported with this method for 

analysing [
11

C]-PK11195 PET studies in humans (Turkheimer et al., 2007) and is preferred 

for clinical application over other methods that require arterial blood sampling due to its non-

invasiveness, and good correlation with TSPO binding parameters derived from the plasma 

input method  (Ratchford et al., 2012; Turkheimer et al., 2007). 

2.6.4  Evaluation of New PET Ligands for the TSPO 

The limitations of the TSPO PET tracer [
11

C]-PK11195 have motivated some 

researchers to investigate new TSPO ligands with better pharmacokinetic properties than 

PK11195. Examples of such ‘second generation’ TSPO PET tracers that have been developed 

and tested recently include: [
18

F]-PBR111, [
18

F]-PBR06, [
11

C]-PBR28, [
11

C]-DPA713, [
18

F]-

DPA-714, [
11

C]-DAA1106, [
18

F]-FEDAA1106 and [
11

C]-CLINME. Between 1984 to 2008, 

one reviewer estimated that over forty ligands for the TSPO had been labelled for SPECT and 

PET imaging with iodine-123, carbon-11 or fluorine-18 (Chauveau et al., 2008). Of these 

ligands, twelve have been investigated in rodents, primates and human subjects as potential 

alternatives to [
11

C]-PK11195 for TSPO PET imaging, between 1999 and 2009 (Luus et al., 

2010).  

Since the primary objective is to find a replacement for [
11

C]-PK11195, potential new 

ligands for TSPO PET are often studied by comparing their performance against PK11195, 

and under the assumption that new ligands bind to exactly the same site as PK11195. It has 

been pointed out by at least one reviewer that this strategy is inadequate, particularly at the 

early screening stage of ligand development, due to the presence of binding sites on TSPO 

other than that to which PK11195 binds (Luus et al., 2010). Evidence for more than one 

binding site on the TSPO for different ligands, and the possibility of additional TSPO binding 

sites found only in activated microglia, suggests that increased uptake in normal brain tissue 

alone is not necessarily indicative of a better ligand for measuring TSPO expression in 

disease. The same authors also point out that, unlike many other PET tracers, evaluation of 

novel TSPO radioligands in the healthy primate or human brain is of limited use, since 

specific uptake is extremely low in the disease-free state.  
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Analysis of radiotracer uptake in rodent models of brain injury is often used as a 

means of comparing novel tracers to [
11

C]-PK11195, where an improvement in lesion to non-

lesion ratio of uptake is usually interpreted as a promising improvement in tracer 

performance. Increases in lesion to non-lesion ratio of uptake of a factor of 1.5 to 2 in a rat 

model of acute neuroinflammation were reported for the second generation TSPO 

radiotracers [
11

C]-DPA-713 and [
18

F]-DPA-714 in comparison to [
11

C]-PK11195 (Chauveau 

et al., 2009). A similar improvement in lesion uptake, using similar rat model methodology, 

was observed for the tracer [
11

C]-CLINME (Boutin et al., 2007).  

Evaluation of [
18

F]-FEDAA1106 uptake in the occipital cortex of one healthy monkey 

showed a six-fold increase in comparison to [
11

C]-PK11195 (Zhang et al., 2004). Although 

this finding relates to a single disease-free primate, it demonstrates one potential advantage of 

this particular tracer over PK11195- a significant increase in brain uptake and therefore a 

potential increase in image signal-to-noise ratio. Similar findings were reported for [
11

C]- 

DAA1097 with a 3.5 to 4-fold increase in uptake in the occipital cortex of a rhesus monkey 

over [
11

C]-PK11195 (Zhang et al., 2006). Evaluation of [
11

C]- PBR01 and [
18

F ]- PBR06 in 

the brains of 3 healthy rhesus monkeys demonstrated an approximately 10:1 ratio of specific 

to non-specific binding to the TSPO (Imaizumi et al., 2007). This group also reported more 

reliable kinetic analysis results with the fluorine-18 labelled PBR06 compound when 

compared to the otherwise similar carbon-11 labelled PBR01, attributing this improvement to 

the longer half-life of fluorine-18 over carbon-11, allowing longer dynamic imaging to be 

performed with less noise at later time points. 

The second generation TSPO radioligand [
11

C]-DPA713 was evaluated in five healthy 

humans and compared to [
11

C]-PK11195 in 2 additional healthy subjects (Endres et al., 

2009). The new tracer was shown to have a factor of 3 higher brain uptake compared to 

PK11195, a finding that was attributed to greater affinity and lower plasma binding of the 

new tracer. 

2.6.5  Population Variation of TSPO Affinity for Second 

Generation Ligands 

Fujita et al. evaluated the TSPO tracer [
11

C]-PBR28 in twelve healthy human subjects 

(Fujita et al., 2008) and found indirect evidence of approximately 25% non-specific binding. 

Quantification using a two-tissue compartmental model was found to best fit the kinetic data, 

despite a simpler one-tissue model having been found to suffice for the same tracer in 
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monkeys (Imaizumi et al., 2007). This finding was attributed to species differences, with 

humans having higher levels of non-specific binding compared to the primates studied. 

However a particularly remarkable finding of this study was the existence of so-called “non-

binders”: two subjects from their cohort of twelve who appeared not to show any specific 

binding of [
11

C]-PBR28 in the brain or TSPO rich organs in the periphery. A similar finding 

had been reported previously for the same radioligand (Brown et al., 2007), with one out of a 

cohort of seven normal subjects showing an apparent absence of specific [
11

C]-PBR28 

binding in the whole body dosimetry study. This phenomenon had not previously been 

reported for other TSPO tracers. 

These studies were followed up with a detailed investigation into the existence of 

“non-binders” (Kreisl et al., 2010), which reported that the absence of specific TSPO binding 

observed in approximately 10% of the scanned subjects was due to very low affinity of [
11

C]-

PBR28 for the TSPO in these “non-binders”. This sub-class or individuals, now referred to as 

the “low affinity binders”, was not evident with [
11

C]-PK11195 (see Figure 2.16). 

 

Figure 2.16. PET projection images from skull vertex to lower abdomen taken at 10minutes after injection. The 

subject identified as a “binder” and the subject identified as a “non-binder” show a similar distribution of [11C]-PK11195 but 

very different distribution of [11C]-PBR28. Uptake of PBR28 in organs known to have a high TSPO density (lungs, heart and 

kidneys) is absent in the non-binder subject, and brain uptake is apparently reduced. [11C]-PBR28 was found to have a very 

low affinity for the TSPO in approximately 10% of human subjects studied. Images taken from Kreisl et al. (2010).  
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Further investigations (Owen, Howell, et al., 2010; Owen, Rabiner, Gunn, Matthews, 

& Parker, 2010; Owen et al., 2011) revealed that this  phenomenon was not restricted to 

[
11

C]- PBR28, but was also evident in the same subjects to some extent for all other second 

generation TSPO tracers in clinical use: [
18

F]-PBR111, [
18

F]-PBR06, [
11

C]-DPA713, and 

[
11

C]-DAA1106. In addition to the existence of “high affinity binders” and “low affinity 

binders”, a third class of “mixed affinity binders” was identified. Two TSPO binding sites 

have been postulated to exist in humans, referred to as the “low affinity binding site” and the 

“high affinity binding site”. Individuals who are “low affinity binders” express only the low 

affinity sites; while those designated “high affinity binders” express only the high affinity 

sites. Individuals who are mixed affinity binders express the high affinity and low affinity 

binding sites in approximately equal number. A single nucleotide polymorphism in the gene 

encoding the TSPO has since been postulated as the likely cause of this phenomenon, and its 

presence is known to vary across different ethnic groups (Owen, 2012). The implications for 

TSPO PET imaging are that changes in measured TSPO binding in-vivo cannot directly be 

attributed to changes in receptor density without knowledge of each subject’s binding class 

and the ligand’s relative affinities for each site. In a simulation study (Guo, 2012) it was 

predicted that the second generation TSPO tracers listed above are still likely to give more 

precise quantitative parameter estimates than [
11

C]-PK11195, but only if the subject’s binding 

class is known a-priori. This information is obtainable from a blood assay or a genetic test 

(Guo, 2012). 

2.6.6  Relationship Between TSPO Tracer Properties, Image 

Noise and Quantification Error 

It may safely be assumed that higher brain uptake and lower non-specific binding will 

reduce relative image noise and improve image quantification for TSPO PET. However given 

the difficulties in measuring image noise, this expected improvement in quantification is also 

difficult to measure. In 2.4.2 it was argued that it might be feasible to use Monte Carlo 

simulations to derive a simple analytical model of image noise that is valid over the range of 

count rates and simulation parameters studied. It was further argued that a model so derived 

would be most useful for the study of dynamic brain scans where the body region remains 

constant and where the count rates are low with respect to the maximum count rate 

performance of the PET system. 
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A typical time-activity curve for [
11

C]-PK11195 in the brain is reproduced below 

(Figure 2.17), as is the count rate response curve for a current generation PET system. It can 

be seen that the range of activity concentrations in the brain for this tracer is well within the 

linear portion of the count rate curve, indicating that tracers such as [
11

C]-PK11195 are 

potentially suitable for analysis with a noise model that ignores the non-linear response of the 

PET system at higher count rates. It might also be possible to incorporate the non-linear count 

rate response of the system into the model, but this would require the Monte Carlo code to 

accurately imitate this aspect of scanner performance, and might also necessitate additional 

simulation runs. 

 

Figure 2.17. Time-activity curve for [11C]-R-PK11195 from Kropholler at al. (2005). The non-decay corrected 

curve (grey line) is relevant to image noise calculations because it is the collected counts at the time of scanning that 

determines the image SNR. 
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Figure 2.18. Noise equivalent count rate (NECR) curves for a modern PET scanner- the Siemens Biograph16 Hi 

Rez (Brambilla et al., 2007). The two curves represent slightly different phantom configurations used in the study from 

which this graph was taken. In either case the NECR curve is approximately linear below about 10 kBq/mL activity 

concentration. 

The possibility therefore exists to use Monte Carlo simulation tools to derive a 

formula that describes the relationship between collected counts and image noise for brain 

radiotracers of similar distribution properties to [
11

C]-PK11195. The model would be valid 

for a given set of conditions corresponding to those of the simulation and subsequent data 

processing methods, including: scanner geometry, spatial resolution, sensitivity, head 

phantom properties, and data correction and image reconstruction algorithm. This model 

would allow rapid calculation of the image voxel or region SNR for a range of existing or 

hypothetical TSPO tracers, at any time after injection and for any arbitrary frame duration. 

2.7  Summary 

In comparison to the reference radiotracer [
11

C]-PK11195, higher levels of brain 

uptake and higher ratios of specific to non-specific binding characterise the so-called second 

generation of TSPO PET tracers. Although PK11195 has been applied with success to 

quantify the TSPO in the human brain, new tracers are expected to show an improvement in 

image signal-to-noise ratio with corresponding improvements in the precision of image 

quantification and also lesion detectability. In addition, new ligands that are labelled with the 

longer-lived fluorine-18 are expected to yield some improvement in image signal-to-noise 

ratio over carbon-11 labelled tracers, particularly at later imaging times post injection. 

Logistical factors favouring the production and distribution of fluorine-18 over carbon-11 
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radiotracers are also cited as desirable characteristics of any new TSPO agent (Arlicot et al., 

2012).  

The issue of variation in TSPO binding affinity within the population, which seems to 

affect many second generation TSPO radiotracers, is essentially a nuisance from an imaging 

point-of-view. It requires that information of a subject’s binding class be known before the 

full benefit of the new TSPO tracers can be exploited. Such information may be obtained 

from a blood assay or genetic test prior to PET, although low affinity binders- around ten per 

cent of the population- would likely not be suitable for scanning with some radiotracers 

having extremely low affinity to the “low affinity binding sites”, such as [
11

C]- PBR28. 

Nonetheless, if subject binding class is known, then most second generation TSPO PET 

tracers are still likely to perform better than [
11

C]-PK11195. 

Clearly, increasing tracer uptake in the brain will bring about a reduction in relative 

image noise, which will translate into better precision of binding parameter estimates when 

using non-linear least squares fitting methods, and less bias in the case of the linear fitting 

methods. Reductions in non-specific binding will allow more precise determination of 

binding potential for any method, and possibly improve the minimum detectable increase or 

decrease in TSPO expression. However, reducing the complexity of the compartmental model 

used to describe the interaction of tracer and tissue also has the effect of reducing parameter 

estimate variability. If novel radiotracer ‘B’ is accurately described by a simple one-tissue 

model, it should yield more reproducible measurements of binding parameters when 

compared to radiotracer ‘A’, which has similar tissue uptake and noise levels, but is  better 

described by a more complex two-tissue model. In this example, tracer ‘B’ should also be 

more suitable for analysis with the simplified reference tissue method, since this model 

assumes that the one-tissue compartmental model is appropriate. 

Recent developments in Monte Carlo simulation software for PET, and their 

applicability to the latest generation of inexpensive personal high-performance computer 

clusters, provide a tool to study the image signal-to-noise ratio in a range of PET scanning 

scenarios. Recent reports in the literature and preliminary calculations suggest that it should 

be feasible to generate a limited number (around forty to fifty) of repeat simulations for 

several different count levels from a realistic human brain phantom, at count rates commonly 

encountered in dynamic TSPO PET scanning. This will enable an analytical model describing 

image SNR under typical scanning conditions for TSPO PET tracers in the human brain to be 
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developed and validated, and therefore allow predictions to be made on the potential 

improvements in image quantification that might be expected with other hypothetical TSPO 

tracers. 
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Chapter 3 A Low Cost Computer Cluster for 

Estimating Image Noise in PET 

Recent advances in commodity computer hardware, open source operating systems 

and software have enabled the development of high performance computer clusters of very 

low cost and physical size (Adams & Brom, 2008; Becker, 1995). At the same time, the 

evolution of Monte Carlo software packages has made well validated positron emission 

tomography (PET) and single photon emission computed tomography (SPECT) simulation 

tools available to a broader range of applications. Preliminary calculations based on 

published data, and discussed in 2.4.2 above, have suggested the feasibility of performing 

around forty to fifty repeated simulations of a low count rate neuro-receptor dynamic brain 

PET scan, with realistic modelling of the count statistics, attenuation and scatter, within a 

reasonable time frame, using a modern computer cluster. Fifty repeat data acquisitions has 

been shown to provide an adequate number of independent samples for the estimation of PET 

image noise, at very low count levels, via bootstrap resampling techniques (Lartizien et al., 

2010). 

The overarching motivation for this work was to use Monte Carlo simulation as a tool 

to study the signal-to-noise ratio of dynamic 18 kilodalton (18kDa) Translocator Protein 

(TSPO) PET scans of the human brain. To this end, the potential of two high performance 

computing systems that were operated external to the university and were available for 

research use were investigated. Both were high performance computer clusters dedicated for 

scientific research and were shared by multiple users. The first cluster was located away from 

the university campus and could be accessed via a remote terminal login only. Resources 

were allocated in units of ‘central processing unit (CPU) core hours’ and in six month cycles 

to a number of users, for a broad range of scientific projects, on a competitive basis. An 

approximate total of one million CPU core hours was available per six month cycle on this 

system. The second cluster was also located remote from the campus, was dedicated to 

GEANT4 Monte Carlo radiation transport simulations, and was shared amongst a small 

number (< 10) of users within a single laboratory. Negotiation for use of the second cluster’s 

resources was done on a less formal basis than for the first system. No remote access was 

possible with the second cluster. 
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Pilot investigations showed that both the systems described above were inadequate for 

the tasks outlined in 1.2 Calculations based on published performance data for the first cluster 

revealed that the computational resources were sufficient (less than 5% of total available CPU 

hours over a six month cycle were required), however the large data output file sizes of the 

PET simulations posed problems with storage space and file transfer from the larger cluster. 

No actual PET simulations were conducted on this system. Meanwhile, a series of successful 

PET simulations were carried out on the second cluster using the GEANT4 Application for 

Tomographic Emission (GATE). However, calculations revealed that memory and CPU 

capacity on the smaller cluster was insufficient to allow completion of the project within a 

reasonable time frame (see appendix 7.2). These initial experiences, combined with recent 

innovations in low-cost computer cluster design, motivated the building of a dedicated cluster 

to meet the needs of this research. 

3.1  Feasibility of Designing and Building a Low Cost 

High Performance Computing Cluster 

3.1.1  Aim 

The aim of this work was to determine the feasibility of designing and building a 

computer cluster to be used as a tool to study the signal-to-noise ratio of dynamic TSPO PET 

scans of the human brain. To this end, a series of design objectives for the cluster were set as 

follows:  

 The system must be capable of simulating a realistic dynamic [
11

C]-PK11195 

PET scan of the human brain, of sixty minutes duration, including attenuation 

and scatter modelling, without the use of variance reduction acceleration 

methods. 

 The total simulation time, including up to fifty independent repeats for each 

frame, must be six weeks or less. 

 The total equipment cost must be AUD 10,000 (Australian dollars) or less. 
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3.1.2  Equipment 

3.1.2.1  GEANT4 Application for Tomographic Emission 

The GEANT4 Application for Tomographic Emission (GATE) Monte Carlo 

simulation package (Jan et al., 2004) was selected to meet the needs of this research. This 

choice was justified based on the following considerations: 

 GATE is a software tool developed specifically for the Monte Carlo simulation 

of medical imaging systems: PET, SPECT and more recently, CT (Buvat & 

Lazaro, 2006; Jan et al., 2011). 

 GATE is controlled using a ‘macro’ script language, and does not require any 

specialised programming expertise. 

 GATE is open source, free of charge and currently maintained by the 

international ‘OpenGATE’ collaboration. 

 GATE is based on well validated physics models and a general purpose particle 

physics Monte Carlo software package: GEANT4, which stands for Geometry 

and Tracking (Agostinelli et al., 2003). 

 Several real-world PET systems have been modelled using GATE, and GATE 

has been shown to provide output data in good agreement with real-world PET 

systems (Bataille, Comtat, Jan, & Trebossen, 2004; Jan, Comtat, Strul, Santin, 

& Trebossen, 2005; Karakatsanis et al., 2006; Lamare, Turzo, Bizais, Le Rest, 

& Visvikis, 2006). 

 Recent versions of GATE incorporate an acceleration technique known as 

‘fictitious interactions’, which has been shown to provide an order of 

magnitude acceleration whilst preserving the statistical properties of the output 

data (Rehfeld et al., 2009). 

Two potential drawbacks of the GATE software are mentioned in several of the reports 

cited above: simulations are slow to run in comparison to some other Monte Carlo codes, and 

spatial resolution is consistently underestimated by GATE modelled PET systems. However, 

methods to overcome these limitations have been reported, including the application of a 

detector blurring kernel during simulation to address the resolution issue, the above-

mentioned fictitious interactions scheme, and the use of multi-core computer clusters to 

accelerate the simulations (De Beenhouwer et al., 2005; De Beenhouwer, Staelens, 

Vandenberghe, & Lemahieu, 2007; De Beenhouwer et al., 2006). 
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3.1.2.2  Desktop Computer: Hardware Components and Operating 

System 

Components for a single desktop computer system were chosen from the catalogues of 

several local computer retailers. Consideration was given to the various options available at 

the time of purchase, and components with an apparently favourable cost-to-performance 

ratio were selected. Specifically, CPU, random access memory (RAM) modules and hard disk 

drive components were selected such that the ratios of CPU clock speed to cost, CPU clock 

speed to power consumption and memory capacity to cost were maximised. At the time of 

assembly, quad-core CPUs appeared to provide the best performance to cost ratio, under the 

assumption that a quad-core CPU is approximately four times faster than a single core CPU.  

The following table (Table 3.1) lists the hardware details of the desktop computer that 

was assembled for this system. To aid comparison with the literature cited on the costs of 

various high performance computing systems, historical exchange rate data for the Australian 

dollar (AUD) and the United States Dollar over the period this study was conducted is given 

in appendix 7.3. 
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Table 3.1 Hardware details of single desktop computer system. Scientific Linux is a free-of-charge operating 

system based on ‘Enterprise Linux’ and put together by Fermilab (http://www.fnal.gov/) and CERN 

(http://public.web.cern.ch/public/). 

Component Manufacturer / Model / Description 

Motherboard ASUS M4A77TD AM3 

CPU Manufacturer Advanced Micro Devices Inc. (AMD) 

CPU Model Phenom II X4 945, 3.0GHz clock speed, 4 x cores 

CPU cache memory 8 Mbytes 

CPU power  rating 95 W 

RAM (total) installed 8 Gbytes 

RAM type Double Data Rate type 3 Synchronous Dynamic RAM (DDR3 

SDRAM) RAM clock speed 1333 MHz 

Hard Disk Drive 500 Gbytes 

Power supply rating 380 watts (430 watts peak) 

Operating system Scientific Linux, Version 5.5, 64bit 

System assembly date May 2010 

Total cost of system AUD 817.92 

The total cost reported does not include a monitor, keyboard or mouse, which were 

acquired free-of-charge from derelict equipment elsewhere. Additional components not listed 

included a metal ‘tower’ case, graphics card and Compact Disc Drive, which were included 

in the hardware package negotiated with the supplier. 

3.1.2.3  Digital Brain Phantom 

In order to provide a realistic simulation of the human brain, a digital phantom that 

accurately models the normal human anatomy from the top of the head to the base of the 

brain is required. The publicly available anatomical model from the McGill University, 

McConnell Brain Imaging Centre 

(http://brainweb.bic.mni.mcgill.ca/brainweb/anatomic_normal.html) was chosen for this 

purpose. Details of the construction of this digital model are described in Collins et al. 

(1998). In brief, this model was derived from multiple co-registered MRI scans of a single 

http://brainweb.bic.mni.mcgill.ca/brainweb/anatomic_normal.html
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adult subject, with low noise and high spatial resolution, and consists of a three-dimensional 

array of 181x217x181 isotropic elements, each of 1 mm
3
 volume (Collins et al., 1998). Each 

element is coded with one of ten discrete integers representing the tissue class associated with 

that location. Ten tissue classes are included in the model: air, cerebrospinal fluid (CSF), grey 

matter, white matter, fat, muscle, skin, skull, glial tissue in ventricles and other soft tissue. 

Representative transverse and sagittal planes of the digital phantom for several tissue classes 

are shown below in Figure 3.1. 

 

Figure 3.1. Digital anatomical model of the adult human brain from the McGill University McConnell Brain 

Imaging Centre. Representative transverse (top) and sagittal (bottom) slice is shown for selected tissue classes. A total of ten 

tissue classes are included in the model. Tissue classes are non-overlapping in this version of the model. 

Padding of the digital model with zero-value elements was done to facilitate 

resampling at a later stage. Some artefactual structures lying external to the head (probably 

associated with the MRI scan from which the model was derived) were removed. The voxel 

values and spatial organisation of the tissue classes within the model were not altered from 

the original version in any way. The final dimensions of the model were: 212 x 264 x 212 

voxels, with voxel dimensions of 1 mm x 1 mm x 1 mm. Manipulation of the model and 

preparation of subsequent phantoms were carried out using the Interactive Data Language 

software package, version 8.1).  

Voxel number and volumes for the ten tissue classes in the final version of the digital 

model are listed in the table below. The total volume of the phantom, including the air outside 

the head, was approximately 11.9 litres, while the total tissue volume was approximately 3.85 

litres. 
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Table 3.2. Voxel number and volume (absolute and relative) for each tissue class of the digital model. 

Voxel 

Value 

Tissue Class Number of 

Voxels 

Volume (mL) % Total Phantom 

Volume 

0 Air 8 017 392 8017 67.6 

1 CSF 357 602 358 3.013 

2 Grey Matter 902 492 902 7.61 

3 White Matter 674 669 675 5.69 

4 Fat 128 428 128 1.082 

5 Muscle 513 751 514 4.33 

6 Skin 531 313 531 4.48 

7 Skull 473 654 474 3.99 

8 Glial Matter 5 987 5.99 0.0505 

9 Other Tissue 259 928 260 2.19 

 

3.1.2.3.1  Attenuation Phantom  

In order to model the transport of photons through matter during the simulations, a 

digital phantom that models the physical properties relevant to photon interactions with 

matter was required. Included with the GATE software is a material database that contains 

information on density and elemental composition for a variety of materials that are relevant 

to particle simulations. Voxels in the digital model corresponding to the tissue class ‘skull’ 

were assigned the material ‘skull’ from the GATE materials database.  Voxels of tissue class 

‘air’ were assigned the material ‘air’ from the database. All other tissue classes in the model 

(grey matter, white matter, fat, muscle, skin and CSF) were assigned the material ‘water’ 

from the database, which was assumed to closely match the attenuation properties of all soft 

tissues at 511 keV.  

To study the influence of attenuation phantom size on simulation speed, a second 

phantom was prepared by resampling the original anatomical model to a 2 mm isotropic 

voxel size.  Representative transverse slices of each attenuation phantom are shown below in 
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Figure 3.2. Reducing phantom size is known to speed up photon tracking in GATE (Rehfeld 

et al., 2009), and the monotonous distribution of attenuation coefficients in soft tissue and air 

regions in the attenuation phantom means that the lower spatial resolution is unlikely to 

adversely affect the photon tracking through these regions. 

 

Figure 3.2. Representative transverse slice through the attenuation phantoms generated by assigning each tissue 

class in the digital model one of three material types from the GATE material database: air, water or skull. A high resolution 

attenuation phantom was generated using the original model with 1 mm isotropic voxel size. A second lower resolution 

phantom (right) was generated by resampling the original model down to 2 mm isotropic voxel size. 

3.1.2.3.2  Emission Phantom 

An emission phantom was prepared by assigning a radioactivity concentration of 10 

kBq/mL to each voxel in the digital brain model, except for those classified as ‘air. The total 

activity within the phantom was 38.48 MBq, distributed evenly throughout all soft tissues and 

skull voxels. The emission phantom was constructed to provide a total emission rate at the 

higher end of that expected for TSPO brain PET scans. Unlike the attenuation phantom, 

resampling of the emission phantom to 2 mm voxel size was not considered because 

preservation of the fine structural details, particularly the grey-white matter interfaces, is 

potentially more important for modelling realistic radiotracer distributions in the brain. 

3.1.2.4  PET Scanner Description 

A GATE macro script describing the Philips Allegro™ PET scanner was prepared 

using a published description of this system (Surti & Karp, 2004), and a previously validated 

GATE model for the Allegro (Lamare et al., 2006) as guides. The script is reproduced in 

appendix 7.4. Key performance attributes of this system that have been modelled here 

include: 

 Detector dimensions: 4 mm x 6 mm x 20 mm 
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 Detector material: Gadolinium Oxyorthosilicate (GSO) 

 Axial filed-of-view: 18 cm 

 Crystal-to-crystal ring diameter: 86.4 cm 

  Energy resolution: 18% at 511 keV 

 Photopeak window: 420 keV – 700 keV 

 Coincidence timing window: 6.5 ns 

 Dead time model: paralysable, 210 ns 

3.1.2.5  GATE Software Installation 

GATE software version 6.0 was downloaded from the website of the international 

OpenGATE collaboration (http://www.opengatecollaboration.org/) and installed on the single 

desktop computer system described above.  

3.1.3  Method 

Using the desktop PC system, software and digital phantoms described above, a series 

of short duration PET simulations were carried out using the GATE software package, 

version 6.0. PET acquisitions were set to run for 0.15 seconds acquisition time on a single 

computing core only. The actual time taken to run the simulation was measured using the 

operating system clock. Care was taken not to run any other programs during the tests that 

might interfere with the performance of the simulation, other than the default operating 

system applications. The time taken to initialise the simulations within GATE was measured 

in separate tests for each tracking algorithm and phantom size, and subtracted from the 

reported execution times. The average percentage of free memory used during each 

simulation, as reported by the operating system software, was recorded for each run.  

All four tracking algorithms available in this version of GATE were investigated: the 

original tracking in GATE, known as the ‘parameterized box matrix’ algorithm; the ‘regular 

matrix’ algorithm; the ‘compressed matrix’ algorithm and the ‘fictitious interactions’ 

algorithm. There were two attenuation phantoms studied: low resolution 2 mm isotropic 

voxels, and high resolution 1 mm isotropic voxels. The same digital brain phantom with the 

uniform source distribution, containing 1 mm isotropic voxels was used for all experiments. 

Particle tracking options within GATE were selected to allow tracking of photoelectric 

and Compton scattered photons using the ‘standard’ energy electromagnetic physics package, 

which produces relative interaction cross-section errors of less than 10% for photons above 

http://www.opengatecollaboration.org/
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100 keV (Jan et al., 2004). Secondary electrons and x-rays were not simulated. Positrons 

were not simulated, but rather the back-to-back photon option was used to simulate the 511 

keV annihilation photons. This last choice meant that any effects on image resolution or noise 

due to non-zero positron range were ignored. Simulation of positron interactions was 

expected to add significantly to the execution time, and was therefore not included. 

3.1.4  Results 

Results for each combination of tracking algorithm and attenuation phantom size are 

shown in Table 3.3 below. Initialization time for each simulation varied between 11 seconds 

and 41 seconds, depending on the phantom size and which tracking algorithm was used, and 

has been subtracted from the execution times reported below. 

Table 3.3. GATE simulation time results for each combination of tracking algorithm and phantom size. PET 

acquisition time was constant for each simulation at 0.15 seconds. 

GATE Tracking 

Algorithm 

Attenuation 

Phantom 

Voxel Size 

Execution 

Time (min) 

Initialization 

Time (min) 

Memory 

Usage 

Parameterized Box Matrix 1 mm 274 0.68 27.5 

Parameterized Box Matrix 2 mm 140 0.22 19.4 

Compressed Matrix 1 mm 101 0.27 18.3 

Compressed Matrix 2 mm 83 0.18 18.2 

Regular Matrix 1 mm 32.4 0.28 20.4 

Regular Matrix 2 mm 25.0 0.18 18.4 

Fictitious Interactions 1 mm 16.1 0.28 20.4 

Fictitious Interactions 2 mm 13.3 0.18 18.5 

 

3.1.5  Discussion 

The above timing tests reveal an order of magnitude difference between the fastest and 

the slowest tracking algorithms available in GATE, for the phantom and source distributions 
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tested. This finding is consistent with that reported by Rehfeld et al. (2009), who reported a 

PET simulation speedup of about an order of magnitude, for a similar phantom, using the 

fictitious interactions algorithm. Reducing spatial sampling of the attenuation phantom from 

1 mm to 2 mm results in a 50% reduction in execution time when using the slowest tracking 

algorithm (parameterized box matrix), and around a 20% reduction in execution time when 

using all other tracking algorithms. 

Initialization times, which are independent of the actual length of the simulation, 

varied considerably, but were all much less than 1 minute: a time frame that is not considered 

to be significant with respect to the likely execution times of most PET simulations. Based on 

these findings, the most efficient tracking algorithm for simulations of similar design to the 

one studied here is ‘fictitious interactions’, with the 2 mm attenuation phantom sampling. 

A total of 5.77x10
6
 511 keV photon pairs were simulated during the above timing test 

(3.848x10
7
Bq x 0.15 s) over a period of 798 seconds for the most efficient tracking algorithm 

reported above. This is an average simulation rate of 7.23x10
3
 photon pairs per second 

achieved on a single CPU core. It should be noted that the actual simulation time for a long 

dynamic PET scan will be affected by a wide range of factors not explicitly studied in this 

experiment, including the time course of radioactivity simulated within the phantom, 

radioactive decay and the duration of the scan. Nonetheless, for a given distribution of 

radioactivity and attenuating matter, and for a given PET scanner geometry, the execution 

time is expected to be proportional to the number of photon pairs simulated.  

Since the aim of this work was to design a system capable of simulating a dynamic 

[
11

C]-PK11195 scan of 60 minutes duration with 50 independent repeats, further calculations 

were carried out to relate the findings of this timing experiment to these requirements. The 

details of these calculations are presented in appendix 7.5, where it is estimated that the 

simulation of an hour long dynamic [
11

C]-PK11195 scan requires the simulation of 

approximately 2.23x10
10

 photon pairs in total. At the average rate of 7.23x10
3
 photon pairs 

per second calculated above, this would take approximately 35.7 days to complete on a single 

CPU. To meet the target of completing 50 repeated simulations within 6 weeks would 

therefore require approximately 43 CPU cores, incurring a hardware cost of approximately 

AUD 9,000 (for example: 11 quad-core CPU systems x AUD 818), using the components 

tested above. 
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This extrapolation ignores the extra time and disk storage that might be associated 

with splitting the simulation and merging the output for a multi-core cluster. Nor does the 

cost calculation include the Ethernet switch and wires required to connect such a system 

together. Nonetheless, these findings support the general feasibility of building a system that 

meets the design goals outlined in 3.1.1. 

Memory usage was highest for the parameterized box matrix tracking algorithm with 

the 1 mm resolution phantom at 27.5% of available memory, which equated to approximately 

1.76 Gbytes on this system- the operating system consumed approximately 1.4 Gbytes. 

GATE memory usage was reduced to 19.4 % (1.24 Gbytes) when using the lower resolution 

attenuation phantom. Memory usage was consistently around 20% for all other tracking 

algorithms, and was reduced to around 18% when using the lower resolution phantom with 

these algorithms.  

Memory usage below 25% on this system is preferable, since the system uses a quad-

core CPU. If four independent Monte Carlo simulations are to be run simultaneously using 

this CPU, then each simulation must consume less than 25% of the available memory in order 

for all four simulations to run concurrently. These results therefore suggest that, for the 

simulation scenario studied here, a total of 6.5 Gbytes of RAM per CPU is the minimum 

memory capacity required for a cluster system built on quad-core CPUs such as this one, 

provided the parameterized box matrix is not used with a 1 mm voxel phantom. In more 

general terms, a total of around 1.24 Gbytes of memory must be available for each computing 

core in order to run concurrent simulations of the type studied here. This applies to all 

tracking algorithms and voxel sizes studied here, with the exception of the parameterized box 

matrix/1 mm voxel combination. 

3.1.6  Conclusions 

Overall, the results of this experiment suggest that a high performance computer 

cluster constructed of commodity components, consisting of around 11 quad-core CPUs and 

8 Gbytes of RAM per CPU may be constructed for less than AUD 10,000 as of May 2010. 

This system is expected to take approximately 6 weeks to simulate an hour long [
11

C]-

PK11195 dynamic PET scan of the brain with 50 independent repeats per frame. 
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3.2  Investigation of the Effects of Gamma Discard 

Energy Settings on Execution Time and Scanner 

Count Rate Response in GATE 

3.2.1  Introduction 

Selection of the fictitious interactions photon tracking algorithm in GATE allows the 

user to specify a gamma photon discard energy. When a simulated gamma photon within the 

phantom drops below this energy (following scattering interactions in matter) it is discarded 

altogether from the simulation. This feature only applies within the phantom, not the 

detectors. Use of this feature has the potential to speed up the simulation by preventing GATE 

from spending time tracking low energy photons that are likely to be rejected by the 

simulated pulse-height analyser (PHA), and are therefore unlikely to contribute to the final 

image. 

However, selecting an inappropriately high discard energy setting could adversely 

affect the statistical properties of the output data by removing scattered photons that might 

still be accepted by the PHA. Scatter fractions could therefore be affected. In addition, all low 

energy photons that reach the detector must still be processed by the (simulated) detector and 

electronics before reaching the PHA, thereby contributing to system dead-time. Removal of 

low energy photons therefore has the potential to affect the count rate response of the 

simulated scanner, and must be carefully investigated for simulation scenarios that involve 

relatively high phantom activity, or that require highly realistic modelling of the scanner’s 

count rate response. 

3.2.2  Aim 

The aim of this experiment was to investigate the effects of gamma discard energy 

settings on the execution time, observed energy spectrum and observed count rates (true 

coincidence, random coincidence, and scatter coincidence rates) at different source activity 

levels within the simulation of a brain PET scan using GATE. 

3.2.3  Equipment 

The same equipment described in 3.1.2 was used for this experiment. Namely: one 

single desktop PC running GATE version 6.0 and a digital phantom of the human head 

modelling the attenuation and source distribution. For this experiment, the digital source 
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phantom contained a uniform radioactivity distribution throughout the soft tissues of the 

head, while the total radioactivity within the phantom was varied between 5 MBq and 60 

MBq. The GATE macro describing the Philips Allegro™ PET scanner (see appendix 7.4) was 

used for all simulations. 

3.2.4  Method 

All simulations were performed with the fictitious interactions tracking algorithm 

switched on. Thirteen different gamma discard energy settings were investigated: 0 keV, 10 

keV, 50 keV, 100 keV, 150 keV, 200 keV, 250 keV, 300 keV, 350 keV, 400 keV, 450 keV, 500 

keV and 510 keV. Five different source activity levels were also investigated: 5 MBq, 10 

MBq, 20 MBq, 40 MBq and 60 MBq. All simulations were run for a minimum total of 7x10
4
 

true coincidence counts. The total number of random coincidence counts ranged from 2.8x10
3
 

to 3.3x10
4
. The total number of scattered coincidence counts ranged from 4.4x10

2
 up to 

3.8x10
4
. The following information was recorded for each simulation: true coincidence rate, 

random coincidence rate, scatter coincidence rate and single event rate. 

An additional series of simulations were conducted with the 20 MBq source phantom 

only. For each gamma discard setting, the energy spectra of the photons emitted from the 

phantom, as measured by all the simulated PET detectors, was recorded. A minimum total of 

1x10
6
 single events were acquired per discard setting. 

A third series of simulations were conducted with the 20 MBq source phantom only. 

For each gamma discard setting, a PET scan of 1 minute duration was simulated and the 

execution time was recorded. This series of timing tests was performed separately to the other 

two series because the data output method used in the first two simulations to obtain the 

count rate and energy spectrum data (ASCII text output), was different to that used for most 

other simulations (sinogram output), and was found to have some effect on execution time. 

3.2.5  Results 

Full tabulated results from this experiment are presented in appendix 7.7. 

Figure 3.3 shows the relationship between true coincidence rate and phantom activity 

for a selection of different gamma discard energy settings. It may be seen that discarding 

photons from the simulation had a more noticeable effect at high activity levels; with an 

apparent increase in sensitivity to true coincidences as discard energy was increased. 
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Figure 3.3. True coincidence rates versus source activity for different gamma discard settings (keV). Discarding 

low energy photons has a more noticeable effect at high activity levels, causing an apparent increase in sensitivity to true 

coincidences. 

Figure 3.4 plots the change in true coincident count rate, relative to the count rate at 

zero gamma discard energy, as a function of gamma discard energy for each phantom activity 

level. Discarding photons of 100 keV or lower energy from the simulation resulted in less 

than 1.3% change in trues rate even at high activity levels. A positive bias in the trues rate 

was observed for gamma discard energy settings over 100 keV, with the trues rate error 

increasing as a function of discard energy in an approximately linear fashion for all phantom 

activities. Above 150 keV discard energy, the higher activity phantoms showed a consistently 

greater error than the lower activity phantoms at each discard setting. 
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Figure 3.4. Relative true coincidence rate versus gamma discard setting (keV) for different source activities. True 

coincidence count rate is relative to the trues rate at 0 keV discard setting. 

Figure 3.5 plots the rate of random coincidences versus the phantom activity for a 

selection of gamma discard energy settings. As might be expected, the randoms rate increased 

with increasing source activity. As for true coincidences, discarding photons from the 

simulation produces a more noticeable effect at higher activity levels. 

 

Figure 3.5. Random coincidence rates versus source activity for different gamma discard settings (keV). 
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Figure 3.6 plots the change in random coincident count rate, relative to the count rate 

at zero gamma discard energy, as a function of gamma discard energy for each phantom 

activity level. Discarding photons of 200 keV or lower energy from the simulation resulted in 

less than 5% error in the observed randoms rate at all activity levels, with a possible negative 

bias at low source activities. Above 200 keV and under 400 keV discard settings, the error in 

the randoms rate took on a positive bias for phantom activities above 20 MBq, while the error 

remained low for phantom activities under 20 MBq. Above 400 keV discard setting, error 

rates increased rapidly with an apparent negative bias. 

 

Figure 3.6. Relative random coincidence rate versus gamma discard settings (keV) for different source activities. 

Random coincidence count rate is relative to the randoms rate at 0 keV discard setting. 

Figure 3.7 shows the relationship between scattered coincidence rate and phantom 

activity for a selection of different gamma discard energy settings. For gamma discard energy 

settings of 500 keV and above, the scatter count rate was markedly reduced. 
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Figure 3.7. Scattered coincidence rates versus source activity for different gamma discard settings (keV). 

Figure 3.8 plots the change in scattered coincident count rate, relative to the count rate 

at zero gamma discard energy, as a function of gamma discard energy for each phantom 

activity level. A slight positive bias of 3.5% or less was seen in the scatter rate at 100 keV 

discard energy setting for all phantom activity levels. Above 100 keV discard setting the 

positive bias rose rapidly for the higher activity phantoms, peaked around 350 keV then 

dropped rapidly to a negative bias. Error remained at less than 5% for the low (5 MBq and 10 

MBq) activity phantoms up to 400 keV discard setting then dropped rapidly to a negative bias 

along with the high activity phantoms.   
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Figure 3.8. Relative scattered coincidence rate versus gamma discard setting (keV) for different source activities. 

Scatter coincidence count rate is relative to the scatter rate at 0 keV discard setting 

Figure 3.9 shows the energy spectra as recorded by the simulated PET scanner for six 

different gamma energy discard settings. All spectra are displayed with a bin width of 5 keV. 

All photons emitted from the head phantom that were incident on the simulated detectors are 

included. Removal of low energy photons from the simulation altered the appearance of the 

energy spectrum, most obviously at lower energies. A slight effect was also observed within 

the photopeak region: the height of the 511 keV photopeak was increased slightly for lower 

energy discard settings and reduced with the 500 keV discard setting. It should be noted that 

the gamma discard energy setting in GATE applies only to photons tracked through the head 

phantom and does not apply to photon interactions with the detectors.  
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Figure 3.9. Gamma energy spectra of photons (singles) recorded by the simulated PET scanner for six different 

gamma discard energy settings. The simulated scanner had an energy resolution of 18% at 511 keV. Gamma photon removal 

applied only to photons being tracked through the phantom and not the detectors.  

Execution times for each gamma discard setting are shown in Table 3.4 below. 

Simulated PET acquisition time was 1.0 seconds and the 20 MBq source phantom was used. 

Initialization time, which was approximately 11 seconds in each case, was not included in the 

reported execution times. 

Table 3.4. Execution times for each gamma discard energy setting for a 20MBq source phantom and 1.0 second 

simulated PET acquisition. 

Discard Energy (keV) Execution Time (min) 

0 48.0 

10 48.0 

50 47.1 

100 46.5 

150 44.25 

200 42.8 

250 41.0 

300 40.0 

350 38.8 

400 37.4 

450 35.7 

500 33.9 

510 33.3 
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3.2.6  Discussion 

Absolute counting rate errors associated with the use of the gamma discard function in 

GATE were less than 5% for all discard settings of 100 keV or lower, at brain phantom 

activity levels of 60 MBq or less. Above 100 keV discard setting, absolute errors of greater 

than 5% were observed, especially at higher source activity levels. These findings would 

seem to counsel against the use of a gamma discard setting above 100 keV for GATE 

simulations in which high fidelity of count rate response and scatter fractions is required. 

The observations with respect to true coincidence count rates can be explained on the 

basis of system dead time effects. GATE models the system energy resolution and event 

processing electronics, including the system dead time. The apparent increase in sensitivity to 

true coincidences as discard energy is increased is likely due to a reduced count rate burden 

on the system at lower energies. Low activity levels in the phantom, which are already 

associated with lower count rate burdens, therefore produce smaller apparent gains in 

sensitivity as discard energy is increased. The same effect may be seen in the energy spectra 

in Figure 3.9, where the spectra for gamma discard energies of 100 keV to 400 keV show an 

increased photopeak height compared to the zero discard photopeak. It should be noted that 

‘true’ coincidences here are defined as those coincidence events identified in the GATE 

simulation as originating from single 511 keV photon pair, and having not undergone a 

scattering interactions prior to detection. Therefore true coincidences in this context do not 

include scattered or random coincidences. 

The effects of discard energy setting on random and scattered coincidence rates is 

probably a combination of the dead-time effects noted above, and (at higher discard energies) 

the direct removal of photons that would otherwise have been accepted by the PHA. The 

lower energy PHA threshold on the simulated scanner was set to 420 keV (Philips Allegro 

default setting), and the energy resolution was set to 18% at 511 keV. Therefore the removal 

of photons greater than about 350 keV resulted in a direct loss of counts that would have been 

accepted by the PHA as valid, due to the limited energy resolution of the detectors. This 

effect may also be seen in the energy spectra in Figure 3.9, where a reduced photopeak height 

is apparent for the 500 keV gamma discard setting. 

Execution time analysis revealed only a small advantage to the use of the gamma 

discard function. Removal of all photons less than 511 keV from the simulation was found to 

reduce execution time by approximately 30%. However the significant distortions in 
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observed count rates would seem to make the use of such high discard settings imprudent for 

the purposes of most simulations. At the discard energy setting of 100 keV, a time saving of 

approximately 3% was achieved. 

3.2.7  Conclusions 

Given the small error levels associated with the use of 100 keV discard settings in this 

experiment (less than 3.6% absolute error at all phantom activity levels studied and less than 

2.4% error at phantom activities under 20 MBq), the use of 100 keV gamma discard setting 

might be justified for this combination of phantom geometry, source activity range and 

scanner parameters. Although the reduction in execution time is expected to be very modest 

at approximately 3%, over a very long simulation- for example 20 days- this equates to a time 

saving of around 14 hours, which might still be of practical benefit in some circumstances.  

Discarding photons of 250 keV energy or greater from simulations involving high 

count rates relative to the system dead-time is likely to introduce errors greater than 10%, 

even if the discard energy setting is well below the lower level energy discrimination 

threshold. Therefore the use of the gamma discard function in GATE should either be 

avoided, or validated for each combination of expected phantom activity, discard energy 

setting, system dead time setting, coincidence timing window, energy resolution, photopeak 

window width and attenuation phantom. 

3.3  Design and Assembly of a Low Cost High 

Performance Computer Cluster 

3.3.1  Introduction 

In 3.1, the feasibility of designing a computer cluster that meets the needs of this 

research project (see 3.1.1 for specific cluster design goals) was demonstrated. This section 

discusses in detail the design and assembly of this computer cluster. 

3.3.2  Components and Budget for the High Performance 

Cluster 

A computer cluster consisting of 10 nodes was assembled using the same components 

as listed in Table 3.1. The single CPU system assembled from these components, described in 

3.1.2.2 and employed for the two experiments described above, was also added to the cluster, 

and designated the ‘head node’. The remaining 10 nodes were designated the ‘computing 
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nodes’. Therefore, the cluster contained a total of 11 nodes and 44 computer cores. The 

components and budget for the 10 compute nodes are given in Table 3.5 below. 

Table 3.5. Components and costs for the 10 ‘compute nodes’ of the computer cluster. All components were sourced 

from a local metropolitan computer component supplier in May 2010. Prices were inclusive of 10% Goods and Services Tax, 

and delivery to the university campus. 

Component Quantity Total Cost (AUD) 

Motherboards 10 1865.10 

CPUs 10 919.10 

memory (2GByte RAM chips) 40 2920.00 

Video Cards 10 400.00 

Hard Disk Drives 10 680.00 

Network Switch (1Gbps, 16 port) 1 130.00 

Power Supply Units 10 700.00 

Ethernet Cables 15 70.00 

Materials (wood, nails, screws, glue, 

sandpaper, polyurethane wood 

finish, nuts & bolts, grounding 

wires, electrical tape) 

 250.00 

 Total Cost: AUD 7934.20 
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Figure 3.10. Principal hardware components of one node of the high performance cluster, including: a motherboard, 

CPU, memory modules, power supply unit. The network switch that allowed communication between the nodes is also 

shown at the rear. 

Adding the component cost of the original ‘head node’ to the component cost of the 10 

nodes detailed above, the total component cost of the cluster was AUD 8,752, including 10% 

retail taxes. Additional components used but not listed in the budget included: an Ethernet 

expansion card, a desktop computer monitor, a keyboard, a mouse, 2 multi-outlet power strips 

and 2 power usage meters with overload and surge protection functionality. These items were 

recycled from obsolete or derelict equipment in the laboratory. Tools used during the 

construction of the cluster, also not listed in the budget, included: various screw drivers, 

pliers, an adjustable spanner, a power drill fitted with 6 cm and 3 cm circular cut-out pieces, a 

hammer, a paint brush and paint thinner. Approximately 50% of the wooden components used 

to construct the supporting framework of the cluster were sourced from the ‘cut-offs’ bin at 

the local hardware shop, and attracted only a minimal cost. 

Labour costs were not explicitly included in the above budget. Design and assembly of 

the cluster was carried out by the author over a period of approximately 6 weeks. Multiplying 

this student’s weekly average scholarship by 6 yields an approximate labour cost of AUD 

3,400, bringing the total cost of building the computer cluster to AUD 12,152. 

3.3.3  Design and Assembly of the High Performance Cluster 

Design of the computer cluster followed closely the design principles of the 

Microwulf cluster (Adams & Brom, 2008), described in 2.5.3. The following section outlines 

the design features of the cluster and the methods used for its assembly. Particular emphasis 
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is given to those areas of the cluster’s design that deviate substantially from the Microwulf 

cluster of Adams and Brom. 

Wood was chosen as the material to provide structural support for the cluster because 

it was low cost, readily available in scrap form and could be manipulated safely with simple 

tools for which no further training or supervision was required. Specifically, 9 mm thick 

plywood sheets of size 90 cm x 60 cm were chosen to provide the surface on which to mount 

the motherboards and all other components. To improve the structural rigidity of the large 

plywood sheets, hardwood beams of 4 cm x 1.8 cm x 90 cm were attached to the perimeter of 

the plywood sheets using barbed nails and wood glue. The reinforced platforms were then 

sanded to remove splinters and sharp edges and, to facilitate the later attachment of 

components with adhesive products, a polyurethane wood finish was applied. A total of four 

platforms were constructed in this way. Three of the platforms had holes of 3 cm or 6 cm 

diameter drilled at various locations to allow the passage of power and communications 

cables between levels. Legs were added, with adhesive felt pads attached to the lower ends of 

the legs to dampen any vibrations from the computer equipment and to minimise damage to 

the bench top on which the cluster was positioned. Altogether, the wooden supporting 

structure of the cluster measured 90 cm x 60 cm x 90 cm. 
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Figure 3.11. Wooden supporting structure for the cluster, with first five motherboards installed on lower level. 

Holes allowing cables to pass through to adjacent levels may be seen on the second and fourth levels. 

Although the cluster has been referred to as ‘desktop’ in scale, this cluster was 

designed to be as large and open as the physical space available on the laboratory bench top 

would permit. Because the cluster was operated in a general use laboratory rather than a 

dedicated computer room, quietness of operation was a design priority. No additional cooling 

fans were installed beyond the small fans already incorporated into the power supply units 

(PSUs) and CPUs, therefore a larger open design was required to allow air to flow between 

the four levels. Ease of access to the hardware was also considered a design priority, to allow 

a hard reset of the boards if required, and to allow monitor and keyboard cables to be attached 

to the motherboards as necessary, without the need for additional switching hardware. For 

these reasons, a space of at least 20 cm was allowed between each level. 

Each computing node consisted of one motherboard, a power supply unit (PSU), a 

quad-core CPU, 8 Gbytes of memory and a 250 Gbyte hard disk drive. Each node’s operating 

system and associated files were stored on its own local hard disk. This allowed for faster 

booting and resetting of individual nodes as required, and did not require increasing the 

physical size of the cluster. All other directories and applications, including GATE, were 

shared from the head node, and were accessed by each computing node via a network file 
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system (NFS). Unlike the computing nodes, the head node was mounted inside a 

conventional computer case, and was configured with a CD drive, monitor, keyboard and 

mouse. 

Three power strips were included in the cluster, which drew power from two separate 

wall sockets. Although it might have been possible to run the cluster from one wall socket 

(later testing under full load revealed a total power consumption of approximately 1500 

watts, or approximately 66% of maximum permissible wall-socket load) two separate sockets 

were available in the laboratory, so the power supply to the cluster was shared between the 

two outlets in approximately equal proportion. 

Motherboards were mounted on two of the four wooden platforms using adhesive 

plastic standoffs. Five motherboards were mounted on the lower level and another five on the 

third level. Each hard disk drive was placed adjacent to the motherboard to which it was 

attached. The second level of the cluster contained five PSUs: one for each board on the 

lower level. The network switch and one power strip was also located on the second level. 

The fourth (top) level contained another five PSUs and another two power strips. Each 

motherboard and each hard disk drive was grounded to the metal casing of its corresponding 

PSU using insulated electrical wire and alligator clips. 

 

Figure 3.12. Close-up view of motherboard mounted on wooden platform. Adhesive plastic standoffs were used to 

attach the motherboards to the platforms. Grounding of the motherboards, usually achieved via the metal screws that fix the 

board to the metal case of a desktop PC, was achieved using separate electrical wires and alligator clips (not shown here). 

The following diagrams illustrate the layout and construction of the computer cluster 

described in the above paragraphs. 



107 

 

 

Figure 3.13. Schematic diagram showing the layout of the principal hardware components of the cluster at each 

level. Holes of 6 cm and 3 cm diameter were drilled at various locations to allow the passage of power cables, Ethernet 

cables and grounding wires between adjacent levels. 

 

Figure 3.14. Schematic diagram of the cluster as viewed from the front. The head node was housed inside a 

conventional computer case and contained the same principal hardware components as the compute node. Each node booted 

from its own hard disk drive. All software and files, other than those associated with the operating system, were shared via a 

network file system from the head node. 

A single Ethernet switch was used to provide all inter-node communications. The 

performance of the switch was rated at 1 gigabit per second (1Gbps). Inter-node 
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communication speed has historically been the ‘weak-link’ of the Beowulf-type cluster, with 

the speed of commodity network hardware typically lagging behind available CPU clock 

speeds and memory capacity (Becker, 1995; Gropp, 2003; Sterling et al., 1998). It is for this 

reason that clusters tend to perform poorly at computations requiring frequent or large data 

transfers between nodes, while performing well at more ‘granular’ tasks, such as Monte Carlo 

simulations.  

It has been suggested (Adams, 2012) that for a cluster to be considered ‘balanced’, the 

input/output communication speed in bits per second should be equal to the clock speed of 

the CPU in hertz and the memory capacity in bytes. For the cluster design presented here, this 

is certainly not the case, with the CPU operating at 3 GHz, with 2 Gbytes of memory per core 

and 1 Gbps of network bandwidth for each quad core CPU. Therefore, this cluster is out of 

balance by a factor of 12 with respect to computation speed and communication bandwidth (3 

GHz x 4 cores per CPU). It is somewhat more balanced with respect to computation speed 

and memory, but still weighted 3:2 in favour of computation speed. Although unbalanced, 

this cluster was designed for the sole purpose of large scale Monte Carlo PET simulations, of 

the type presented in this chapter. The results of these experiments demonstrated that 2 

Gbytes of memory per computer core was sufficient for this purpose, regardless of 

computation speed. Given that Monte Carlo simulations are well suited to simultaneous and 

independent execution, and do not normally require any inter-node communication, the 

limited communication bandwidth of this cluster was deemed an acceptable design 

compromise. 

Many clusters employ job management software to distribute tasks between nodes and 

perform load-balancing; however no such software was used on this cluster. Instead, 

independent Monte Carlo simulations, usually expected to run for several days or weeks, 

were split into jobs of approximately equal computational load directly by the user prior to 

execution. Jobs were then distributed via remote login software that was available within the 

operating system. Job splitting and merging software was available within the GATE 

package, however in the software version used it was not fully compatible with the data 

output format chosen for these experiments and was not used. In instances where output data 

had to be summed from multiple computer cores, this was done off-line with user-written 

code, and generally represented only a small fraction of the total simulation time. For this 

reason, conventional benchmarking of the cluster’s floating point operation performance was 

not done. 
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To allow outside network access, an additional Ethernet card was installed on the 

motherboard and connected to the campus network. A schematic representation of the 

network layout for this cluster is presented in Figure 3.15. 

 

Figure 3.15. Schematic network diagram of the computer cluster. The head node contained an additional network 

card for access to the external campus network. 

 

Figure 3.16. Completed computer cluster. The head node (black computer case) may be seen behind the wooden 

structure containing the ten computing nodes. 
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3.3.4  GATE Installation and Validation 

GATE was installed on desktop PC used for the initial timing and memory 

experiments described in 3.1.2.5. This PC became the head node of the cluster, and all 

computing nodes accessed exactly the same GATE program and associated libraries from the 

head node via a shared file system.  

To assess the validity of the installation, two benchmark simulations are provided 

within the GATE software package: the SPECT benchmark and the PET benchmark. 

Reference output data for both benchmark tests are provided with the GATE distribution. The 

results obtained from both benchmark simulations on the head node confirmed the validity of 

the GATE installation. They are presented in appendix 7.6. 

3.3.4.1  Performance Assessment of the Computer Cluster  

The performance of the 40 computing cores (10 x quad-core nodes) relative to each 

other was assessed using a simulation task similar to the one described in the above timing 

experiments, and using the digital attenuation and emission phantoms described in 3.1.2.3.1 

and 3.1.2.3.2. A total of 10.26 MBq of activity was distributed within the grey matter, white 

matter, skin, muscle and other soft tissue voxels of the digital emission phantom, yielding an 

average tissue concentration of 2.67 kBq/mL. A PET scan of 15 seconds duration was 

simulated using the fictitious interactions tracking algorithm and 100 keV gamma discard 

energy. The simulation was run simultaneously, with different random number generator 

seeds, on each of the 40 computing cores of the cluster. For each simulation, the execution 

time, total prompt coincidences, total scattered coincidences and total random coincidences 

were recorded. Total power consumption and memory usage of the cluster under full 

computational load was also measured. 

Results of this test are presented in the plots below (Figure 3.17, Figure 3.18, Figure 

3.19 and Figure 3.20). The coefficient of variation (standard deviation divided by the mean) 

for prompt, scattered and random coincidence counts collected was 0.11%, 0.25% and 0.84% 

respectively. Coefficient of variation for execution time was 0.97%, with one noticeable 

outlier, which returned an execution time ≈ 3 standard deviations longer than average. 

However, this ‘slow’ core produced prompt, random and scattered coincidence totals that 

were all within ± 1 standard deviation of the corresponding mean values, suggesting that the 

cause of its reduced speed did not affect the accuracy of the simulation. No correlation was 

observed between execution time and total prompt counts (r = -0.19). 



111 

 

Setup time for each simulation was approximately 12 seconds, during which time the 

computer core would load the GATE software and all input data from the head node via the 

network and initialise the simulation. At the end of each simulation, a burst of network 

activity lasting approximately 3 to 4 seconds was observed as the output data (3 sinograms of 

≈119 Mbytes each plus 6 text files of ≤ 1 kilobyte each) were written out to the hard disk on 

the head node. To avoid network holdups and potential errors, a conservative delay of 15 

seconds was imposed between the start each simulation on different cores, leading to 

approximately 10 minutes delay between the start of the simulation on the first and the last 

core. This job splitting overhead was considered insignificant in comparison to the expected 

length of the simulation; therefore full optimization of this aspect of the cluster’s operation 

was not investigated further. 

 

Figure 3.17. Execution time for the brain phantom simulation on 40 computing cores. Average = 361.3 minutes 

(straight line). 
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Figure 3.18. Total prompt coincidence events for the brain phantom simulation on 40 computing cores. Average = 

1,335,424 counts (straight line). 

 

Figure 3.19. Total scattered coincidence events for the brain phantom simulation on 40 computing cores. Average = 

269,249 counts (straight line). 
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Figure 3.20. Total random coincidence events for the brain phantom simulation on 40 computing cores. Average = 

17,499 counts (straight line). 

Sample sinogram data output from the test simulations are displayed below in Figure 

3.21. The 3D sinograms have been summed over all planes and trimmed to include only the 

head phantom for display clarity. The prompt sinogram demonstrates a distribution of counts 

in accordance with that expected from the digital phantom properties used for this test. No 

correction has been made for attenuation or detector efficiency normalization, and these 

effects are evident in the prompt sinogram as a reduced level of counts in the central region of 

the projection profiles (attenuation), and a diagonal ‘crosshatch’ pattern of varying counts 

throughout the sinogram (geometric efficiency variation). As expected, the scatter sinogram 

reveals a background of scattered events that is present across the entire field-of-view, 

peaking around the central regions of the projection profiles where the object is located. Also 

as expected, the random coincidence sinogram shows a distribution of events that appears 

unrelated to the spatial distribution of activity in the phantom. 
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Figure 3.21. Sinogram output data from one core of the test simulation. Sinogram data are summed over all planes 

and normalised to the maximum value for display purposes. 

Power consumption of the entire cluster at full computational load was measured at 

1430 watts with the monitor switched off, and 1500 watts with the monitor on. Memory 

consumption at full load, including operating system requirements, was 59.2 Gbytes or 74% 

of total installed memory. 

The average simulation rate achieved during the above test was 7.1x10
3
 photon pairs 

per second per core, which is 1.8% slower than the rate achieved on the single CPU core of 

the head node during previous testing (see 3.1.5). A whole-cluster simulation rate of 2.84x10
5
 

photon pairs per second was achieved when all 40 cores were in use. Interestingly, this is 

approximately 36 times slower than ‘real-time’ for the 10.26 MBq head phantom tested here 

(1.026x10
7
/2.84x10

5
 ≈ 36), suggesting that if the computational speed of the individual 

computer cores were to increase by a factor of ≈ 36, or if a PET simulation could be 

efficiently parallelized over a cluster of ≈ 1500 current generation computer cores, then it 

might be possible to simulate the PET data at the same output rate as a real system.  

Referring to the calculations in appendix 7.5, it is estimated that the simulation of an 

hour long dynamic [
11

C]-PK11195 brain PET scan requires approximately 2.23x10
10

 photon 

pairs, which would take 21.8 hours on 40 CPU cores. Completion of 50 independent repeats 

could theoretically be accomplished in approximately 45 days, assuming negligible 

overheads due to job splitting and data output merging. If 40 repeated simulations were 

considered sufficient for the purpose of estimating image noise in a PET scan, then this could 
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be easily implemented on this cluster by running the complete scan simulation independently 

on each core. For the above mentioned dynamic brain simulation task, this would take an 

estimated 36 days. Each core would run an identical and complete (0 to 60 minutes scan) 

simulation; therefore data merging and load-balancing problems could be largely avoided.  

3.3.5  Conclusion 

A computer cluster was constructed consisting of 10 computing nodes (40 CPU cores) 

and one head node (4 CPU cores). The cluster was capable of running a Monte Carlo 

simulation using the GEANT4 Application for Tomographic Emission software package, 

including modelling of the attenuation and emission source geometries of the human head. 

Simulations were run on all 40 computing cores simultaneously, with comparable execution 

times and output results from each core. A peak simulation rate of 2.84x10
5
 photon pairs per 

second for a human brain PET simulation, including voxelized emission and attenuation 

phantoms, was achieved. By extrapolation, the total simulation time for a typical 1 hour 

[
11

C]-PK11195 PET scan would be ≈ 21.8 hours on 40 computer cores. To the best of the 

author’s knowledge, this is the first report of a Microwulf-style computer cluster built 

specifically for medical imaging related Monte Carlo simulations. 
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Chapter 4 Estimating Image Noise in PET using 

Monte Carlo Simulations 

In the previous chapter, a computer cluster was designed and built, capable of running 

a Monte Carlo simulation of the dynamic acquisition of a [
11

C]-PK11195 positron emission 

tomography (PET) study, with 40 independent repeats, within a time frame of less than 6 

weeks. This chapter details the development and validation of a model that describes the 

image noise found in dynamic 18 kilodalton (18kDa) Translocator Protein (TSPO) positron 

emission tomography (PET) scans, including the design of a realistic PET scanner model, the 

estimation of image noise by repeated measurements and the fitting of an analytical noise 

model to the data. 

4.1  Simulation of a Realistic PET System Using GEANT4 

Application for Emission Tomography 

4.1.1  Introduction 

Simulation of a PET scan within the GEANT4 Application for Tomographic Emission 

(GATE) software requires a complete description of the scanner’s geometry and electronics. 

Considerable flexibility exists within GATE to describe the PET geometry, which may 

correspond closely to an existing real-world system, or to a hypothetical system with no real-

world equivalent.  

In order to provide meaningful estimates of image noise, a generic PET tomograph 

with geometry and performance characteristics that closely matched those of current 

generation clinical PET systems was implemented in GATE. Evaluation of the performance 

characteristics of the simulated scanner was carried out using simulated equivalents of the 

standard against which clinical PET scanners are currently tested: the National Electrical 

Manufacturers Association NU 2-2007 (National Electrical Manufacturers Association, 

2007). This section describes the application of these NEMA tests to the simulated PET 

scanner, and presents the results. Comparison is made with a selection of contemporary 

clinical PET scanners. 
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4.1.2  Aim 

The aim was to develop a PET scanner model within the GATE software package that 

closely matched the performance of current generation PET scanners in terms of spatial 

resolution, sensitivity, scatter fraction and noise equivalent count rate (NECR). 

4.1.3  Equipment 

The following equipment was used: 

 High performance computer cluster, described in 3.3 . 

 GEANT4 Application for Tomographic Emission (GATE) version 6.0 

 Software for Tomographic Image Reconstruction (STIR) version 2.1 

(Thielemans et al., 2012). 

 IDL version 8.1 (Exelis Visual Information Solutions, Boulder, Colorado) 

4.1.4  Method 

4.1.4.1  Simulated PET Scanner and Detector Electronics Description 

A cylindrical full-ring PET scanner was described using the GATE macro language. 

The detectors of the simulated scanner were modelled after the Siemens Biograph 16 HI-REZ 

(Siemens Healthcare, Knoxville, TN, USA), as described in (Brambilla et al., 2005) and the 

event processing electronics were modelled after the Siemens Pico-3D™ detector electronics 

(Martinez, Bercier, Schwaiger, & Ziegler, 2006), also found on the Biograph 16 HI-REZ. 

However, the inter-block spacing and non-cylindrical geometry of the Biograph were not 

modelled exactly in the simulated system. The GATE macro describing the scanner geometry 

is reproduced in appendix 7.8 and the macro describing the event processing electronics is 

described in appendix 7.9. 

Key characteristics of the geometry of the simulated PET scanner are summarised in 

Table 4.1 below, along with the corresponding characteristics of several modern commercial 

PET systems: the Siemens Biograph 16 HI-REZ (Brambilla et al., 2005), the older Siemens 

Biograph equipped with a CPS ECAT Accel tomograph (Erdi, Nehmeh, Mulnix, Humm, & 

Watson, 2004), the Philips (Philips Medical Systems,) Gemini TF (Surti et al., 2007) and the  

GE (General Electric Medical Systems) Discovery STE (Teräs, Tolvanen, Johansson, 

Williams, & Knuuti, 2007). 
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Table 4.1. Geometrical characteristics of the simulated PET scanner, and four current clinical PET scanners. All 

real-world scanners listed here are whole body clinical PET/CT systems that are or have been available commercially since 

2003. All PET tomographs are based on the block detector design, with the exception of the Philips Gemini which uses a 

pixelated Anger logic detector module. *LSO = lutetium oxyorthosilicate; LYSO = lutetium yttrium oxyorthosilicate; BGO = 

bismuth germanate. 

Characteristic Simulated 

Scanner 

Siemens 

Biograph 16 

HI-REZ 

Siemens 

Biograph 

(Accel) 

Philips 

Gemini TF 

GE 

Discovery 

STE 

Detector 

material* 

LSO LSO LSO LYSO BGO 

Detector 

dimensions (mm) 

4 x 4 x 20 4 x 4 x 20 6.45 x 6.45 x 

25 

4 x 4 x 22 4.7 x 6.3 x 30 

Detector 

block/module 

configuration 

13 x 13 

detectors 

13 x 13 

detectors 

8 x 8 

detectors 

23 x 44 

detectors 

8 x 6 

detectors 

No. detectors 

(total) 

24 336 24 336 9 216 28 336 13 440 

No. detector rings 39 39 24 44 24 

Detector ring 

diameter (cm) 

86.07 83.0 82.4 90.34 88.6 

Axial FOV (cm) 16.87 16.2 16.2 18.0 15.7 

Acquisition mode 3D 3D 3D 3D 2D & 3D 

 

The geometrical characteristics of the simulated scanner are comparable with the real-

world systems listed in Table 4.1. The block configuration of the simulated scanner is 

modelled after the Biograph 16 HI-REZ scanner. A feature of the Biograph PET system is 

that the outer ring detectors tilt inwards towards the axial centre of the tomograph. This is 

expected to have negligible effect on sensitivity, therefore to simplify image reconstruction 

and data corrections for the simulated scanner; this feature was not included in the simulated 

system. For this reason, the ring diameter and axial field-of-view differ slightly between the 
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simulated system and the Biograph 16; however they are well within the range of the other 

PET systems listed. Unlike the Biograph 16, the detectors modelled in the simulated scanner 

are arranged cylindrically, and the inter-block gaps are the same length as the inter-crystal 

gaps, again to simplify the image reconstruction procedures. 

Scanner operating specifications for the simulated scanner are summarised in Table 

4.2 below, along with the corresponding specifications of the same four PET systems listed in 

Table 4.1. 

Table 4.2. Scanner operating specifications of the simulated PET scanner and four current clinical PET scanners. 

NA = reliable information not available. 

Characteristic Simulated 

Scanner 

Siemens 

Biograph 16 

HI-REZ 

(Pico3D™) 

Siemens 

Biograph 

(Accel) 

Philips Gemini 

TF 

GE Discovery 

STE 

Energy 

resolution 

15% 15% 18% 11.5% 17% 

Energy 

window 

425 – 650 keV 425 – 650 keV 350 – 650 keV 440 – 665 keV 425 – 650 keV 

Timing 

resolution 

500 ps 500 ps 2 ns 585 ps 4.875 ns 

Coincidence 

timing window 

4.5 ns 4.5 ns 6 ns 6 ns 9.3 ns (3D) 

Dead time 136 ns 136 ns 336 ns NA NA 

 

The event processing characteristics of the simulated system were modelled closely 

after the Siemens Pico-3D™ electronics (Martinez et al., 2006), as found on the Biograph 16 

HI-REZ scanner. Event processing parameters such as coincidence timing window and 

energy resolution are somewhat dependent on the light decay properties of the scintillator 

crystal, therefore the Pico-3D™ system represents a suitable model for simulating a scanner 

based on LSO detectors. Two of the systems listed above (Biograph 16 and Gemini TF) are 

capable of time-of-flight measurement, however this functionality was not included in the 
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simulated model due to the added complexity of image reconstruction and the limited benefit 

that time-of-flight confers on human brain studies with current detector technology and 

timing resolutions (Eriksson et al., 2005). 

All prompt coincidence events (i.e. all coincidence events regardless of their origin) 

were sorted into a 3D sinogram using the GATE sinogram output module. A delayed 

coincidence window was applied during all simulations to provide an estimate of the random 

coincidences, and these data were stored in a separate sinogram. Scattered coincidence events 

were identified by GATE during the simulation and stored in a third sinogram. Corrections 

for randoms and scatter were applied off-line using methodology described in 4.2. Sinograms 

were trimmed prior to storage to include only the central 28 cm of the transaxial (x,y) field-

of-view, resulting in final sinogram dimensions of 131 projection profile elements, 312 

projection angles and 1521 planes. No axial or angular compression of the 3D sinogram data 

was applied at this stage. 

4.1.4.2  Spatial Resolution Performance Measurement 

Spatial resolution of the simulated scanner was measured via a series of point source 

simulations. A small spherical source of 1 mm diameter and 3.0 MBq activity was simulated 

in air. Simulated acquisition time was 120 seconds per scan, which ensured a minimum total 

of 10
6
 coincidence events per scan. Six simulations were performed with the point source 

located at the following positions relative to the axial (x,y) and transaxial (z) centre of the 

scanner:  

Table 4.3. Locations of the simulated point source measurements relative to the axial and transaxial centre of the 

scanner. 

x (cm) y (cm) z (cm) 

0 1 0 

0 1 4 

0 10 0 

0 10 4 

10 0 0 

10 0 4 
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Images were reconstructed using version 2.1 of the open source ‘Software for 

Tomographic Image Reconstruction’ (STIR) package. Delayed and scattered events were 

subtracted from the 3D sinogram data prior to reconstruction. Correction for geometrical 

detector sensitivity variations was applied using a 3D sinogram normalization matrix for the 

simulated scanner (described in 4.2). Images were reconstructed using the 3D filtered back 

projection algorithm with a ramp filter and a zoom factor of 2. The 24 most oblique sinogram 

segments- from a total of 77 segments- were discarded from the data prior to reconstruction. 

Image matrix dimensions were 131 x 131 x 77 voxels. Voxel dimensions were 0.889 mm x 

0.889 mm transaxially and 1.084 mm axially. 

The full width at half maximum (FWHM) and full width at tenth maximum (FHTM) 

in two transverse directions (x and y) and in the axial direction (z) was calculated for each 

point source image by interpolation of the point spread profile. Summation of the profiles 

from two adjacent slices was done prior to measuring the FWHM and FWTM according to 

the method recommended by NEMA (Daube-Witherspoon et al., 2002; National Electrical 

Manufacturers Association, 2007). 

4.1.4.3  Sensitivity Performance Measurement 

Sensitivity of the simulated scanner was measured using an adaptation of the NEMA 

method for sensitivity measurement of PET systems. A line source containing 2.0 MBq of 

activity was simulated, with diameter 1.0 mm and length 70 cm. No attenuating material 

(except the detectors) was included in the simulation. An acquisition of 60 seconds duration 

was simulated with the line source placed parallel to the axial (z) direction and centred axially 

and transaxially in the scanner. A second acquisition was simulated with the line source 

displaced 10 cm in the transaxial (x) direction. Source decay was included in the simulation 

with a half-life of 6586 seconds, corresponding to that of the radionuclide fluorine-18. A 

minimum total of 5x10
5
 prompt coincidence events were collected during each simulation 

and the random coincidence rate was <1%.  

The NEMA NU 2-2007 standard requires the use of concentric cylindrical metal 

sleeves, with separate acquisitions performed as the sleeves are progressively added or 

removed, allowing the effects of attenuation to be fully accounted for by linear regression 

(Bailey, Jones, & Spinks, 1991). Since it is possible within GATE to simulate a line source 

entirely free from attenuation, and because the addition of attenuating material increases the 

execution time of the simulations, the aluminium sleeves were not included in the simulation, 
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and the sensitivity was measured directly from the line source simulation with no attenuating 

material between the source and the scanner.   

4.1.4.4  Scatter Fraction Performance Measurement 

Scatter fraction of the simulated scanner was measured using an adaptation of the 

NEMA method for scatter fraction measurements of PET systems. A line source was 

simulated containing 1.0 MBq activity, of diameter 3.2 mm and length 70 cm. The line source 

was embedded in a polyethylene cylinder of diameter 20 cm and length 70 cm and positioned 

parallel to the phantom axis 4.5 cm off-centre. The polyethylene phantom and line source 

were positioned in the transaxial centre of the scanner, oriented parallel to the long axis (z) of 

the scanner and centred axially. The rate of random coincidences was <1%. The global scatter 

fraction (SF) was calculated as follows: 

ST

S
SF


            (17) 

where S is the total number of scattered events, and T is the total number of true events.  

The NEMA scatter analysis method, which estimates the scatter contributions to each 

projection profile and slice by extrapolating the scatter ‘tails’ across the region of the line 

source, was not employed here due to the practical difficulties in obtaining a sufficiently long 

simulated acquisition time with the scatter phantom. Instead, global scatter within the 

trimmed sinograms (28 cm transaxial FOV) was obtained from a relatively short simulated 

acquisition containing a total of 2x10
6
 prompt coincidences. The scattered events were 

identified directly in GATE as non-random coincidence events originating from photons that 

had undergone one or more scattering interactions within the phantom, and were therefore 

considered to be an entirely accurate measure of the global scatter. 

4.1.4.5  Count Rate Performance Measurements 

Counting rate performance parameters were measured by extending the scatter 

fraction method above (4.1.5.3) in a manner similar to the NEMA method for measuring 

count rate performance. Twenty-eight simulations were carried out with different source 

activities in the polyethylene scatter phantom, ranging from 1 MBq to 990 MBq, 

corresponding to a range of phantom activity concentrations from 0.045 kBq/mL to 45 

kBq/mL. A minimum total of 9x10
5
 prompt coincidence events were collected during each 

simulation. Total scattered coincidence events were identified directly in GATE as for the 
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scatter fraction measurement described above (4.1.4.4) and total random coincidence events 

were estimated using the delayed coincidence timing window. The rate of collection for true, 

random and scattered coincidence events was calculated for each phantom activity 

concentration. The noise equivalent count rate was calculated for each phantom activity 

concentration as recommended in the NEMA protocol: 

randomsscattertrues

trues

RkRR

R
NECR

.

2


         (18) 

where Rsubscript refers to the corresponding true, random or scattered count rates, and k is a 

parameter taking a value of 1 if a noiseless randoms correction method is used, or a value of 

2 if a noisy estimate of the randoms is used for data correction. 

4.1.5  Results 

4.1.5.1  Spatial Resolution 

Sample images reconstructed from the point source simulation, with corresponding 

axial and transaxial profiles are shown below in Figure 4.1.  

 

Figure 4.1. Reconstructed image of point source (1 cm radial offset, 0 cm axial offset), with corresponding 

transaxial profile and axial profile. Image is magnified by a factor of 2.5 for display. 

The results of the spatial resolution measurements for the simulated PET scanner are 

presented below in Table 4.4. 
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Table 4.4. Spatial resolution results for each source position. 

Source 

position 

(xcm,ycm,zcm) 

Tangential 

FWHM 

(mm) 

Tangential 

FWTM 

(mm) 

Radial 

FWHM 

(mm) 

Radial 

FWTM 

(mm) 

Axial 

FWHM 

(mm) 

Axial 

FWTM 

(mm) 

(0,1,0) 5.23 10.39 5.84 11.68 5.14 9.03 

(0,1,4) 5.26 10.46 5.89 11.93 5.80 10.35 

(0,10,0) 5.35 10.22 5.49 9.91 5.97 11.48 

(0,10,4) 5.31 10.10 5.58 10.33 6.79 10.88 

(10,0,0) 5.35 10.25 5.50 9.91 5.97 11.49 

(10,0,4) 5.34 10.14 5.76 10.85 6.71 9.88 

 

Averaged results for radial, tangential and axial resolution are presented in Table 4.5 

below. 

Table 4.5. Summary of spatial resolution results. 

Average tangential FWHM at 1 cm (mm) 5.25  

Average radial FWHM at 1 cm (mm) 5.86 Average at 1 cm = 5.56 

Average tangential FWHM at 10 cm (mm) 5.34  

Average radial FWHM at 10 cm (mm) 5.58 Average at 10 cm = 5.46 

Average axial FWHM    (mm) 6.06  

 

4.1.5.2  Sensitivity 

Results from the sensitivity measurement of the simulated scanner are presented 

below in Table 4.6. 
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Table 4.6. Sensitivity results. No attenuating material was included around the simulated line source. 

0 cm offset 10 cm offset 

Prompts = 734 539 Prompts = 770 984 

Delayed events = 5277 Delayed events = 5204 

True coincidences = 729 262 True coincidences = 765 780 

Acquisition time = 60s Acquisition time = 60s 

Source activity (30s decay) = 1.99979 MBq Source activity (30s decay) = 1.99979 MBq 

Sensitivity = 6.08 kcps/MBq Sensitivity = 6.38 kcps/MBq 

 

4.1.5.3  Scatter Fraction 

The scatter fraction of the simulated scanner was measured to be 36.8%. A total of 719 

341 out of 1.95644x10
6
 prompt coincidences were identified during the simulation as having 

undergone one or more scattering interactions prior to detection. The random coincidence rate 

was estimated at 0.35% of the total prompt rate, and was ignored for this calculation. 

4.1.5.4  Count Rate Performance 

The count rate performance results are plotted below in Figure 4.2. Figure 4.3 shows 

the same data limited to phantom concentrations below 10 kBq/mL. Within the range of 

phantom activities studied, the count rate response of the simulated scanner did not reach a 

peak before the highest activity concentration studied (45 kBq/mL); therefore the peak count 

rates occur at this concentration for all curves. Figure 4.4 shows count rate performance data 

for three of the commercial systems described above, for comparison. 
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Figure 4.2. Counting rate test results. Noise equivalent count rate (NECR) is shown for k=1 which corresponds to a 

noiseless randoms correction, and k=2 which corresponds to a noisy randoms correction. The count rate scale (y-axis) is 

limited to a maximum of 700kcounts/s to allow better appreciation of the curves. 

 

Figure 4.3. Counting rate test results for phantom activity concentration up to 10 kBq/mL only. 
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Figure 4.4. Counting rate performance data for the Siemens Biograph 16 HI REZ (top left), Philips Gemini TF 

(bottom left) and the GE Discovery STE (right). Data for the Siemens and GE systems courtesy of Dr Roger Fulton, 

University of Sydney. Data for Philips system from (Surti et al., 2007).  

4.1.6  Discussion 

Spatial resolution of the simulated scanner was measured at 5.56 mm FWHM at 1 cm 

radial offset and 5.46 mm FWHM at 10 cm radial offset. Axial resolution was slightly higher 

(worse) at 6.06 mm. Although the 10 cm offset resolution is generally expected to be worse 

than at 1 cm due to parallax effect, this was not evident with these data, however the 

tangential component of the resolution was slightly worse at 10 cm as expected. 

Scatter fraction and sensitivity were measured using a modification of the NEMA NU-

2 2007 protocols that enabled the measurements to be made with greater computational 

efficiency in GATE. The concentric aluminium sleeves normally used during the 

measurement of absolute sensitivity were not included in the simulation, and the method of 

calculating scatter fraction was simplified to take advantage of the information about scatter 

that is available during a GATE simulation. The NEMA recommended methods are intended 

to overcome the confounding effects of source attenuation and the difficulties inherent in 

measuring scattered events in real-world PET systems, however these effects may be 

accounted for exactly within GATE, allowing both the direct measurement of sensitivity free 

of attenuation effects, and direct access to information about scattered events that is not easily 

obtainable in reality.  
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Counting rate performance tests of the simulated scanner produced count rate curves 

that differ from those of real-world systems at very high counting rates. The dead-time model 

specified in the GATE simulation was ‘paralysable’ however the parameters were not 

rigorously validated against any real-world system. The results obtained suggest that, at very 

high counting rates, the simulated PET system either did not behave in the expected 

paralysable manner, or that it did not reach saturation before the highest phantom activity 

concentration investigated (45 kBq/mL). Peak counting rate values therefore correspond to 45 

kBq/mL for all curves (the highest activity concentration studied), indicating that the actual 

peak was not reached during the simulations.  

Random coincidence rates also tended to increase more rapidly on the simulated 

scanner as activity concentration increased. This effect is likely due to the absence of any 

shielding material in the scanner model causing an increased exposure of the detectors to out-

of-filed activity from the 70 cm long scatter phantom. This shortcoming in the modelled 

scanner is considered to be acceptable for the purposes of brain phantom simulations, where 

no out-of-field activity is simulated. 

Despite the above deviations from the real-world systems, for phantom activity 

concentrations under 10 kBq/mL the true coincidence and NECR curves are comparable in 

appearance and scale to those of the real-world systems listed in Table 4.1 (see Figure 4.4). 

This includes the range of tissue activity concentration expected from [
11

C]-PK11195 brain 

studies. Therefore a realistic count rate response may be expected from the simulated scanner 

at activity concentrations under about 10 kBq/mL, and where high levels of out-of-field 

activity is not included in the simulation. For simulations in which realistic count rate 

response is desired at activity concentrations above about 10 kBq/mL, or for imaging 

scenarios in which out-of-field activity is expected to be high, then more accurate modelling 

of dead-time and axial shielding are required than that implemented here. 

Intrinsic radioactivity due to the presence of lutetium-176 in the LSO detectors was 

not included in this model. Lutetium-176 undergoes radioactive decay and emits a beta 

particle with a mean energy of 420 keV, and three gamma photons with energies 88 keV, 202 

keV and 307 keV, causing an intrinsic background singles counting rate and potentially a 

background coincidence rate, depending on the energy threshold settings used (Yamamoto, 

Horii, Hurutani, Matsumoto, & Senda, 2005). Intrinsic activity produces a constant 

background singles count rate of approximately 850 kcps on the Biograph 16 HI-REZ 
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(Brambilla et al., 2005), which is considered insignificant at high source activity 

concentrations, but causes an increase in the random to true coincidences ratio at very low 

activity concentrations. Although information in the literature is limited, there is some 

evidence that the detrimental effect on low activity neurological PET studies is minimal. A 

simulation study investigating the impact of lutetium-176 background on low count rate 

scans, estimated the minimum concentration at which a 4:1 contrast lesion may be detected at 

≈0.148 kBq/mL on a Siemens Biograph 6 scanner, for a 5 minute acquisition time 

(Karakatsanis & Nikita, 2008). The authors reported only a minor improvement in minimum 

detectable activity when the lutetium-176 was removed from the simulated scanner. 

Interestingly, this minimum activity concentration is approximately half the lowest expected 

concentration for [
11

C]-PK11195 in normal grey matter at 60 minutes post injection (0.36 

kBq/mL). 

Key performance characteristics of the simulated PET scanner are summarised in 

Figure 4.5, along with the performance characteristics of the real-world PET scanners listed 

in Table 4.1. 

 

Figure 4.5. Comparison of key performance characteristics of the simulated scanner and the corresponding 

characteristics of the Siemens Biograph 16 HI-REZ (Brambilla et al., 2005), Siemens Biograph Accel (Erdi et al., 2004), 

Philips Gemini TF (Surti et al., 2007) and GE Discovery STE (Teräs et al., 2007). Spatial resolution quoted is the average 

transaxial FWHM at 1 cm radial distance from the centre. Sensitivity quoted is at 0 cm offset from centre. 

Overall, the performance of the simulated PET scanner is in broad agreement with the 

performance of contemporary clinical PET systems, at least in terms of spatial resolution, 
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sensitivity and scatter fraction. Compared to the Siemens Biograph system (after which the 

event processing electronics and detector block configurations were modelled), the spatial 

resolution of the simulated system is slightly worse (5.56 mm versus 4.61 mm) and the 

sensitivity is slightly better (6.08 kcps/MBq versus 4.87 kcps/MBq). This can probably be 

attributed to the different geometry of the simulated scanner, which had slightly larger inter-

detector gaps, slightly longer axial FOV and smaller inter-block gaps compared to the 

Biograph 16. In addition, the detectors in the simulated scanner were arranged in a cylindrical 

array (as are the detectors in the Philips and GE scanners included for comparison) and did 

not model the inward-facing end blocks of the Biograph 16. This deviation from the real-

world system was done in order to simplify the image reconstruction and detector 

normalization procedures. Given that the overall aim was to closely match the performance of 

current generation PET scanners, without specific reference to an individual scanner model, 

then these differences are considered acceptable. 

4.1.7  Conclusions 

A PET scanner system was simulated using the GATE Monte Carlo software package 

that matched the performance of current generation PET scanners in terms of spatial 

resolution, sensitivity and scatter fraction. Counting rate performance was also in broad 

agreement with current generation PET systems at low activity concentrations. The simulated 

scanner described here produces PET scan data with similar statistical properties to 

commercial PET systems in current clinical use. For simulations requiring realistic count rate 

data at activity concentrations above about 10 kBq/mL, or for simulations including high 

levels of activity outside the field-of-view, then a more accurate dead-time and axial shielding 

model is required than the one implemented here. Intrinsic radioactivity from lutetium-176 

was not included in the model. 

4.2  Estimation of Image Signal-to-Noise Ratio for TSPO 

PET Radiotracers Using GATE 

4.2.1  Introduction 

In 2.6.3 the limitations of [
11

C]-PK11195, a PET radiotracer used to image 

neuroinflammation, were discussed. Accurate and precise quantification of the PET data for 

this tracer has proven challenging due to a combination of adverse tracer properties and the 

ubiquitous and sparse distribution of TSPO in the normal brain. New radiotracers for the 
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TSPO are under development in an attempt to address some of the well documented 

shortcomings of the tracer 
11

C-PK11195: specifically tracers with higher levels of brain tissue 

uptake and lower non-specific uptake are sought in order to reduce image noise and allow 

more accurate and precise measurements of neuroinflammation. 

This chapter describes how the PET simulation tools developed and validated in 

Chapter 3 were employed to measure the image variance and signal-to-noise ratio of a typical 

[
11

C]-PK11195 dynamic PET scan of the human brain. 

4.2.2  Aim 

The overall aim was to measure the image voxel variance and relative noise 

(coefficient of variation) for each frame in a simulated dynamic [
11

C]-PK11195 PET scan of 

the human brain, using standard data correction and image reconstruction methods. 

4.2.3  Equipment 

The following equipment was used during this study: 

 High performance computer cluster, running the GATE Monte Carlo 

simulation software (described in 3.3). 

 PET scanner description macro in GATE (described in 4.1) 

 IDL, version 8.1 (Exelis Visual Information Solutions, Boulder, Colorado) 

 PMOD, version 3.17 (PMOD Technologies Ltd., Zurich, Switzerland) 

4.2.4  Method 

4.2.4.1  Generation of a Tissue Time-Activity Curve and Arterial 

Plasma Input Function for [11C]-PK11195 

A representative time-activity curve (TAC) for [
11

C]-R-PK11195 in normal human 

grey matter was obtained from published literature (Kropholler et al., 2005). A plasma input 

function was also obtained from the same source, as well as a value for plasma to whole 

blood activity ratio of 1.55, which was reported to be constant for the duration of the scan. A 

curve describing the plasma parent radioligand fraction for [
11

C]-R-PK11195 in humans was 

obtained from another source by the same principle author (Kropholler et al., 2009). As is 

usually the case, correction for radioactive decay had been made on all published curves. 
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Curve data points were sampled by careful manual measurement of a high-quality 

reproduction of the published curve images. Tissue TAC data points were time-sampled from 

the published curve according to a 24 frame dynamic scan schedule similar to the one used by 

Kropholler et al. in their study. Plasma input function data points were sampled at 10 

approximately equally spaced intervals during the initial peak from 0-2 minutes, and another 

10 equally spaced intervals from 2-60 minutes. Parent radioligand fraction data points were 

sampled at 8 points from 0-60minutes. Both plasma curves (plasma input function and parent 

radioligand fraction) were fitted with a tri-exponential function and resampled to 720 x 5 

second samples. All curves were synchronised to the same start time. A whole blood 

radioactivity curve was then calculated from the plasma input function, parent fraction curve 

and the plasma to whole blood activity ratio. 

A survey of the published literature on human brain imaging with [
11

C]-R-PK11195 

revealed a median (reported) injected dose of 370 MBq, and a range of 222 MBq to 888 

MBq. The plasma input function and grey matter TAC described above were based on 

published data for a reported injected dose of 224 MBq, therefore both these curves, and the 

whole blood TAC, were scaled by a factor of 1.65 to normalise the curves to the median 

injected dose of 370 MBq (370/224 ≈ 1.65). 

The grey matter TAC, arterial plasma input function and whole blood TAC were all 

loaded into the PMOD kinetic modelling software package (version 3.17). The data were 

fitted to a compartmental model with one plasma compartment, two-tissue compartments and 

four rate constants. Fitted parameters were in very close agreement to those obtained by 

Kropholler et al. (2005), and were: K1 = 0.05, k2 = 0.15, k3 = 0.06, k4 = 0.04. The tissue blood 

volume fraction was set to a value of 7.1% according to the findings of Kropholler et al. 

(2005). Residual error between the fitted curve and the original tissue TAC ranged from -

4x10
-11

 to +1x10
-10

 over the duration of the scan, and visual inspection confirmed that the 

compartmental model provided a good fit to the data. All curves described above are plotted 

in Figure 4.6 to Figure 4.8. 
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Figure 4.6. Normal human grey matter time-activity curve for [11C]-R-PK11195. Curve is decay corrected and 

fitted to a two-tissue compartment, four-parameter compartmental model using the plasma input function and whole blood 

curves below. Data from Kropholler et al. (2005). 

 

Figure 4.7. Plasma arterial input function and whole blood time-activity curve for [11C]-R-PK11195 in humans. For 

clarity, only data from time 0-5 minutes are displayed. Data from Kropholler et al. (2005). 
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Figure 4.8. Parent fraction in plasma for [11C]-R-PK11195 in humans. Data from Kropholler et al. (2009). 

4.2.4.2  Simulation of 40 Independent Noise Realisations of a 

Dynamic [11C]-PK11195 PET Scan 

A separate emission phantom was constructed for each of the 24 frames of the 

dynamic scan, using the digital anatomical model described in 3.1.2.3. The volume of each 

voxel was 1mm
3

. The value for voxels designated as ‘grey matter’ (fractional volume of 

99.34%) and ‘glial matter’ (fractional volume of 0.66%) within each phantom was set to the 

corresponding grey matter tissue TAC concentration for each frame (see Figure 4.6), with a 

carbon-11 radioactive decay factor to mid-frame time applied. Autoradiographic analysis has 

shown that [
3
H]-R-PK11195 binding to normal white matter is approximately half that of 

normal grey matter (Banati et al., 2000), therefore the tissue concentration of white matter 

voxels at each frame was set to half the value of the grey matter voxels. All other soft tissue 

voxels were set to the same concentration as white matter for each frame. The skull was set to 

zero activity concentration.  

Although considerable care was taken to ensure the grey and white matter voxels were 

set to a realistic activity concentration for [
11

C]-PK11195, less reliable data were available for 

determining the appropriate concentration for the surrounding non-brain tissues. The 

following PET images (Figure 4.9 and Figure 4.10) taken from recently published papers 

demonstrate the uptake of the TSPO tracers [
11

C]-R-PK11195 and [
11

C]-DPA713 in normal 

human subjects. In the case of PK11195, no regions of conspicuously high uptake in the 

tissues immediately surrounding the brain are evident. A very small volume of increased 

uptake in the facial and ocular region is seen on the [
11

C]-DPA713 images and minimal or 
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absent uptake is evident in the skull. These findings suggest that setting the non-brain voxels 

of the digital phantom to white matter equivalent uptake values, and setting the skull voxels 

to zero uptake, is broadly consistent with the known uptake of TSPO tracers in the human 

head. Since these tissue classes are of no direct interest in the present study, such 

approximation of their uptake was considered reasonable. 

 

Figure 4.9. Whole body summed coronal images of a healthy male subject, following injection of [11C]-R-PK11195 

for a dosimetry study (Hirvonen et al., 2010). 

 

Figure 4.10. Transverse image slices through the lower and middle brain taken following injection of the TSPO 

radiotracer [11C]-DPA713 (Endres et al., 2009).  

The attenuation phantom, described in 3.1.2.3.1 was used for all simulations. This 

phantom models the physical properties, relevant to photon interactions with matter, for all 

tissues in the digital model. Voxels of the attenuation phantom measured 2 mm x 2 mm x 2 

mm and included 3 tissue classes: skull, water and air. The PET scanner model described in 

4.1, and in appendix 0 and 7.9, was used for all simulations. 
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Simulation of the full dynamic [
11

C]-PK11195 scan was carried out using the above 24 

emission phantoms and the attenuation phantom. Photon tracking was carried out using the 

fictitious interactions algorithm, with a gamma energy discard setting of 100 keV. A back-to-

back photon pair was simulated for each radioactive decay, assuming a branching ratio equal 

to 1. Because radioactive decay to each frame was already included in the emission 

phantoms, no radioactive decay was simulated. Frame duration for the dynamic scan was set 

(in seconds): 30, 15, 10, 10, 10, 10, 15, 15, 15, 15, 55, 60, 60, 150, 150, 150, 150, 300, 300, 

300, 300, 300, 600 and 600.  

A total of 40 independent simulations were run, with unique random number generator 

seeds, for each of the dynamic [
11

C]-PK11195 scan frames. Data output for each frame 

included a 3D sinogram for prompt, scattered and delayed coincidence events. Simulation of 

all 40 dynamic scans took 23 days, and produced approximately 350 Gbytes of sinogram 

output data. 

To enable further study of the signal-to-noise properties of novel TSPO radiotracers 

with higher brain uptake than [
11

C]-PK11195, the above series of simulations were repeated 

with all phantom activity concentrations increased by a factor of 2. Simulation of all 40 

dynamic scans took 48 days to run. In order to extend the range of count densities studied, an 

additional 30 independent simulations were carried out for an extra frame containing very 

high total counts, with a grey matter concentration of 5 kBq/mL and an acquisition time of 

600 seconds. 

To allow a more detailed investigation into the image noise properties of the simulated 

PET data, an additional 150 independent simulations were run for frame 10 only of the 

dynamic [
11

C]-PK11195 scan. Frame 10 was chosen because its particular combination of 

tracer concentration (≈5 kBq/mL) and frame duration (15 seconds) allowed a high number of 

simulations to be run within a short period of time (≈24 hours for 150 realisations). 

4.2.4.3  Validation of Accurate and Realistic Corrections for Non-

Uniform Detector Efficiency, Scatter, Randoms and Attenuation  

Quantitative PET requires that the data be corrected for the effects of non-uniform 

detector efficiency, scatter, random events and attenuation, and these corrections are applied 

in routine clinical practice. Many of these effects are also present in the simulated data. The 

following sections describe the correction methods employed for the simulated [
11

C]-

PK11195 dynamic PET data. 
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4.2.4.3.1  Detector Normalization 

Non-uniform detector efficiency occurs in real-world systems for reasons such as 

variations and drift in the event processing electronics, variation in crystal composition and 

mechanical misalignments- none of which apply to the simulated PET scanner in GATE. 

Geometric effects, whereby line-of-response (LOR) efficiency varies depending on the 

location of the LOR within the scanner field-of-view and the angles at which photons are 

incident on the detectors are still applicable to the GATE simulated data. Correction for non-

uniform geometric efficiency may be done by direct measurement of all LORs using a 

uniform source of radioactivity and a long acquisition time, or by summing separate 

measurements of the various components of LOR sensitivity (Badawi, Lodge, & Marsden, 

1998; Badawi & Marsden, 1999). The aim in both cases is to arrive at a measure of relative 

efficiency for each LOR that is accurate and contains minimal noise. 

A simulation was run to directly measure the distribution of relative LOR sensitivity 

within the simulated PET scanner. To achieve uniform irradiation of all LORs relevant to the 

brain scan simulations, a cylindrical source measuring 40 cm diameter and 17 cm length, with 

activity placed around the outer surface only, was implemented in GATE. A total radioactivity 

1.0 MBq source activity was specified and no attenuating media were simulated. The plane 

source was positioned in the centre of the simulated PET scanner, parallel to the long axis and 

centred axially. The random coincidence rate during simulation was estimated at ≈0.6% of the 

total coincidence rate. A simulated acquisition time of 70 hours was achieved in 7 days, 

yielding an average of 27.3 coincidence events per LOR after summing the output sinograms. 

The relative noise level in the sinograms was deemed to be too high for the purposes of direct 

normalization of LORs. Sample sinograms from this simulation are presented in Figure 4.11. 
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Figure 4.11. Normalization sinograms from a simulation of a uniform cylindrical plane source. Three arbitrarily 

selected sinogram planes (left). Sinograms were summed over all 1521 planes to yield a high count sinogram for 

normalization (far right). All sinograms displayed relative to own maximum. 

Manipulation and display of the 3D sinogram sensitivity data was carried within IDL 

and the following empirical observations were made concerning the appearance of the data: 

that the relative distribution of counts within each sinogram plane follows a pattern that is 

visually very similar across all 1521 sinograms. Geometric variations are mainly due to LOR 

position across the transaxial FOV and crystal position within each block, and these factors 

are expected to be very similar for every sinogram, including the oblique sinograms. This was 

confirmed by visual assessment of each sinogram plane. The periodic pattern of count 

variation within each sinogram appeared independent of axial position or segment. Therefore, 

to increase the count density of the correction matrix and minimise relative noise, all 1521 

sinogram planes were summed into a single sinogram. This single high-count sinogram 

contained an average of 4.15x10
4
 counts per element, with a minimum of 2.72x10

4
 counts 

and a maximum of 5.99x10
4
 counts. A sensitivity correction factor map was then calculated 

by dividing each sinogram element into the maximum value (5.99x10
4
). A sensitivity 

correction factor for each sinogram plane was then calculated from the in-plane total counts 

of the original 1521 sinograms. In this way, an essentially noiseless sensitivity normalization 

map for each 3D sinogram element was produced, relative to the most sensitive element. The 

minimum correction factor was therefore unity, while the maximum correction factor across 

the entire 3D sinogram was 3.1897. 

4.2.4.3.2  Scatter Correction 

Correction for scattered coincidences in PET requires an accurate estimate of the 

relative contribution of scatter to each LOR. Scattered events are distributed broadly across 

the entire sinogram, with slightly higher concentration in the vicinity of the object being 
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scanned. Scattered events can be distinguished (and rejected) on the basis of their energy, 

however the limited energy resolution of the radiation detectors used in PET means that 

scatter fractions are usually well above 15% (Meikle & Badawi, 2003). Correction methods 

generally aim to estimate the scatter contribution as accurately as possible before subtracting 

the estimate from the data (Phelps, 2006). Because scatter is not measured directly (as is 

often the case for randoms and attenuation), the propagation of random noise is not usually an 

issue for most scatter correction methods. 

When a GATE Monte Carlo simulation is run, information about the origin of every 

detected coincidence event is available, including whether or not any scattering took place 

prior to detection. Thus the scatter sinogram output from each simulation contains ‘perfect’ 

information about scatter for every LOR. Subtraction of this scatter data from the prompt 

sinograms would be a simple and effective method of scatter correction, but would be highly 

unrealistic with respect to real-world scatter correction methods, where such information is 

not directly available. 

To address this issue, while still taking advantage of the information available from 

GATE for scatter correction, the 3D scatter output sinograms were averaged over all 40 

independent simulations for each frame of the dynamic [
11

C]-PK11195 PET simulation, 

yielding an estimate of scatter for each frame. The projection profiles were then convolved 

with a 1-dimensional Gaussian filter kernel (FWHM=3.5 cm) to smooth the scatter estimates 

and reduce noise. An accurate and low noise estimate of scatter for each frame was then 

produced by scaling the smoothed scatter sinogram to the (known) total number of scattered 

events in each frame. Representative scatter profiles and smoothed sinograms produced using 

this method are displayed in Figure 4.12. During the above processing steps, it was observed 

that the scatter sinograms were affected by detector sensitivity variation with a pattern similar 

to that observed during the normalization measurements (see 4.2.4.3.1). Smoothing the 

scatter sinograms with a 3.5 cm Gaussian filter, which was necessary to remove noise and 

consistent with the low spatial frequency distribution of scattered events, also distorted the 

sensitivity variations. Normalization was therefore applied to the scatter sinograms before the 

smoothing step. 
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Figure 4.12. Projection profiles through a high-count simulated sinogram, showing prompt coincidence profile, 

actual scattered events identified during the simulation (dashed line) and a smoothed scatter estimate used for scatter 

correction. 

4.2.4.3.3  Random Event Correction 

Random coincidence events are estimated during the simulations via a delayed event 

coincidence analysis, analogous to the delayed event method used on many PET systems. 

Delayed events are saved to a separate 3D sinogram for each frame of the simulation. To limit 

noise propagation during the randoms subtraction, and to approximate the real-world 

situation where a smooth singles-based randoms estimate is subtracted, a processing method 

similar to that employed for scatter correction was used: 3D delayed event output sinograms 

were summed over all 40 independent simulations for each frame of the dynamic simulation, 

yielding a high-count 3D randoms estimate for each frame. Scaling of the summed sinogram 

to the total number of random coincidences in each frame was performed prior to subtraction. 

Random coincidences were generally low for the [
11

C]-PK11195 dynamic simulations, 

reflecting the low uptake of this tracer in the brain. For example, the peak random:true ratio 

for the  [
11

C]-PK11195 dynamic scan occurred in frame 5 and was ≈ 3.8%. 

4.2.4.3.4  Attenuation Correction 

Attenuation, in which a 511 keV photon is either absorbed or scattered out of the field-

of-view by the object being scanned, causes a reduction in sensitivity for any LOR passing 

through that object. Attenuation along a LOR can be measured, and a correction factor 

applied to each LOR, using a variety of techniques. Traditionally in PET, a radioactive 
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transmission source external to the patient has been used to provide attenuation 

measurements for each LOR, with reference to a ‘blank’ transmission scan taken with nothing 

in the field-of-view. While potentially very accurate, external source methods may propagate 

a large amount of noise into the PET data, and various methods of smoothing and 

segmentation are employed to reduce this noise before applying the correction (Meikle, 

Dahlbom, & Cherry, 1993). More recently, hybrid PET/CT scanners have made use of the 

computed tomography scan to provide attenuation measurements through the object being 

scanned, that are essentially noise-free relative to the PET data (Beyer et al., 2000; Zaidi et 

al., 2007). 

For the purpose of attenuation correction of the simulated PET data, attenuation 

through the digital phantom was measured using a simulated transmission scan. The 

cylindrical plane source used for the LOR sensitivity normalization simulation served as the 

transmission source. The same simulation described in 4.2.4.3.1 was run again, with the 

addition of the digital attenuation phantom in the scanner. Only true coincidence events were 

collected from the simulation, thereby eliminating scattered coincidences from the data and 

ensuring that the resulting attenuation measurements represent ‘narrow-beam’ geometry 

(Podgorsak, 2006). A total of 5.2x10
8
 true coincidence events were collected during the 

transmission simulation. The original detector normalization simulation described in 4.2.4.3.1 

provided the blank scan necessary for calculating the attenuation along each LOR. 

A region of interest was manually selected on the transmission and blank sinograms 

that included only LORs that were outside the head region, and this was used to normalise the 

transmission data to the same count level as the blank data. A 3x3x3 averaging kernel was 

convolved with the transmission and blank sinograms to reduce noise. Integral attenuation 

coefficient sinograms were then generated as the natural logarithm of the blank/transmission 

ratio sinograms. Images of the linear attenuation coefficients (μ) within the digital phantom 

were then reconstructed using the 3D reprojection algorithm in STIR with a ramp filter.  

Segmentation of the μ images into 3 tissue classes (air, soft tissue and bone) was 

carried out using an adaptation of the method of Meikle et al. (1993). Attenuation coefficients 

for each tissue class (determined previously, see appendix 7.11) were assigned, and a 2-D 

Gaussian filter (FWHM = 6 mm) was applied to match the resolution of the segmented 

images to the PET system. These steps are illustrated below in Figure 4.13. For a detailed 
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description of the determination of appropriate μ values for skull and soft tissue, see appendix 

7.11. 

 

Figure 4.13. Representative attenuation correction sinograms (middle of head phantom). 

 

Figure 4.14. Representative images of the digital phantom’s linear attenuation coefficients (μ), corresponding to the 

axial position of the above sinograms. Reconstructed μ image (left) was segmented into 3 voxel classes: air, soft tissue and 

skull bone (middle image). Smoothing with a 6 mm FWHM Gaussian filter was performed (right). 

All correction methods described above apply specifically to the [
11

C]-PK11195 

dynamic simulations described in 4.2.4.2. The same attenuation phantom was used in the 

same position for each simulation; therefore a single transmission scan and attenuation map 

was required. Corrections to the sinogram data (S) were applied prior to image reconstruction 

using the following algorithm: 

  scatterrandompromptionnormalizatfactorattencorrected SSSSSS  _     (19) 
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Due to the heavy smoothing applied to the scatter sinograms (see 4.2.4.3.2), and the 

observation of LOR sensitivity variation in the original scatter sinograms, sensitivity 

normalization was applied to the scatter sinogram prior to smoothing. Therefore 

normalization is only applied to the randoms-corrected data in the above algorithm. All 

corrections were applied to the original 3D sinograms without axial or angular compression. 

4.2.4.4  Image Reconstruction 

All images were reconstructed using the Software for Tomographic Image 

Reconstruction (STIR), version 2.1. Prior to reconstruction, all pre-corrected 3D sinograms 

were re-binned to 2D sinograms using the single slice re-binning algorithm (Daube-

Witherspoon & Muehllehner, 1987) as implemented in STIR. The 24 most oblique sinogram 

segments (out of a total of 77 segments) were discarded from the data during re-binning, 

which corresponded to approximately 11% of total collected counts. Images were 

reconstructed using the filtered back projection algorithm, with a Hanning filter window, set 

to a cut-off frequency of 0.7 x Nyquist. Axial sensitivity correction was then applied using 

correction factors derived from the validation simulation described below (see 4.2.4.5). 

Finally, a correction for radioactive decay to mid frame time and a quantitative calibration 

factor (also derived from the validation simulation) was applied. An additional reconstruction 

was performed using the Ordered Subset Expectation Maximization (OS-EM) algorithm, 

with 12 iterations and 3 subsets. Post filtering in the form of a 2D Gaussian filter (FWHM=3 

mm) was applied to the OS-EM reconstructions. Selection of appropriate OS-EM parameters 

for the simulated PET data is discussed in appendix 7.13.  

4.2.4.5  Validation of Data Correction Methods 

Validation of the above data correction methods for brain PET simulations was carried 

out using a long duration simulated brain scan, with uniform distribution of activity within all 

tissues of the digital phantom. The activity concentration within each tissue voxel was set to 

0.2599 kBq/mL, and an acquisition time of 1700 minutes (28.3 hours) was simulated. No 

radioactive decay was included in this simulation. Data were corrected and reconstructed 

according to the methods described. Figure 4.15 below shows the representative images with 

and without the corrections applied. 
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Figure 4.15. Corrected and non-corrected PET images from a long duration/high count simulation. Activity was 

distributed uniformly through the phantom tissues. Attenuation correction artefacts adjacent to skull regions are evident in 

the corrected images, otherwise the distribution of counts appears uniform. The count density in the present simulation data 

is significantly higher than that anticipated for the dynamic [11C]-PK11195 PET simulations. 

The corrected image data show a uniform distribution of counts within the soft tissues 

of the head. Some subtle artefacts at the skull/soft-tissue interfaces are evident on this high-

count simulation, most likely due to inaccuracies introduced during the segmentation 

operation of the attenuation correction. Empirical adjustments were made to the assigned 

skull attenuation coefficient and smoothing filter parameters to reduce this artefact to the 

level seen in Figure 4.15. Considering the much lower count density of the dynamic PK11195 

data compared with other radioligand studies, and the absence of any direct interest in the 

skull region in this work, these artefacts were considered acceptable. 

Axial sensitivity was measured by summing the total counts for a central region-of-

interest within each slice. The axial sensitivity, relative to the most sensitive slice, was plotted 

(see Figure 4.16). 
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Figure 4.16. Profile of relative axial sensitivity of the simulated PET scanner, after 2D re-binning, and discarding of 

the most oblique sinogram segments. 

4.2.5  Data Analysis 

4.2.5.1  Region of Interest Definition and Estimation of Partial Volume 

Errors 

Partial volume errors (PVE) result from the limited spatial resolution of the PET 

scanner. Structures that are smaller than about 3x the system FWHM in one or more 

dimensions are subject to underestimation of their true radioactivity concentration due to 

blurring of the signal to surrounding regions. Small regions may also be subject to significant 

‘spill-in’ of counts from surrounding activity. Because the grey and white matter regions of 

the brain contain many volumes that are small relative to the spatial resolution of PET 

scanners, significant PVE is expected in brain PET studies.  

In order to estimate the level of PVE present in the simulated data, and to select voxels 

for analysis that were (relatively) free from PVE, two separate PET simulations were run 

using the digital emission phantom and PET scanner model used in all dynamic PET 

simulations. In the first simulation, only the grey matter voxels contained activity, and in the 

second simulation, only the white matter voxels contained activity. Activity concentration 

was set to 10 kBq/mL in both cases. To avoid the complicating effects of scatter and 

attenuation, no attenuating material was included in the simulations. A long acquisition was 

simulated to minimise the relative noise in the data. Images were reconstructed using the 

same filtered back projection algorithm and filter as used for all dynamic PET simulations.  
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Voxels in the grey matter image that were ≥90% of the expected ‘true’ value (i.e. ≥ 9 

kBq/mL) and did not overlap with voxels from the white matter image that were >10% of the 

expected value (i.e. ≥ 1kBq/mL) were identified as containing minimal PVE. A total of 7833 

‘low PVE’ grey matter voxels (≈53.64 mL total volume) were identified in this way, located 

mainly in the posterior and inferior regions of the brain corresponding to the temporal lobes, 

cerebellar cortex and occipital lobes. Spill in from other non-brain tissues (muscle, skin, fat, 

skull, CSF) were not considered in this analysis, because these tissues constitute a smaller 

fraction of the tissue voxels in this phantom (see Figure 3.1), and are either located at a 

distance from the brain (skin and muscle) or do not contain any activity in the simulations 

(skull and CSF).   

Two smaller regions of interest (ROIs) were defined by selecting subsets of the 

minimal PVE grey matter voxels. One ROI (253 voxels, 1.73 mL) included left and right 

medial temporal lobes, while the other ROI (78 voxels, 0.534 mL) included a smaller subset 

of the medial temporal lobe voxels. These ROIs are illustrated in appendix 7.12 and listed in 

Table 4.7. 

Table 4.7. Grey Matter Regions of Interest. 

Location Total Volume (mL) 

Medial temporal lobes (bilateral) 0.534 

Medial temporal lobes (bilateral) 1.73 

Grey matter 53.64 

 

4.2.5.2  Calculation of Image Voxel Variance and Coefficient of 

Variation 

Variance (σ
2
) was calculated for each image voxel (x) according to the following 

equation: 
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where n = 40 independent noise realisations. Relative noise, measured by the 

percentage coefficient of variation (%CoV) was calculated for each voxel as: 
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x
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
           (21) 

Average grey matter voxel variance and %CoV were calculated from the images for 

the large grey matter region of interest in Table 4.7.  

4.2.6  Results 

Variance and coefficient of variation images for frame 10 (early short duration frame) 

and frame 14 (later frame with higher total counts) for the [
11

C]-PK11195 simulation are 

shown below in Figure 4.17 to Figure 4.24. A bright line of 1-pixel width was observed 

running the axial length of the images. The source of this artefact was not clear, however a 

similar artefact was reported in the STIR user’s manual (Thielemans, K. et al., STIR User’s 

Guide Version 2.1) and is therefore thought to be an image reconstruction artefact. Switching 

between different projector algorithms did not affect the appearance of the artefact. Since it 

appears to affect only one pixel in each slice, and the ROIs used for analysis did not intersect 

it, the artefact was ignored.  

 

Figure 4.17. Variance images for filtered back projection reconstruction, one transaxial slice. Each image is scaled 

to own maximum. 
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Figure 4.18. Variance images for filtered back projection reconstruction, one coronal slice. Images displayed to 

same scale as corresponding transaxial slice above. 

 

Figure 4.19. Percentage coefficient of variation images for filtered back projection reconstruction, one transaxial 

slice.  

 

Figure 4.20. Percentage coefficient of variation images for filtered back projection reconstruction, one coronal 

slice. 
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Figure 4.21. Variance images for OS-EM reconstruction, one transaxial slice. Each image is scaled to own 

maximum. 

 

Figure 4.22. Variance images for OS-EM reconstruction, one coronal slice. Images displayed to same scale as 

corresponding transaxial slice above. 

 

Figure 4.23. Percentage coefficient of variation images for OS-EM reconstruction, one transaxial slice. 
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Figure 4.24. Percentage coefficient of variation images for OS-EM reconstruction, one coronal slice. 

Relative voxel noise, measured by the percentage coefficient of variation (%CoV) 

averaged over all grey matter voxels, ranged from 123% (frame 4, PK11195 dynamic 

simulation, FBP) to 24% (frame 18, double PK11195 uptake simulation, FBP). Relative noise 

is plotted against frame number for both dynamic simulations (PK11195 and double uptake 

PK11195) and both reconstruction algorithms (FBP, OS-EM) in Figure 4.25 below. 

 

Figure 4.25. Relative noise (% coefficient of variation) averaged over grey matter voxels for both dynamic scan 

simulations and both reconstruction algorithms.  

Relative noise was highest in the early frames, which were of shorter duration. As 

frame duration increased, %CoV decreased. Radioactive decay of carbon-11 caused an 

increase in relative noise towards the end of the simulations. OS-EM yielded lower relative 

noise during the early frames compared to FBP, however this advantage appears to be lost in 

higher count frames, where OS-EM produced slightly higher CoV than FBP from frame 11 

onwards. 
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Relative noise for the two ROIs (small and medium size) is plotted against frame 

number in Figure 4.26 and Figure 4.27. These data represent the uncertainty associated with 

ROI averaged counts, and as such are expected to contain much lower levels of relative noise 

than that found at the voxel level. Again, OS-EM produced lower CoV at low count frames, 

but not at higher count frames. 

 

Figure 4.26. Relative noise (% coefficient of variation) for a small (0.53mL) temporal lobe grey matter ROI, for 

both dynamic scan simulations and both reconstruction algorithms. 

 

Figure 4.27. Relative noise (% coefficient of variation) for a medium (0.1.73mL) temporal lobe grey matter ROI, 

for both dynamic scan simulations and both reconstruction algorithms. 
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4.2.7  Discussion 

Image noise in PET depends fundamentally upon the number of counts collected 

during the scan. However, various other factors, such as the corrupting influence of 

attenuation, scatter and random coincidences, image reconstruction algorithm and associated 

parameters and the use of smoothing filters, also strongly influence the final relative and 

absolute noise levels within each image voxel. Relative noise tends to increase towards the 

centre of the image, due to the effects of attenuation. Voxel variance may be correlated with 

the regional distribution of activity, depending upon which reconstruction algorithm is used. 

The results of this investigation are consistent with these known properties of image noise in 

PET.  

Relative voxel noise, expressed as average voxel %CoV, ranged from 24% to 123%. 

As expected, this relative noise was highest during the short duration frames at the start of the 

dynamic scan, decreasing to a minimum as frame duration increased, then rising again 

towards the end of the scan due to the combined effects of radioactive decay and clearance of 

the tracer from the tissues. Image reconstruction also plays an important role in determining 

the noise properties, with OS-EM yielding lower relative noise than FBP during early low 

count frames, but offering no apparent advantage at higher count frames. An important 

difference between OS-EM and FBP is the non-negativity constraint  that applies to OS-EM 

but not to FBP (Hutton et al., 2006), which has been shown to produce a positive bias for 

very low count data (Rahmim, Cheng, Blinder, Camborde, & Sossi, 2005). This could also 

affect the measurement of relative noise, and is investigated further in 4.3. 

Image variance was closely related to the underlying activity concentration for the OS-

EM reconstructions, allowing the distribution of tracer to be distinguished in the variance 

images. This is consistent with previously reported findings with this algorithm (Nuyts, 2002; 

Schmidtlein et al., 2010). In contrast, FBP produces much more uniform variance distribution 

in the transaxial plane, with a slight increase in variance towards the transaxial centre of the 

scanner. This is also consistent with previously reported findings, and the properties of the 

FBP algorithm. Coefficient of variation images for the OS-EM algorithm therefore show a 

more uniform distribution, with the exception of the zero-activity regions (skull and CSF), 

which have higher relative noise than surrounding regions. Relative noise in the FBP images 

is inversely related to the tracer distribution: lower uptake regions (white matter, CSF and 

skull) appear brighter than the higher uptake grey matter. 
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Coronal images reveal higher variance and relative noise towards the axial edges, 

consistent with the 3D sensitivity profile for this simulated scanner and the use of sinogram 

re-binning and 2D reconstruction algorithms. 

It is important to note that this study was limited in scope to the particular 

combination of PET scanner geometry, data processing and reconstruction algorithms used. 

Although care was taken to model the performance of current generation clinical systems as 

closely as possible, there are many factors not investigated here that could affect the level and 

distribution of noise in the final image data. Scanner sensitivity has been identified as a 

potential area of technological improvement for the next generation of PET tomographs 

(Eriksson et al., 2005) and at the time of writing there is at least one commercially available 

whole body PET system with an 21.8 cm axial field of view and substantially better 

sensitivity than the previous generation system which it replaced (Jakoby, Bercier, Watson, 

Bendriem, & Townsend, 2009). More sophisticated image reconstruction approaches could 

also have a substantial effect on the relative image noise. For example algorithms 

incorporating system point-spread function information into the reconstruction (Panin, 

Kehren, Michel, & Casey, 2006), have been shown to improve both the spatial resolution and 

noise properties of the images. Both of these recent advances could be expected to have a 

positive influence on the noise properties of low count PET studies such as [
11

C]-PK11195. 

Further research would be needed to clarify this. 

Another important limitation of this study was the use of only 40 repeated measures to 

estimate the noise. Limitations related to the speed of Monte Carlo simulations- 71 days total 

simulation time for all dynamic scans- as well as data storage- 700 Gbytes of original 

sinogram data- and image reconstruction requirements, made it impractical to run a greater 

number of simulations. Therefore the noise estimates may themselves be subject to a certain 

amount of ‘noise’. Furthermore, the overall aim of this research was to investigate the effects 

of novel TSPO tracer properties on quantification with kinetic modelling, which could 

potentially require a new series of noise estimates and dynamic simulations for each tracer 

studied. This fact motivated further analysis of the noise data collected, with the aim of 

developing an analytical model that could predict the relative image noise for any likely 

combination of tracer uptake and acquisition time, with due reference to the limitations 

discussed in the previous paragraph. 
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4.2.8  Conclusions 

A dynamic [
11

C]-PK11195 PET scan, and a dynamic PET scan at twice the tissue 

radioactivity concentration of [
11

C]-PK11195, was simulated. Image noise (variance and 

coefficient of variation) was calculated for each voxel, and for two grey matter regions of 

interest. Relative noise in image voxels ranged from 24% to 123% over the two dynamic 

simulations. The two reconstruction algorithms studied (2D FBP and 2D OS-EM) yielded 

differences in relative image noise that was most apparent at low count frames. Spatial 

distribution of variance and coefficient of variation also differed between the two 

reconstructions, in a manner consistent with previously published findings. 

Variance and coefficient of variation estimates were based on a limited number (40) of 

independent repeated simulations, and are therefore subject to uncertainty. In the context of 

estimating the effects of image noise on compartmental modelling parameter estimation, the 

ability to estimate image noise in dynamic PET acquisitions for a variety of TSPO brain 

tracers, without the need to perform lengthy simulations for each one, is desirable. Methods 

that allow estimation of image noise, for a variety of tracer uptake and acquisition durations, 

using the data from the 40 repeated simulations, require further investigation. 

4.3  Development and Validation of a Mathematical 

Model for Image Noise 

4.3.1  Introduction 

In 4.2, Monte Carlo simulations were employed to estimate the image noise in a 

dynamic [
11

C]-PK11195 PET scan. Variance and coefficient of variation were calculated for 

voxels and two regions of interest in grey matter. Although this method can provide useful 

insights into image noise properties, a major limitation is the length of time required to run 

the simulations- in this instance approximately 10 weeks for two 60 minute dynamic 

simulations- using a modern computer cluster with 40 cores. The primary interest of this 

research was to study the effects of image noise on parameter estimation with compartmental 

modelling, for a variety of tissue activity concentrations and dynamic frame durations. 

Estimation of image noise using the Monte Carlo approach for every tracer at each frame 

time would be impractical. Therefore additional methods were required to allow estimation of 

image noise, using the data obtained so far, for other similar tracers. 
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Bootstrap resampling methods, whereby a set of pseudo-repeat PET sinograms are 

derived from either a single noisy dataset, or from a limited number of repeated acquisitions, 

have been advocated for this purpose (Buvat, Benali, & Di Paola, 2000; Dahlbom, 2002; 

Haynor & Woods, 1989; Lartizien et al., 2010). These methods are attractive in that they can 

provide a large number of (pseudo-)repeated PET sinograms from which a highly precise 

estimation of noise may be calculated. One drawback of the bootstrap approach is the 

potentially large volume of data that is generated, and the computational burden of 

performing image reconstructions on each replicate dataset. 

On the other hand, analytical models of image noise have been proposed (Budinger et 

al., 1978) that attempt to relate the relative image noise to the number of collected counts. 

Analytical models may be criticised on the grounds that they must make assumptions about 

the source and propagation of noise, including from the reconstruction algorithm. However, 

unlike other methods that rely on noise estimation from repeated measurements, they have 

the advantages of being computationally very efficient and requiring negligible data storage. 

They are also readily applicable to kinetic modelling and parameter estimation tasks: indeed 

an analytical noise model is often employed for calculating the weighting factors for each 

point on the tissue time-activity curve during least-squares fitting of kinetic parameters, and 

to provide an estimate of TAC noise during Monte Carlo simulations of kinetic modelling 

(Yaqub et al., 2004). 

In view of the above limitations, further analysis of the image noise data obtained 

from the [
11

C]-PK11195 and the ‘double uptake’ [
11

C]-PK11195 simulations was carried out. 

It was hypothesised that the very low count rates experienced in the majority of frames would 

give rise to a relatively linear noise equivalent count rate (NECR) response from the scanner 

over the expected range of activity concentrations. It was further hypothesised that the image 

noise at the voxel and region levels could be adequately described by a Gaussian probability 

density function. If so, then an analytical model could potentially provide a reliable and 

accurate estimate of image noise, for any combination of tissue activity concentration and 

acquisition time. 

4.3.2  Aim 

The broad aim of this study was to use the repeated simulation data (see 4.2) to 

develop and validate an analytical model relating the relative image noise in grey matter 
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voxels to the grey matter activity concentration and PET acquisition time, for [
11

C]-PK11195 

and radiotracers of similar uptake in the brain. 

4.3.3  Method 

4.3.3.1  Assessment of Normality of Image Noise 

It is usually assumed that the PET image voxel and ROI average values are normally 

distributed about the ‘true’ value and are therefore described adequately by a Gaussian 

probability density function. This might not always be the case, for example very low count 

image frames reconstructed with conventional OS-EM are known to have a skewed 

distribution due to the non-negativity constraint of this reconstruction algorithm (Rahmim et 

al., 2005). This has implications when using a measured or calculated standard deviation (σ) 

or coefficient of variation to predict image voxel variation, for example when studying the 

effects of noise on quantitative compartmental modelling. 

To assess the validity of the assumption of normality for the PET data used in this 

study, skewness and kurtosis of grey matter voxels were calculated for each frame 10 of the 

11
C-PK11195 dynamic PET simulation. A larger number of simulation runs (n=191) was 

performed for frame 10. This was done separately from the (n=40) runs used for calculating 

the image noise in each frame. Frame 10 represents an early, short duration frame of 15 

seconds, from 130 to 145 seconds post injection. The non-decay corrected grey matter voxel 

concentration of tracer in frame 10 was 5.4 kBq/mL. Frame 10 was chosen because the very 

low counts were expected to increase the likelihood of observing non-normality in the OS-

EM reconstructed images. Also, the low count frame could be simulated in a reasonably short 

time, allowing a much higher number of noise realisations than was feasible for other frames. 

Images were reconstructed using both the FBP and OS-EM algorithms, with the same 

parameters used for the dynamic PK11195 simulation data. 

Analysis of normality was carried out by converting each image voxel to a z-score, 

with respect to its mean value over the 191 noise realisations. Skewness and kurtosis were 

then calculated for all grey matter voxels, for each frame and for both reconstruction 

algorithms.  

4.3.3.2  Fitting an Analytical Model to the Image Noise Data 

The relationship between relative image noise, defined as the average coefficient of 

variation (CoV) of all grey matter voxels, and the grey matter tissue activity concentration 
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(kBq/mL), was investigated graphically. Because the relative noise also depends upon the 

frame acquisition time, activity concentration in grey matter was multiplied by the frame 

duration, yielding a quantity for each frame with units of kBq.s/mL. This quantity could also 

be interpreted as “nuclear disintegrations per mL of grey matter tissue”, and in the absence of 

significant count rate losses, is expected to be in approximate proportion to the total true 

coincidence counts collected. The average grey matter CoV was then plotted against the 

above activity-time quantity for each frame in the simulated PK11195 and double uptake 

dynamic scans. Curve fitting was then applied to yield a model that predicts image noise, 

given grey matter activity concentration and frame time.   

It is generally accepted that image noise in PET is more closely related to the total 

noise equivalent counts rather than total true coincidence counts, and that for filtered back 

projection reconstruction, image noise is proportional to the square root of the NEC (Strother 

et al., 1990). The NEC takes into account the effects of scatter and random coincidences in 

increasing the relative noise of the PET data. Since NEC is dependent on the object and the 

concentration of activity in all tissues (not just in one region), it is not necessarily predictable 

given only a regional (e.g. grey matter) tissue concentration. Initially, it was assumed that at 

the low activity concentrations studied, the NECR curve would not deviate significantly from 

a hypothetical linear (loss-less) count rate response of the scanner. The fitted model therefore 

did not explicitly take into account the count rate experienced during each frame. In other 

words, it was assumed that a frame containing x kBq/mL acquired for y seconds would 

produce the same relative image noise as a frame containing y kBq/mL acquired for x 

seconds. To investigate the validity of this assumption, the actual NECR curve for the 

simulated data was measured using the raw output data from each simulated frame, and 

compared to a hypothetical linear count rate response of the scanner. The effect of 

incorporating this additional NEC data into the noise model was also investigated. 

4.3.3.3  Validation of the Analytical Noise Model for Estimating the 

Precision of Kinetic Parameters 

To assess the performance of the fitted noise model in predicting %CoV, the frame 10 

(with n=191 realisations) simulated data were analysed and the measured %CoV for the 

voxels and three ROIs were compared to that predicted by the model equations. The n=191 

data were acquired separately from the data on which the model is based, but were processed 

and reconstructed in exactly the same way.  
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The ultimate purpose of the analytical noise model is to allow an investigation into the 

effects of changing TSPO tracer uptake in the brain on relative image noise, and subsequent 

effects on the precision of estimated compartmental kinetic parameters. Therefore, the noise 

model was applied to the task of estimating the noise-induced variance of compartmental 

modelling parameters, and its performance was assessed against the original noisy data 

produced by the GATE simulations.  

The noise-free reference grey matter TAC for [
11

C]-PK11195 that was used in the 

original GATE simulations, with known kinetic parameters, was taken and noise (σ) was 

calculated for each point using the analytical noise model. The values for σ, and the original 

noise-free TAC, were read into the PMOD ‘Biomedical Image Quantification Software’ 

package (version 3.17, PMOD Technologies, Zurich, Switzerland). Simulations were then run 

(n=40), using the in-built Monte Carlo simulation tool in PMOD and the supplied σ values, to 

estimate the noise-induced variance of the fitted kinetic parameters. Noise-induced variance 

was then estimated directly from a TAC of the 40 original GATE simulated [
11

C]-PK11195 

noise realisations. Comparison of the kinetic parameter variance produced by the noise model 

against the original GATE data was made. A two-tissue compartment, four-parameter model 

was fitted to the TACs using the least squares fitting routine within PMOD. In keeping with 

the previously published kinetic analysis of this tracer (Kropholler et al., 2005), the K1/k2 

ratio was fixed, and three parameters were fitted: K1, k3 and k4. The above procedures were 

repeated for FBP and OSEM reconstructed data and their corresponding noise models. 

4.3.4  Results 

4.3.4.1  Assessment of Normality of Image Noise 

The plots below (Figure 4.28 and Figure 4.29) illustrate the distribution of voxel 

values for frame 10 of the PK11195 dynamic simulation, for the large number of noise 

realisations (n=191). Voxel deviations from the mean were normalised to the standard 

deviation (i.e. converted to z-scores). Mean and standard deviation were determined for each 

voxel from the 191 independent noise realisations. 



159 

 

 

Figure 4.28. Histogram showing the distribution of voxel values (z-scores) for the n=191 frame 10 images, 

reconstructed using filtered back projection (dashed line). Skewness = 0.059, kurtosis = -0.029. A Gaussian function of the 

same σ and height is plotted (solid line) for comparison. 

 

Figure 4.29. Histogram showing the distribution of voxel values (z-scores) for the n=191 frame 10 images, 

reconstructed using OS-EM (dashed line). Skewness = 1.77, kurtosis = 4.44. A Gaussian function of the same σ and height is 

plotted (solid line) for comparison. 

A strong positive skew was readily apparent in the OS-EM reconstructed data, and 

confirmed by the calculated skewness value of 1.77 (Gaussian skewness = 0). No skew was 

observed for the FBP reconstructed data, which showed good agreement with the overlayed 

Gaussian function. Skewness for the FBP voxels was calculated to be 0.059. The above 

analysis was repeated for each frame of the (n=40) dynamic PK11195 simulation, and the 

results are plotted below in Figure 4.30. Values for skewness and kurtosis for each frame are 

presented in Table 4.8. A positive skew was identified in every frame reconstructed with OS-
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EM (skewness range: 0.55 to 1.1), with skewness increasing as total counts decreased. In 

contrast, FBP produced a relatively flat distribution of skewness for the range of total counts 

studied (range: 0.0084 to 0.061).  

Table 4.8. Skewness and kurtosis (from z-score normalised images) for each frame of the dynamic PK11195 PET 

simulation. 

 

FBP Skewness FBP Kurtosis OSEM Skewness OSEM Kurtosis

0.0585 -0.125 1.12 2.041

0.0518 -0.163 1.056 1.80

0.0615 -0.139 1.12 2.0073

0.0521 -0.155 1.019 1.57

0.0491 -0.129 1.023 1.57

0.0507 -0.137 1.036 1.63

0.0546 -0.141 1.030 1.64

0.0256 -0.143 0.723 0.674

0.0208 -0.157 0.717 0.633

0.0190 -0.151 0.731 0.658

0.0163 -0.131 0.566 0.363

0.0127 -0.143 0.600 0.412

0.0159 -0.140 0.627 0.464

0.0107 -0.154 0.644 0.494

0.00838 -0.144 0.548 0.338

0.0149 -0.143 0.613 0.437

0.0344 -0.158 0.678 0.554

0.0203 -0.135 0.707 0.673

0.0241 -0.161 0.761 0.749

0.0272 -0.166 0.676 0.525

0.0240 -0.166 0.782 0.809
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Figure 4.30. Skewness of z-score images plotted against total true coincidences, for each frame of the PK11195 

simulation. OS-EM reconstructed image data show a strong positive skew. This plot suggests a non-linear inverse 

relationship between skewness and collected counts for the OS-EM data. 

4.3.4.2  Fitting an Analytical Model to the Image Noise Data 

Average voxel coefficient of variation was plotted against the quantity defined as the 

product of activity concentration and frame duration, for both the FBP and OS-EM 

reconstructions. The appropriateness of a ‘power law’ relationship between these two 

variables was suggested by the appearance of the plotted data, and confirmed by plotting the 

curve on logarithmic axes, which resulted in straight lines (see Figure 4.31 to Figure 4.33). 

An equation of the form: y = ax
b
, was therefore fitted to the data points, where y = % 

coefficient of variation and x = the activity concentration x frame duration. The parameters a 

and b were determined using an iterative curve fitting routine, written in IDL, which sought 

to minimise the sum of squared differences between the data points and the fitted curve. 

Figure 4.32 (FBP data) and Figure 4.33 (OS-EM data) show the results of this analysis. The 

actual functions that resulted from the curve fitting procedures were: 

  485484.0
063.802%


 timeionconcentratCoVFBP       (22) 

  417817.0
915.541%



  timeionconcentratCoV EMOS       (23) 
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Figure 4.31. Log-log plot of average voxel coefficient of variation versus the product of activity concentration and 

frame duration for FBP reconstructions (solid line) and OS-EM (dashed line). The linearity of this plot suggests that a power 

law might be an appropriate mathematical description of the relationship between the two variables. 

 

Figure 4.32. Average voxel coefficient of variation versus the product of activity concentration and frame duration 

for FBP reconstructions (solid line). A curve of the form: y = axb was fitted to the data points using an iterative curve fitting 

procedure (dashed line).  
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Figure 4.33. Average voxel coefficient of variation versus the product of activity concentration and frame duration 

for OS-EM reconstructions (solid line). A curve of the form: y = axb was fitted to the data points using an iterative curve 

fitting procedure (dashed line). 

In order to investigate the assumption that the image noise was not influenced by 

count rate dependent effects, the NECR for each dynamic frame simulation was calculated 

using the count rate data available from GATE. Figure 4.34 below shows the NECR curves 

plotted as a function of grey matter activity concentration. A hypothetical ‘ideal’ true 

coincidence count rate response curve, extrapolated from the first three (low count rate) true 

count rate points, is also plotted for comparison. The ratio between the NECR (k=1) curve 

and the ideal trues curve is plotted in Figure 4.35. 
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Figure 4.34. Counting rate response for all dynamic simulation frames, plotted as a function of phantom grey 

matter activity concentration. NECR curves (dashed and dotted lines for noiseless and noisy randoms subtraction 

respectively) are plotted along with a hypothetical ‘ideal’ linear true counting rate response curve (solid line). 

 

 

Figure 4.35. Plot showing the ratio of NECR (noisless randoms subtraction) to ideal linear response curve, versus 

phantom grey matter activity concentration (solid line). Fluctuations in the curve at around 5.5 kBq/mL and 11 kBq/mL are 

due to the noise associated with the very short frame durations from which these data points are derived. A straight line with 

a slope of -0.003892 and a y-intercept of 0.7965 was fitted to the data points by linear regression (dashed line). The y-

intercept is ≈ 1-scatter fraction, which averaged 20.17% over all simulated dynamic frames.  
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The NECR curves were approximately linear at the count rates observed during these 

simulations. The ratio of NECR to the ideal trues rate line (NECR:truesideal) varied in a linear 

fashion from 0.7955 to 0.7501 over the same range of count rates. Fitting of a straight line to 

the NECR:truesideal ratio data yielded a slope of -0.003892 and a y-intercept of 0.7965 (or ≈ 

1- scatter fraction). The scatter fraction was measured directly from the raw data for each 

frame and ranged from 19.86% to 20.39% (average = 20.17%).  

Although the deviation of the NECR curve from the ideal true curve is modest, the 

effect probably cannot be considered negligible even at the very low count rates observed 

during these simulations. Therefore the noise model described in 4.3.4.1 (Equations 14 and 

15) was modified to take the NECR:truesideal ratio into consideration. The NECR modified 

noise model takes the form of: 

  bidealTruesNECRtimeionconcentrataCoV /%       (24) 

In this model, the NECR:truesideal ratio, which is always less than 1, acts to reduce the 

tissue concentration to the equivalent level that would produce the same relative noise if 

scatter, randoms and dead-time were non-existent.  

The results of fitting the new noise model to the data are plotted in Figure 4.36. The 

actual functions that resulted from the curve fitting procedures were: 

  499869.0
/103.853%


 idealFBP TruesNECRtimeionconcentratCoV     (25) 

  407806.0
/787.507%



  idealEMOS TruesNECRtimeionconcentratCoV    (26) 
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Figure 4.36. Average voxel coefficient of variation versus the product of activity concentration, frame duration and 

NECR:truesideal ratio for FBP reconstructions (solid line), and the fitted function (dashed line). The ‘activity concentration x 

time’ quantity for each frame has been multiplied by the NECR:truesideal ratio for that frame. 

 

Figure 4.37. Average voxel coefficient of variation versus the product of activity concentration, frame duration and 

NECR:truesideal ratio for OS-EM reconstructions (solid line), and the fitted function (dashed line). The ‘activity concentration 

x time’ quantity for each frame has been multiplied by the NECR:truesideal ratio for that frame. 

Table 4.9 shows the fitted curve parameters for the %CoV for each region of interest, 

for both reconstruction parameters (FBP and OS-EM) and both noise models (simple and 

NECR modified). Fitted curves are displayed for each region of interest, for the NECR 

modified model only (Figure 4.38 to Figure 4.43). For the ROI levels, only the parameter ‘a’ 
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was fitted, due to the greater uncertainty associated with each data point. The value for 

parameter ‘b’ was taken from the value determined from the voxel average %CoV analysis, 

for the corresponding reconstruction algorithm. The value for parameter ‘a’ was consistently 

6.8% lower when fitted to the NECR modified model than the simpler model for FBP 

reconstructed data, and was consistently 9.6% lower for the OS-EM reconstructed data. The 

value of parameter ‘b’ was close to -0.5 for the filtered back projection data, indicating that 

for this reconstruction algorithm the relative image noise is proportional to counts/1 . A 

lower value for ‘b’ of around 0.42 was obtained for the OS-EM reconstructions, as well as 

consistently lower values for ‘a’ when compared to filtered back projection data. These lower 

parameter values yield a lower but flatter noise curve, suggesting that OS-EM yields lower 

relative image noise than FBP at low counts, but with a less rapid improvement as counts 

increase. This is evident in the log-log plot (Figure 4.31), where the OS-EM data is lower 

(less noisy) than the FBP data at less than 270 kBq.s/mL, but is higher (more relative noise) 

than FBP data above this point.   

Table 4.9. Fitted noise model parameters. Curve fitted to an equation of the form: y = axb. SSD = sum of squared 

differences. 

 

Region Level
Reconstruction 

Algorithm

Simple Noise 

Model Parameter 

a

NECR Noise 

Model Parameter 

a

Simple noise 

model Parameter 

b

NECR noise 

model Parameter 

b

Simple Model 

Curve Fit SSD

NECR Model 

Curve Fit SSD

Voxel FBP 802.063 747.414 -0.485484 -0.496169 10
-11

10
-7

OS-EM 541.915 489.804 -0.417817 -0.418934 10
-11

10
-8

Grey Matter ROI FBP 22.3283 20.8069 -0.485484 -0.496169 10
-11

10
-12

OS-EM 16.9189 15.2919 -0.417817 -0.418934 10
-10

10
-12

Medium ROI FBP 102.914 95.902 -0.485484 -0.496169 10
-11

10
-11

OS-EM 69.6704 62.9706 -0.417817 -0.418934 10
-10

10
-11

Small ROI FBP 184.308 171.75 -0.485484 -0.496169 10
-10

10
-10

OS-EM 122.723 110.921 -0.417817 -0.418934 10
-10

10
-10
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Figure 4.38. Grey matter ROI coefficient of variation versus the product of activity concentration, frame duration 

and NECR:truesideal ratio for FBP reconstructions (solid line), and the fitted function (dashed line). 

 

Figure 4.39. Grey matter ROI coefficient of variation versus the product of activity concentration, frame duration 

and NECR:truesideal ratio for OS-EM reconstructions (solid line), and the fitted function (dashed line). 
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Figure 4.40. Medium sized ROI (temporal lobes) coefficient of variation versus the product of activity 

concentration, frame duration and NECR:truesideal ratio for FBP reconstructions (solid line), and the fitted function (dashed 

line). 

 

Figure 4.41. Medium sized ROI (temporal lobes) coefficient of variation versus the product of activity 

concentration, frame duration and NECR:truesideal ratio for OS-EM reconstructions (solid line), and the fitted function 

(dashed line). 
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Figure 4.42. Small sized ROI (temporal lobes) coefficient of variation the product of activity concentration, frame 

duration and NECR:truesideal ratio for FBP reconstructions (solid line), and the fitted function (dashed line). 

 

Figure 4.43. Small sized ROI (temporal lobes) coefficient of variation versus the product of activity concentration, 

frame duration and NECR:truesideal ratio for OS-EM reconstructions (solid line), and the fitted function (dashed line). 

4.3.4.3  Validation of Noise Model for Estimating the Precision of 

Kinetic Parameters 

To assess the performance of the fitted noise model in predicting %CoV, the frame 10 

(with n=191 realisations) simulated data were analysed and the measured %CoV for the 

voxels and three ROIs were compared to that predicted by the model equations. The results of 
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this analysis showed that both models returned values for %CoV that were in close agreement 

with the measure values. Results are shown in Figure 4.44 and Figure 4.45 below. 

 

Figure 4.44. Comparison of measured %CoV for frame 10 (n=191 realisations) with %CoV predicted by both the 

simple noise model, and the ‘NECR noise model’, for images reconstructed with FBP. 

 

Figure 4.45. Comparison of measured %CoV for frame 10 (n=191 realisations) with %CoV predicted by both noise 

models, for images reconstructed with FBP. 
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Validation of the noise model, for the task of estimating noise-induced kinetic 

parameter variance, was done by comparing the variance of kinetic parameter estimates 

predicted by the noise model with the variance of kinetic parameters obtained from the actual 

(n=40 realisations) GATE simulated TACs. The NECR modified noise model was used to add 

noise to the reference TACs. Although the noise model predicts the %CoV for both FBP and 

OS-EM reconstructed images, the positive bias observed in the images reconstructed with 

OS-EM resulted in TAC values that differed somewhat from the original noise free reference 

TAC, making it difficult to compare the variances of fitted kinetic parameters. Therefore no 

further analysis was carried out on the OS-EM image data, and all results reported from here 

on are for FBP reconstructions only. 

Table 4.10. Variance of estimated kinetic parameters. Noise was added to the reference TAC using the NECR noise 

model. 

 

Comparison of the variances of the estimated kinetic parameters was carried out using 

the F-ratio of variances (Table 4.10). All F-ratios were found to be lower than a critical value 

of 1.506 (p=0.1), therefore no statistical evidence was found that the two methods produced 

different variances of the fitted parameters. It should be noted that statistics like the F-ratio 

for comparing variances are very sensitive to departures from normality in the data (Johnson, 

Freund, & Miller, 2011), and that they do not provide assurance that the two variances are 

equal. Rather, they provide evidence that the variances are not different. Kinetic parameter 

coefficients of variation for each noise estimation method are plotted in Figure 4.46, Figure 

4.47 and Figure 4.48 below.  

Kinetic Parameter Reference Value Parameter Variance (noisy GATE data) Parameter Variance (modelled noise added) F-Ratio

Large Grey Matter ROI

K1 2.924E-07 3.861E-07 1.32

k2 0.15

k3 0.06 1.099E-07 1.316E-07 1.20

k4 0.04 1.421E-06 1.660E-06 1.17

Medium ROI

K1 0.05 9.663E-06 1.074E-05 1.11

k2 0.15

k3 0.06 3.053E-06 3.399E-06 1.11

k4 0.04 3.752E-05 3.864E-05 1.03

Small ROI (1TCM)

K1 0.0417 2.922E-05 2.244E-05 1.30

k2 0.0648 1.355E-04 1.087E-04 1.25
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Figure 4.46. Coefficient of variation of kinetic parameters (K1, k3 and k4) for the large grey matter ROI using the 

noise model and GATE simulation data. 

 

Figure 4.47. Coefficient of variation of kinetic parameters (K1, k3 and k4) for the medium grey matter ROI using the 

noise model and GATE simulation data. 

 

Figure 4.48. Coefficient of variation of kinetic parameters (K1, k3 and k4) for the small grey matter ROI using the 

noise model and GATE simulation data. 
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4.3.5  Discussion 

A positive skew of voxel values was identified for the OS-EM reconstructed data (see 

Figure 4.29), and the skewness was shown to be inversely correlated with the number of true 

coincident counts collected. This effect has been reported previously (Rahmim et al., 2005), 

and was attributed to the subtraction of random and scatter coincidences prior to 

reconstruction, which is likely to produce negative values at low (<10) average counts per 

sinogram element. Statistical reconstruction algorithms like ML-EM assume Poisson 

statistical properties of the input data, a consequence of which being that negative values are 

not allowed, and are usually truncated to zero. This effectively adds counts to the sinogram, 

causing an overestimation bias in the reconstructed images. Since the FBP algorithm makes 

no assumption about the noise properties of the data, negatives are allowed and no bias is 

produced.  

The findings of this study confirm these properties of both reconstruction algorithms. 

Further, it may be seen that at the count rate levels expected from [
11

C]-PK11195, and even 

for the hypothetical ‘double uptake’ [
11

C]-PK11195 tracer, overestimation bias is likely to be 

present if the OS-EM algorithm is used with pre-corrected sinogram data. Solutions to this 

problem exist, for example incorporating all the data corrections directly into the 

reconstruction algorithm as in the case of the ‘Ordinary Poisson Expectation Maximisation’ 

algorithm (Politte, 1991), or using alternative algorithms that tolerate negative sinogram 

values such as the ‘Shifted Poisson  Expectation Maximisation’ algorithm (Ahn & Fessler, 

2004). Further research into the application of statistical image reconstruction in the context 

of low count TSPO PET imaging is warranted, particularly considering the potentially 

favourable image noise properties of such algorithms at low counts. 

Average voxel coefficient of variation varied with respect to the product of grey matter 

activity concentration and frame time in a non-linear manner. A mathematical ‘power law’ 

function was fitted to the plotted data points. A good quality fit was obtained for both FBP 

and OSEM data- assessed visually and by the sum of squared differences (≤10
-11

). An 

implicit, and somewhat unrealistic, assumption made during the analysis of these data was 

that the relative noise in the images was not influenced by count rate dependent effects, or in 

other words, that the NECR curve was linear and the effects of scatter, randoms and dead-

time losses were negligible. Therefore, further analysis was carried out in which the activity 
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concentration in grey matter was scaled by a factor that took into account the noise equivalent 

count rate at each frame.  

Although theoretically more appealing, the ratio of NECR to ideal true count rate 

response was relatively flat over the range of activity concentrations studied (slope ≈ -

0.0039), and the modified ‘NECR noise model’ produced curve fits of similar quality and 

appearance (but slightly different in scale) to the simpler noise model. The image noise data 

available therefore did not allow a rigorous assessment of the accuracy of the modified 

‘NECR noise model’, however for studies in which the NECR curve does deviate 

substantially from the ideal count rate response line, it could potentially yield more accurate 

estimates of relative image noise.  

The fitted noise models allow image voxel noise, and noise for three regions of 

interest, to be calculated rapidly for any arbitrary grey matter tissue activity concentration. 

This makes the models especially useful as an adjunct to compartmental modelling for image 

quantification of TSPO PET tracers, where it is desirable to know the noise at each point in a 

tissue TAC. It is important to note that the models are limited to the specific PET geometry, 

and the data processing and reconstruction algorithms that were used to generate the data. In 

addition, the models are only applicable to approximately uniform distributions of activity 

(i.e. not to focal ‘hot’ lesions) and only within the range of activity concentrations studied 

(≈0.36 – 12 kBq/mL). 

In addition to the problem of overestimation bias, the non-normality of the OS-EM 

reconstructed image data might limit the accuracy of the analytical noise model in the context 

of compartmental modelling. Although the noise model predicts the voxel (or region) %CoV, 

it does not predict the skewness, and a Gaussian distribution is typically assumed. The noise 

model may still be suitable for estimating appropriate weighting factors for the least-squares 

fitting of compartmental model parameters, where it has been shown that the effect of using 

of incorrect but ‘reasonable’ weighting factors on bias and precision of estimated [
11

C]-

PK11195 kinetic parameters is negligible (Yaqub et al., 2004). Due to the difficulties of 

obtaining quantitatively accurate TACs with the OS-EM algorithm and the data available, 

OS-EM was not investigated further in this work. 

Analysis of the variance of estimated kinetic parameters for a compartmental 

modelling task showed that the fitted analytical noise model could provide very similar 

estimates of parameter uncertainty to the 40 GATE simulation noise realisations for a [
11

C]-
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PK11195 dynamic study. There was no statistical evidence that the two methods produced 

different variances (p=0.1).  

The effect of intrinsic radioactivity from lutetium-176, found in the commonly used 

PET detector materials of LSO and LYSO, was not investigated here. As discussed in 4.1.6, 

intrinsic singles counts increase the random coincidence rate and may become a significant 

source of noise when imaging at very low activity concentrations. Further research into the 

effects of intrinsic detector count rates on minimum detectable activity concentrations is 

required to address this issue, especially in the context of the low brain tissue concentration 

of TSPO radiotracers like [
11

C]-PK11195. 

4.3.6  Conclusions 

Relative image noise at the voxel and ROI level was found to be well represented by a 

Gaussian function, with minimal skewness and kurtosis, for images reconstructed with 

filtered back projection. Images reconstructed with the ordered subset expectation 

maximization algorithm demonstrated a strong positive skew of voxel values, with a 

dependence on total collected counts, and was therefore not well described by a Gaussian 

function. Any noise model that assumes a normal distribution of image values is therefore 

potentially inaccurate for OS-EM reconstructed images. 

The average voxel %CoV varied according to the product of phantom activity 

concentration and acquisition time. A power law, of the form y=ax
b
 was found to fit the data 

well, with the parameter ‘b’ taking the value -0.485484 for FBP reconstructions, and -

0.417817 for OS-EM reconstructions. Information about the NECR for each simulated 

dynamic frame was incorporated into the noise model, however the ratio of NECR to an ideal 

linear count rate response was found to vary over a narrow range (0.75 – 0.8) for all count 

rates in the simulations, and the effect on the noise model was therefore small. 

Validation of the analytical noise model for the purpose of studying the effects of TAC 

noise on compartmental parameter estimation was achieved by comparing the precision of 

parameter estimates derived from the original 40 independent [
11

C]-PK11195 GATE 

simulations, with 40 synthetic noisy [
11

C]-PK11195 TACs generated using the noise model. 

There was no statistical evidence that the variances of fitted kinetic parameters were 

different, therefore it was concluded that the analytical noise model provides an accurate 

estimation of TAC noise, within the range of tissue activity concentrations studied. 
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Chapter 5 Investigation of the Factors that Affect 

Quantitative Reliability for TSPO PET 

5.1  Introduction 

Quantitative positron emission tomography (PET) imaging with the 18 kilodalton 

(18kDa) Translocator Protein (TSPO) ligand [
11

C]-PK11195 has proven challenging, due to 

low brain uptake and high non-specific binding. To place the low brain uptake of [
11

C]-

PK11195 in the context of other commonly encountered (non-TSPO related) neurological 

radiotracers, the tissue Time Activity Curves (TACs) in humans for four different 

neurological positron emission tomography (PET) radiotracers were obtained from the 

following published sources: 

 [
18

F]-Fluoro-DOPA (FDOPA) in normal striatum (Huang & Hoffman, 1991). 

 N-methyl-[
11

C]-2-(4-methylaminophenyl)-6-hydroxybenzothiazole (also known as 

Pittsburgh Compound-B, or ‘PIB’) in the posterior cingulate in an Alzheimer’s 

Disease patient (Price, Ziolko, & Mathis, 2005). 

 2-[
18

F]-fluorodeoxy-D-glucose (FDG) in normal brain cortex (Graham, 2002). 

 [
11

C]-R-PK11195 in normal grey matter (Kropholler et al., 2005). 

The last reference provided the TAC for the Monte Carlo simulations reported in this 

study. A second TAC was generated for PK11195 with the kinetic parameter ‘k3’ increased by 

a factor of 2.5, which approximates the pathological situation corresponding to a moderately 

increased level of neuroinflammation, using the published kinetic parameters of Kropholler et 

al. (2005). 

A wide range of injected doses are reported in the literature- especially for the carbon-

11 labelled tracers examined here- therefore to facilitate a meaningful comparison, all 

fluorine-18 tracer TACs were normalised to an injected dose of 185 MBq and all carbon-11 

tracer TACs were normalised to an injected dose of 555 MBq. Where a range of injected 

doses was specified by the authors, an average figure was assumed for the displayed TAC. All 

TACs described above are plotted on the same axes in Figure 5.1. Data are not decay 

corrected. 
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Figure 5.1. Typical tissue time-activity (including radioactive decay) curves for four neurological PET tracers, 

including [11C]-PK11195. All curves normalised to an injected dose of 185 MBq for fluorine-18 and 555 MBq for carbon-11. 

The above TACs illustrate that the level of brain radioactivity concentration for [
11

C]-

PK11195 is substantially lower than for the other non-TSPO brain imaging tracers. Relative 

image noise is therefore expected to be higher, especially at later time points after injection. 

Non-specific binding of [
11

C]-PK11195 in brain tissue is also known to be high, relative to 

the specific binding, which further complicates the quantification of TSPO density with this 

tracer.  

The use of a carbon-11 radiolabel also contributes to the lower tissue activity 

concentration values observed at later time points when compared to fluorine-18 labelled 

tracers. Although patient radiation dosimetry considerations may permit the injection of 

higher doses of carbon-11 TSPO tracers (Brown et al., 2007; Hirvonen et al., 2010), there are 

other factors that limit the quantity of tracer that may be injected, such as staff radiation 

safety (Towson, 2003), cyclotron production yield, and the need to inject a sufficiently small 

mass of ligand consistent with tracer principles (Hume et al., 1998). For these reasons, 

injected doses above 800 MBq are uncommon, and may not completely compensate for the 

loss of counts due to decay.  

Expression of the TSPO molecule in the brain occurs in response to 

neuroinflammation, both on the outer mitochondrial membranes of resident microglia, and 

also on invading blood-borne cells in the case of focal blood-brain barrier disruption. 

Autoradiographic quantification of [
3
H]-R-PK11195 binding in Multiple Sclerosis (MS) 
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affected brain tissue was reported (Banati et al., 2000) and revealed an increase in binding of 

between 3.5 – 7 times over healthy control brain tissue. The 7:1 ratio of binding was only 

found in focal MS plaques associated with the presence of macrophages and probable blood-

brain barrier disruption, whereas the 3.5:1 ratio of binding was reported for the white matter 

of MS patients compared to healthy controls. Another study reported specific binding of [
3
H]-

PK11195 in the temporal lobe tissue of elderly Alzheimer’s Disease subject to be 

approximately twice that of age-matched normal controls (Diorio, Welner, Butterworth, 

Meaney, & Suranyi-Cadotte, 1991). Similarly, autoradiography data (Kumlien, Hilton-

Brown, Spannare, & Gillberg, 1992) provides evidence of a two-fold increase in specific 

[
3
H]-PK11195 binding in the temporal lobes of epilepsy patients. By comparison, a study of 

the binding of [
3
H]-2-(4-Methylaminophenyl) Benzothiazole (an amyloid binding compound 

similar in structure to Pittsburgh compound-B) to post-mortem brain tissue homogenate 

demonstrated a ten-fold increase in frontal lobe grey matter binding for subjects with 

Alzheimer’s disease over normal controls, 94% of which was specific binding to amyloid 

(Klunk et al., 2003). 

These data indicate that increases in TSPO expression in the brain that might be 

expected in the presence of disease are relatively subtle (e.g. <3 fold), in comparison to the 

other successful ‘positive signal’ PET tracers like amyloid imaging agents, particularly for 

non-focal pathology without blood-brain-barrier disruption. The effects of trying to detect a 

subtle increase in TSPO expression in the presence of low image SNR are illustrated in the 

following figure, taken from a recently published paper on the use of [
11

C]-Vinpocetine as a 

TSPO tracer for measuring TSPO expression in normal ageing and Alzheimer’s disease 

(Gulyas et al., 2011): 
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Figure 5.2. Spectra of voxel intensity values, normalised to injected dose and body weight, for young healthy 

adults, subjects with Alzheimer’s disease and age-matched non-demented subjects. Figure taken from Gulyas et al., 2011. 

Considerable overlap in voxel values between the three subject groups is apparent, due 

to a combination of statistical noise as well as inter-individual physiological variations and 

non-TSPO-specific tissue uptake, but also due to the (probable) modest difference in TSPO 

expression between the three groups. Precision of quantitative measurements of TSPO 

expression are therefore highly relevant, both in terms of the sensitivity of the test to 

pathological changes in an individual subject or patient, and also in terms of obtaining 

statistically powerful group comparisons in studies with limited subject numbers. 

In the preceding chapters, considerable attention was devoted to the task of developing 

computational tools for the ultimate purpose of estimating the relative voxel noise that is 

present in [
11

C]-PK11195 PET scans of the human brain. This chapter describes experiments 

where these tools were employed for their intended purpose.  

5.2  Aim 

The aim of this study was to investigate the effects of varying brain tracer 

concentration, region-of-interest size, radionuclide half-life and kinetic model complexity on 

the precision of kinetic parameter estimation, in the context of TSPO PET imaging. 
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5.3  Method 

A noise-free reference tissue TAC was defined using the reference [
11

C]-R-PK11195 

TAC from 4.2.4.1, described by a two-tissue compartment four-parameter compartmental 

model, referred to hereafter as the ‘2TCM’. The ‘ground truth’ parameter values of K1, k2, k3 

and k4 for this reference TAC were known. A second reference TAC was generated by fitting 

a one-tissue compartment two-parameter compartmental model (1TCM) to the above 

reference TAC. Although not a perfect fit to the original TAC, this second TAC served as a 

reference for which the values of the two kinetic parameters (K1 and k2) that described it were 

known. Both reference TACs and their corresponding kinetic parameters are presented in the 

following graphs and table (Figure 5.3 Figure 5.4, Table 5.1). 

 

Figure 5.3. Noise-free reference TAC, described by a 2TCM.  
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Figure 5.4. Noise-free reference TAC, described by a 1TCM. 

 

Table 5.1. Reference TAC kinetic parameter values. VB = blood volume fraction. VT = total distribution volume. ND 

= Not Defined. Blood volume was set to 7.1% according to the findings of Kropholler et al. (2005). 

Model VB K1 k2 k3 k4 VT k3/k4 

2TCM 0.071 0.05 0.15 0.06 0.04 0.8333 1.5 

1TCM 0.071 0.05 0.06 ND ND 0.8333 ND 

 

In order to study the effects of image noise on the precision of kinetic parameter 

estimation, the empirically determined models for grey matter TSPO image noise were used 

to calculate a standard deviation for each point on the TACs, based on the tissue activity 

concentration (after radioactive decay to mid-frame) and the frame acquisition time. All noise 

models used were of the type that incorporated the NECR information (see 4.3.4.2). The 

same 24 frame temporal sampling schedule used during the GATE simulations was assumed 

(see 4.2.4.1). In this way, TAC noise was calculated for both 2TCM and 1TCM TACs, for all 

combinations of the following variables, at the levels indicated in the following table (Table 

5.2). Image reconstruction with the filtered back projection algorithm was assumed for all the 

subsequent analysis. 
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Table 5.2. Variables considered for their effect on TAC noise and precision of estimated kinetic parameters. 

Variable Levels 

Tissue tracer concentration relative to 

PK11195 reference TAC 

0.5, 1, 2, 3, 5  

ROI size 54mL (large), 1.7mL (medium), 0.53mL (small) 

Radionuclide half-life 20.38 min (carbon-11), 109.8 min (fluorine-18) 

Injected dose fluorine-18 = 185 MBq only, carbon-11 = 370 

MBq and 555 MBq 

 

Tissue activity concentration was determined by a TAC scaling factor relative to the 

reference PK11195 TAC, with values ranging from 0.5 to 5. The ROI sizes refer to the 3 

ROIs for which the noise model was defined, and are shown in appendix 7.12. Radionuclide 

half-life was included at two levels, chosen to correspond to the two most commonly 

encountered radionuclides in TSPO PET tracers: carbon-11 and fluorine-18. The difference in 

branching ratio between the two radionuclides, which is <3%, was not taken into account in 

this study.  

Analysis of the injected doses reported in the literature for carbon-11 and fluorine-18 

labelled TSPO tracers in humans, from 1995 to 2010, showed a median carbon-11 dose of 

370 MBq and an average of 433 MBq, with a range of 222 MBq to 888 MBq (Figure 5.5). 

The distribution was very spread-out, with peaks occurring at around 300MBq, 400MBq, 

700MBq and 900MBq. A much narrower spread of injected doses was reported for fluorine-

18 labelled TSPO tracers, with a median dose of 173 MBq and a mean of 183 MBq. 

Therefore the noise calculations corresponding to the fluorine-18 half-life assumed an 

injected dose of 185 MBq (5 mCi), while for carbon-11, two injected doses were studied: 370 

MBq (10 mCi) and 555 MBq (15 mCi). 
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Figure 5.5. Histogram of injected doses reported in the literature for all carbon-11 labelled TSPO tracers, from 

1995 to 2010. 

A total of 45 noise profiles were therefore generated for each of the 2 reference TACs 

(90 noise profiles altogether), with each vector containing the standard deviation at each 

frame point for a given combination of tissue activity concentration, ROI size, radionuclide 

half-life and injected dose. 

Each TAC and noise profile was read into the PMOD software package, along with the 

original [
11

C]-PK11195 arterial input function used in the GATE simulations (see 4.2.4.1). 

Simulations for each noise profile were run using the in-built Monte Carlo simulation tool in 

PMOD, for 1000 runs each. In the case of the 2TCM reference TAC, the parameters K1, k3 

and k4 were estimated at each run, while a constant K1/k2 ratio of ⅓ was assumed. Fixing the 

K1/k2 ratio is based on the findings of Kropholler et al. (2005) that fixing the K1/k2 ratio to 

that of whole cortex grey matter improves PK11195 parameter estimate reliability for noisy 

data. The ratio of 1/3 was taken from the known 2TCM reference parameters in Table 5.1 

(K1=0.05 and k2=0.15). For comparison, the published grey matter values of Kropholler et al. 

were K1=0.06 and k2=0.16). For the 1TCM reference, both parameters K1 and k2 were 

estimated at each run.  

The following steps were carried out by the PMOD Monte Carlo program during each 

simulation. First, an initial fit of the kinetic parameters to the noise free reference TAC 

produced reference parameter values (i.e. the true values for each parameter) against which 

all subsequent estimations would be compared. Next, 1000 noisy TACs were generated using 
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the supplied noise profile for each frame time point. Third, the kinetic parameters were fit to 

each noisy TAC in turn. From the 1000 fitted parameter values, the coefficients of variation 

for each fitted kinetic parameter, and for the derived parameters total distribution volume (VT) 

and k3/k4 ratio (2TCM only) were calculated for each combination of tissue activity, ROI size 

and radionuclide. An example of the 1TCM reference TAC, with two noise profiles added, is 

shown in Figure 5.6 below.  

 

 

Figure 5.6. Reference TACs (1TCM) showing the calculated standard deviations at each frame (error bars) for a 

carbon-11 half-life and small ROI size. Noise associated with tissue activity concentrations of 1 x PK11195 (A) and 5 x 

PK11195 (B) are shown. 
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5.4  Results 

In Figure 5.7, the coefficient of variation for the ratio of k3/k4 is plotted against tissue 

activity concentration for the large region of interest. The low relative noise associated with 

the large ROI produced high precision (<5 %CoV) estimates of this binding parameter. An 

injected dose of 555 MBq of carbon-11 tracer produced very similar precision of parameter 

estimates to 185 MBq of fluorine-18, while reducing the carbon-11 injected dose to 370 MBq 

reduced the precision (i.e. increases CoV) by approximately 20%.  

 

Figure 5.7. Coefficient of variation of k3/k4 ratio versus relative grey matter tissue activity concentration for a large 

ROI, for 185 MBq of fluorine-18, 370MBq and 555Mq of carbon-11. 

In Figure 5.8 below, the coefficient of variation for the binding parameter known as 

total distribution volume (VT) is plotted against tissue activity concentration for the same 

large region of interest. Since VT may be calculated from both the 2TCM and the 1TCM, the 

results for both compartmental models are plotted on the same axes for comparison. Again, 

fluorine-18 and carbon-11 produced similar precision of parameter estimates at injected doses 

of 185 MBq and 555 MBq respectively, with a small (≈20%) reduction in precision for the 

lower carbon-11 dose of 370 MBq. Reducing the complexity of the kinetic model from 

2TCM to 1TCM, resulted in an increase in precision (i.e. reduction in CoV) of VT by ≥ 70% 

at each point. This is consistent with the smaller number of parameters that must be fitted to 

the 1TCM compared to the 2TCM. 
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Figure 5.8. Coefficient of variation of total distribution volume (VT) versus relative grey matter tissue activity 

concentration for a large ROI, for 185 MBq of fluorine-18, 370MBq and 555Mq of carbon-11. 

Evidence that the precision of VT and k3/k4 ratio, for the large ROI, are well correlated 

is presented in Figure 5.9 below. A correlation coefficient of r> 0.99 was obtained in each 

case. Fitting a straight line to each plot yielded a y-intercept of 0 and proportionality constant 

equal to 1.67. 

 

Figure 5.9. %CoV of VT plotted against %CoV of k3/k4 ratio for each radionuclide and injected dose.  

It is worth pointing out that the accuracy of the parameter estimates is not in question 

here, and is expected to be high in the case of both compartmental models, because a separate 

reference TAC was defined for each model. In other words, the appropriateness of a 1TCM or 
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2TCM is not being evaluated here, only the precision of the parameter estimates in each case. 

To confirm and illustrate this point, the bias of the average parameter estimates, for k3/k4 ratio 

and VT, is plotted against the % coefficient of variation for each of the compartment models 

and injected doses (Figure 5.10). Bias was defined as the relative difference between the 

average fitted parameters values (averaged over the 1000 simulation runs) and the known true 

parameter values, expressed as a percentage. Despite some small fluctuations in the 

parameter values about the true value, and a slight increase in the spread of parameters values 

as noise increases, a maximum absolute error of only 0.11% was observed. 

 

Figure 5.10. Bias, defined as the percentage difference of the average estimated parameter (over 1000 simulation 

runs) from the known true value of that parameter, plotted against %CoV. 

In Figure 5.11 Figure 5.16, the coefficient of variation for the derived parameters of 

total distribution volume (VT) and k3/k4 ratio are plotted against tissue activity concentration 

for the remaining ROI sizes that were investigated. Missing data points correspond to those 

combinations of variables that returned a parameter %CoV >10
2
, or where the noise level was 

too high to produce any meaningful estimates of the kinetic parameters. 
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Figure 5.11. Coefficient of variation of total distribution volume (VT) versus relative grey matter tissue activity 

concentration for a medium size ROI.  

 

Figure 5.12. Coefficient of variation of total distribution volume (VT) versus relative grey matter tissue activity 

concentration for a small size ROI. 
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Figure 5.13. Coefficient of variation of total distribution volume (VT) versus relative grey matter tissue activity 

concentration for voxel-level noise. 

 

Figure 5.14. Ratio of total distribution volume (VT) %CoV for the 2TCM versus the 1TCM. Average ratio of 2TCM 

CoV to 1TCM CoV was 0.78. 
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Figure 5.15. Coefficient of variation of k3/k4 ratio versus relative grey matter tissue activity concentration for a 

medium size ROI. The k3/k4 ratio is defined only for a 2TCM. 

 

Figure 5.16. Coefficient of variation of k3/k4 ratio versus relative grey matter tissue activity concentration for a 

small size ROI. 

For the binding parameter of VT, the simpler 1TCM returned consistently more precise 

estimates than the more complex 2TCM (Figure 5.11 and Figure 5.12). The 1TCM produced 

estimates of VT with a CoV that were, on average, 78% lower for each tissue concentration 

and half-life studied (Figure 5.14). Interestingly, the 1TCM was able to produce an estimate 

of VT with similar precision to the 2TCM, but with approximately 1/10
th

 the level of tissue 

activity concentration, for medium and large ROIs. A similar comparison was not available 

for the small ROI, because the 2TCM was unable to produce reliable parameter estimates at 

this noise level (%CoV >10
3
), however, the 1TCM was able to estimate VT, with a precision 

of ≤6.2 %CoV even for the small ROI, and at each tissue activity level and half-life studied. 
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Voxel-level noise was too high to obtain reliable parameter estimates from the 2TCM, and the 

1TCM only produced reliable (<15% CoV) estimates at tissue concentrations equal to or 

greater than PK11195.  

It is important to note that this study is not directly concerned with the suitability of 

the parameter VT for the purposes of quantifying TSPO density with a particular ligand, but 

only with the precision with which this parameter (and others) may be estimated. 

The effect of ROI size on parameter %CoV is illustrated in the plot below (Figure 

5.17), for the three ROIs studied. Region of interest size has a large and non-linear effect on 

parameter %CoV. Although this effect is clearly important, choice of ROI size is usually 

dictated by other factors. 

 

Figure 5.17. Precision of VT estimates versus ROI volume, for the 1TCM and carbon-11 (555MBq) radionuclide. 

 

5.5  Discussion 

New PET radioligands for the TSPO are typically evaluated with respect to the 

prototypical ligand [
11

C]-PK11195, with the aim of addressing the well documented 

shortcomings of this tracer. In particular, the low brain penetration of PK11195 and high non-

specific binding have combined to limit the precision with which changes in TSPO 

expression in the brain may be quantified with PET. Therefore new TSPO tracers with higher 

brain uptake, and lower non-specific binding than PK11195 are sought for the primary 

purpose of improving the precision of TSPO quantification. This study sought to investigate 
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and quantify the effects of varying brain tracer concentration, region-of-interest size, 

radionuclide half-life and kinetic model complexity on the precision of kinetic parameter 

estimation, in the context of TSPO PET imaging, and to evaluate their relative influence on 

this precision. 

The grey matter time-activity curve and plasma input function for [
11

C]-PK-R-11195 

were used as kinetic ‘templates’ for this study, however new TSPO PET ligands are not 

necessarily expected to follow the kinetic example of PK11195 in this way. Kinetic properties 

(tissue uptake, clearance rates etc.) themselves can influence the relative image noise at each 

time point in the TAC, by determining how much radioactivity is present in tissue at each 

time. Therefore by keeping the shape of the tissue TAC constant
1
 for each combination of 

variables studied, the effects of tissue activity, radionuclide half-life and compartmental 

model complexity could be studied in isolation from this potentially confounding factor.  

Tissue radioactivity concentration was studied here by simply scaling each point in the 

tissue TAC by a factor relative to the original [
11

C]-R-PK11195 TAC. Using this approach, 

the tissue activity concentration may be conceived of as an increase (or decrease) due to 

different tracer uptake properties, or to injecting a higher (or lower) dose of tracer. It could 

potentially be thought of as relating to improved (or reduced) scanner sensitivity, insofar as a 

change in sensitivity translates directly to a change in the NECR performance of the system 

at the relevant counting rates. Since the aim of this study was not to investigate the 

performance of specific TSPO PET tracers, but rather to draw more general conclusions 

about the factors that might affect TSPO PET quantification, the above two methodological 

simplifications were considered to be justified. 

The results obtained from this study indicate that there is a non-linear, inverse 

relationship between tissue activity concentration and kinetic parameter %CoV. At the 

injected dose levels studied, both radionuclides provide broadly similar parameter precision, 

with the higher carbon-11 dose of 555 MBq yielding very similar parameter precision to an 

injected dose of 185MBq of Fluorine-18. The lower carbon-11 injected dose of 370MBq is 

associated with slightly higher (≈ 20%) parameter %CoV. It can be concluded from this that, 

at typically injected doses and for dynamic scans lasting 60 minutes or less, and all else being 

                                                 
1
 Two reference tissue TACs were used in this study, which were slightly different in shape due to the 

different compartmental model parameters used to describe them. However they both followed the general 

shape of the original PK11195 grey matter TAC closely, so may be considered ‘constant’ for the purposes of this 

argument. 
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equal, fluorine-18 labelled tracers yield the same precision estimates of kinetic parameter as 

carbon-11 labelled tracers. In terms of equivalence of parameter precision, 555 MBq of 

carbon-11 tracer is approximately equivalent to 185 MBq of fluorine-18 tracer. 

A survey of the TSPO PET literature from 1995 to 2010 suggested that there was 

considerable variation in the injected dose of carbon-11 labelled TSPO tracers, ranging from 

222 MBq to 888 MBq. The results obtained here suggest that, all else being equal, such a 

wide range of injected doses could lead to significant differences in kinetic parameter CoVs. 

Therefore, for carbon-11 labelled TSPO tracers, careful consideration should be given to the 

injected dose with consideration given to the expected scan duration and even the sensitivity 

of the PET scanner. Radiation dosimetry for the carbon-11 labelled TSPO ligands is expected 

to be comparable to other carbon-11 labelled tracers (5.1 μSv/MBq mean effective dose for 

[
11

C]-R-PK11195 (Hirvonen et al., 2010) and 6.6 μSv/MBq mean effective dose for [
11

C]-

PBR28 (Brown et al., 2007)). Further research into the effects of injected dose, over a wider 

range than studied here, is warranted.  

Other factors not studied here may favour fluorine-18 as the preferred choice of 

radiolabel, such as the economic or logistical advantages of manufacturing and distributing 

tracers to remote imaging sites. The longer half-life of fluorine-18 also makes it more suited 

to imaging beyond 1 hour post injection. Radiotracers with high affinity, for example, often 

require longer imaging times to measure receptor parameters than similar tracers of lower 

affinity, due to the increased time required to properly capture the uptake, equilibrium and 

washout phases of the ligand-receptor interaction (Laruelle et al., 2003).  

Complexity of compartmental model had a strong influence on the precision of the 

binding parameters. For example, the 1TCM yielded CoV of VT estimates that were at least 

70% lower than for the 2TCM, while the 1TCM CoV of VT estimates were at least 80% lower 

than 2TCM estimates of k3/k4 ratio (see Figure 5.11 and Figure 5.12). 

These findings suggest that model complexity is a greater determinant of quantitative 

precision than the image noise (i.e. due to brain uptake, or total counts collected). Similar 

findings were reported by Koeppe et al. who investigated the in-vivo kinetic behaviour of 

[
11

C]-flumazenil, a radioligand for the central benzodiazepine receptor (Koeppe et al., 1991). 

The authors reported that the: “variability in the estimates of the receptor-related parameters 

is far more dependent upon the model configuration employed”, and noted parameter CoV 

was reduced to levels “as good as or better than” those seen in other PET brain scanning 
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procedures, including 
18

F-FDG metabolism studies (typically associated with very high brain 

uptake of tracer), when a simple two-parameter 1TCM was employed. Therefore the findings 

of the present study are entirely consistent with what is known about the effects of model 

complexity on parameter precision. 

In the example cited above, a 1TCM was found to be a suitable model for the receptor 

binding characteristics of [
11

C]-flumazenil principally because the tracer's high rate of 

specific binding, and low levels of non-specific binding, meant that the specific component of 

the total distribution volume (VT) was dominant, and could therefore provide a reasonable 

estimate of Bmax (receptor density). Additionally, the 1TCM was found to provide a better fit 

to the TAC for brain regions containing high concentrations of the target receptor, due to the 

relatively rapid equilibration of the free and specifically bound tissue compartments with 

respect to the PET scan duration and the K1 and k2 transport rates- which is a requirement for 

simplifying a 2TCM to a 1TCM. Regions with a lower concentration of target receptor were 

not described as well with the 1TCM. 

The significance of these findings for TSPO PET lies in the ongoing research to find a 

replacement ligand for [
11

C]-PK11195. As discussed in the introduction to this chapter (see 

5.1), the density of TSPO expression in the normal human brain is low, and the increase in 

TSPO expression typically associated with neurological disease is relatively modest. This 

suggests that the specific distribution volume (V3) of any TSPO ligand will likely be a small 

fraction of the total distribution volume (VT) for all except those ligands with extremely low 

non-specific binding, thereby ruling out analysis with a simple 1TCM.  

If a 2TCM is required, then the results of this study indicate that reasonably precise 

estimates of k3/k4 (≤ 20% CoV) may be obtained for small regions of interest (0.53 mL) if 

tissue radioactivity concentration is increased by at least a factor of 2 over that observed with  

555 MBq of [
11

C]-PK11195 (see Figure 5.16). This could be achieved, for example, through 

the use of a TSPO ligand that demonstrates approximately twice the brain uptake of 

PK11195. Fitting of 3 parameters was also assumed (fixed K1/k2 ratio) in this analysis.   

Alternatively, if a (hypothetical) TSPO ligand could be found with kinetic properties 

conducive to analysis with a 1TCM, the findings of the present study suggest that this would 

go as far or further towards improving quantitative precision than measures aimed only at 

increasing brain tissue radioactivity concentration (e.g. higher brain uptake ligands or higher 

injected dose). Referring to the findings of Koeppe et al. (1991), and considering of the 



196 

 

established principles of tracer kinetic modelling (Huang & Phelps, 1986; Laruelle et al., 

2003), radiotracers that may be described with "simple models” that are suitable for 

estimating the process of interest should, as far as possible, have:  

 extremely low non-specific binding 

 tissue kinetics that are related only to the process of interest  

 low extraction fraction- to reduce dependence of the measured parameters on 

blood flow 

 rapid equilibration of the free and specifically bound tissue compartments with 

respect to the PET scan duration, and the K1 and k2 transport rates, allowing 

these compartments to be merged into a single tissue compartment 

 trapping of the tracer in a slow turnover compartment after tracer has gone 

through the process of interest  

 high specificity to the process of interest  

 fast plasma clearance to reduce blood volume effects and to reduce time 

required to reach equilibrium 

The above requirements are often contradictory and can be difficult to satisfy 

completely in one tracer. Lipophilicity is an important property in that it is associated with the 

ability of a ligand to cross the blood-brain barrier (Clark, 2003). Affinity for the target is an 

important ligand property. From a kinetic modelling perspective, the required ligand affinity 

depends on the concentration of target sites, with low concentration of target generally 

requiring relatively higher affinity ligands, and vice-versa (Laruelle et al., 2003). Maximising 

the ratio of specific to non-specific binding is crucially important to achieving reliable 

quantification, and this ratio increases as Bmax (target receptor density) and ligand affinity 

increase, and as non-specific binding decreases. To the extent that the TSPO may be 

considered a ‘low receptor density’ target in comparison to other PET receptor targets, then 

high affinity and low non-specific binding are arguably more important than for other PET 

tracers, especially if a TSPO tracer is to be considered for 1TCM analysis. However, if higher 

ligand affinity is also associated with higher lipophilicity, then this could lead to higher non-

specific binding, potentially negating any benefit. All else being equal, an increase in ligand 

affinity will generally require an increase in scan duration to properly capture the uptake, 

equilibrium and washout phases of the kinetics, which would further favour the use of 

fluorine-18 as the preferred radiolabel for TSPO tracers. Therefore, the low target density of 
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TSPO in the brain, and the (possibly) subtle changes in TSPO density that accompany 

disease, make this a particularly challenging target for quantification. 

Several groups have reported on the use of the simplified reference tissue model 

(SRTM) (Lammertsma & Hume, 1996) for the analysis of [
11

C]-PK11195 PET data. Kinetic 

models based on reference tissues have several advantages: they do not require an arterial 

plasma input function, making PET procedure less invasive and less labour-intensive, and 

they may be applied to individual image voxels for parametric image generation (Gunn, 

Lammertsma, Hume, Myers, et al., 1997). Despite the difficulty associated with defining an 

anatomically discrete TSPO reference region (i.e. free from specific binding), success has 

been reported with the application of clustering techniques for defining a subset of brain 

tissue reference voxels (Turkheimer et al., 2007; Yaqub et al., 2012). Reference tissue models 

were not investigated in this study, however in light of the findings already discussed, it is 

worth noting that an underlying assumption of the SRTM is that the tracer kinetics in the 

target region are described by a 1TCM (Ikoma et al., 2008; Lammertsma & Hume, 1996). 

Bias introduced by the violation of this (and other) assumptions is likely to be present 

consistently across subjects, and has been considered by some to be an acceptable trade-off 

for the other advantages (non-invasiveness, parametric images etc.)  of the reference tissue 

methods (Banati, 2002; Kropholler et al., 2006). 

In the event that a TSPO tracer were found that could satisfy the requirements for 

analysis with a simple 1TCM, the results of the present study indicate that a reduction in 

brain tissue uptake relative to [
11

C]-PK11195 might be acceptable, at least in terms of 

obtaining reliable parameter estimates at the ROI level. For example, a TSPO ligand that 

shows lower brain uptake than PK11195 might produce more precise binding parameter 

estimates if it could be adequately described by a 1TCM. However, a limitation of the noise 

model used in this study is relevant here: no account was taken of the effects of intrinsic 

radioactivity in the PET detectors, nor was the minimum detectable activity (with or without 

intrinsic radioactivity) investigated for the simulated scanner and image reconstruction 

algorithm used. Further research is therefore required to answer the question: what is the 

lowest actual tissue activity concentration that may be used to derive quantitative kinetic 

parameters for TSPO PET, and how does scanner sensitivity and intrinsic detector 

radioactivity affect this minimum level? This is related to the issue of the effects of variable 

injected doses of carbon-11 labelled TSPO tracers discussed above, and could potentially be 

studied in combination with this issue.  
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The issue of inter-subject variation in the apparent affinity of many ‘second 

generation’ TSPO ligands was not included in this analysis. A recent study (Guo, 2012) 

predicted the performance of several second generation TSPO radioligands (
18

F-PBR111, 

11
C-PBR28 and 

11
C-DPA713) using a biomathematical model. In-silico (i.e. computer 

modelling) and in-vitro information about the tracers was used to predict tissue TACs, a noise 

model (derived empirically from real ROI TACs) was applied, and binding parameter CoV 

was estimated for each tracer. Improved performance of all second generation ligands was 

predicted in terms of within-subject reproducibility of parameter estimates, and for between-

subjects disease characterisation type tasks. Nonetheless, the variable binding affinity of the 

second generation ligands required that the subject’s binding class be known prior to analysis.  

The present study bears some similarity to the one cited above, in that the potential of 

new TSPO tracers was evaluated in terms of predicted kinetic parameter precision. In the 

present study, consideration was given to the more general factors that influence the 

precision, whereas the study by Guo et al. dealt with specific second generation TSPO 

ligands, and the implications of the predicted parameter precision on their performance in 

longitudinal and disease characterisation studies. Given the findings presented here- that 

compartmental model complexity has a large influence on the precision of kinetic parameter 

estimates; potential exists to extend the work of both studies by using the biomathematically 

predicted tissue TACs for a large range of potential TSPO tracers to search for ligands that 

might meet the criteria for radiotracers amenable to analysis with simple models. Further 

validation and extension of the noise models derived in this work might also be useful, to 

cover a wider range of tissue uptake and counting rate scenarios. 

Pursuing new TSPO radioligands, predominantly on the basis of higher brain uptake 

than PK11195 in healthy subjects, has been criticised on pharmacological grounds (Luus et 

al., 2010). Evidence for more than one binding site for different TSPO ligands, and the 

possibility of additional TSPO binding sites found only in activated microglia, suggests that 

increased uptake in normal brain tissue alone is not necessarily indicative of a better ligand 

for measuring TSPO expression in disease. Luus et al. further argue that early screening of 

potential TSPO ligands may have missed potentially useful ones on the basis that they 

showed low affinity for the TSPO in the non-activated state. The motivation for finding a 

replacement for [
11

C]-PK11195 is to find a more sensitive marker of inflammatory disease in 

the brain, therefore the level of brain uptake is only one important factor that needs to be 
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considered, not only from a pharmacological point-of-view, but (as the findings of this study 

indicate) from an imaging quantification point-of-view. 

5.6  Conclusions 

The aim of this study was to investigate, within the context of TSPO PET imaging, the 

effects of varying brain tracer concentration, ROI size, half-life and kinetic model complexity 

on precision of kinetic parameters. The radioactivity concentration in brain tissue influences 

TSPO binding parameter precision in a non-linear manner, with more tissue ‘uptake’ being 

associated with more precise parameter estimates. This was true for all ROI sizes, injected 

doses and nuclide half-lives studied. Radionuclide half-life (20 or 110 minutes) is less 

important in determining parameter precision, however injected dose has an influence and 

further research into the effects of carbon-11 injected dose on quantitative precision for TSPO 

tracers is warranted. 

Complexity of the compartmental model used to analyse the PET data has a large 

influence on precision of binding parameters, with simpler models (i.e. fewer compartments 

and parameters) producing more precise estimates of binding parameters. Estimates of the 

binding parameter VT were on average 78% lower for the 1TCM compared to the 2TCM. 

The findings of this study support the idea that adequate quantification of TSPO 

expression in the brain might be achievable in principle, using a tracer with less brain uptake 

than [
11

C]-PK11195, if a simple one-tissue compartment two-parameter compartmental 

model could provide an adequate description of the observed brain tissue kinetics. However, 

given the already low tissue activity concentrations observed with [
11

C]-PK11195, the issue 

of minimum detectable activity, in the presence or absence of intrinsic detector radioactivity, 

and in combination with scanner sensitivity and optimization of image reconstruction 

algorithms requires further investigation to clarify this point. 

This study suggests that in the pursuit of more reliable TSPO binding  quantification, a 

more holistic approach should be taken that considers the various tracer kinetic properties 

that might improve image signal-to-noise ratio, and that lend themselves to analysis with a 

simple one-tissue compartmental model, rather than considerations of total brain uptake or 

non-specific binding as isolated factors. Similarly, if accurate predictions of tracer kinetics 

may be made from in-vitro data, as recent reports suggest, then an emphasis on the likely 

kinetic properties of novel TSPO ligands should be applied during screening. 
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Chapter 6 Major Conclusions and Future Work 

6.1  Major Conclusions 

The overall aim of this research was to investigate the effects of image signal-to-noise 

ratio on TSPO PET quantification. To this end, novel computational tools were developed 

and validated. This research describes for the first time the application of a purpose-built 

Microwulf ‘personal desktop’ cluster for large scale Monte Carlo simulations in medical 

imaging. The favourable cost-to-performance ratio of modern commodity computer 

components was exploited to achieve computational speeds on a single ‘desktop’ cluster that 

until recently were available only from large scale shared resource systems. 

Prior to this research, the relative contribution of model complexity to the reliability of 

parameter estimation compared with factors that more directly affect relative image noise 

(such as scanner sensitivity, radioactive half-life and injected dose) was unknown. This 

research has demonstrated that even at the relatively high image noise levels found in 

dynamic 18 kilodalton (18kDa) Translocator Protein (TSPO) positron emission tomography 

(PET) scanning, high precision of kinetic parameters is obtainable if the ligand kinetics in 

brain tissue may be adequately described by a simple one-tissue compartment kinetic model. 

Going from a 2 tissue compartment model to a 1 tissue compartment model has a similar 

effect on parameter precision as increasing tissue concentration (or scanner sensitivity, or 

injected dose- at least as far as these things are related linearly) by a factor of about 10. The 

significance of these findings relates to the search for better TSPO PET radioligands: it is 

important to consider total brain uptake and non-specific binding in conjunction with the 

tissue kinetic properties of novel TSPO ligands, rather than as isolated factors. 

6.1.1  High Performance Computer Clusters 

The first aim of this thesis was to investigate the potential of modern computer 

clusters and Monte Carlo simulation software as tools for measuring image noise in PET. 

Investigation was made of several different options available, including shared resource 

compute facilities and personal ‘desktop’ (a.k.a. Microwulf) clusters. Recent advances in 

personal computer (PC) hardware, and the evolution and proliferation of Beowulf-type 

commodity clusters made the personal ‘desktop’ cluster option attractive in terms of 

performance and cost. The feasibility of performing a full dynamic [
11

C]-PK11195 PET scan 
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simulation, with 40 independent repeats of each frame, using the GEANT4 Application for 

Tomographic Emission (GATE) Monte Carlo simulator, within a time period of less than 6 

weeks, was demonstrated using a cluster assembled from relatively inexpensive components. 

As far as the author is aware, this is the first reported use of a Microwulf type computer 

cluster in medical imaging research. 

6.1.2  Image Noise in PET 

A model of a PET tomograph was developed within the GATE simulation 

environment, to allow study of the effects of PET image noise in as realistic a manner as 

possible. The simulated scanner was modelled after several current generation clinical 

(human) PET systems in terms of detector geometry, material, size and performance. 

Validation was accomplished using modifications of the NEMA PET quality acceptance 

protocols for scanner resolution, sensitivity, scatter fraction and noise equivalent counting 

rate performance. Results indicated that performance of the simulated scanner was within the 

range of current generation PET systems. 

An analytical model that describes the image noise, at the voxel level and for several 

ROIs, as a function of tissue activity concentration and acquisition time, for radiotracers with 

uptake similar to [
11

C]-PK11195 in the brain, was empirically derived. Using the ‘gold 

standard’ of Monte Carlo noise measurements, the model was validated for the purposes of 

estimating kinetic parameter precision of a dynamic [
11

C]-PK11195 scan. It was concluded 

that the analytical noise models derived from Monte Carlo noise measurements provided 

accurate estimates of image noise in dynamic TSPO PET studies, for any combination of 

tissue activity concentration and acquisition time. 

6.1.3  Image Noise and Kinetic Parameter Precision for TSPO 

PET 

The effects of brain tissue activity concentration, ROI size, radioactive half-life, 

injected dose and compartmental model complexity were investigated for their effects on the 

precision of TSPO quantification. Precision of binding parameter estimates was greatly 

improved when tissue activity concentration was increased, and when the compartmental 

model complexity was reduced from a two-tissue compartment four-parameter to a one-tissue 

compartment two-parameter model. Binding parameters of equivalent precision were 

produced for carbon-11 and fluorine-18 tracers over an hour-long dynamic scan, assuming an 

injected dose of 185 MBq for the fluorine-18 tracer and 555 MBq for the carbon-11 tracer.  
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Research aimed at finding a replacement for [
11

C]-PK11195 has focussed on candidate 

ligands that show increased brain uptake (due usually to higher K1 or higher ligand affinity) 

than PK11195 and lower non-specific binding, in order to maximise image signal-to-noise. 

This research confirms that these are reasonable goals, however it has highlighted the equal 

important role of kinetic model simplicity (i.e. the number of parameters that must be 

estimated) in influencing the precision of binding parameter estimates. For example, less than 

10% coefficient of variation of the binding parameter of total distribution volume (VT) was 

achieved even at tissue concentrations one-half that of [
11

C]-PK11195. These findings suggest 

that ultimately, the usefulness of a TSPO tracer, at least in terms of the precision with which 

binding parameters may be estimated, is determined as much by the simplicity of the 

compartmental model that can describe it’s kinetics in the brain, as it is by the degree of 

uptake into the brain.  

The findings of this research therefore indicate that a broader consideration of the 

kinetic properties of novel TSPO radioligands is at least as important as the current focus on 

obtaining higher brain uptake, in the search for the next generation of TSPO PET tracers. The 

significant advantage, in terms of quantitative precision, conferred by the use of a one-tissue, 

two-parameter compartmental model rather than a more complex two-tissue, four-parameter 

model, should favour the use of TSPO ligands whose kinetics in the human brain might be 

adequately described with such a simple model, even if such a ligand should demonstrate 

similar or even lower brain uptake than the current reference ligand [
11

C]-PK11195. This 

implies a ligand with low non-specific binding, and a relatively rapid exchange of ligand 

from free to specifically bound compartments, even if this comes at the expense of slightly 

lower brain uptake than that of other candidate ligands. As far as the author is aware, no such 

TSPO ligands have been reported to date.   

6.2  Future Research 

From the outcomes of this research, the following areas are identified as either 

methodological improvements or as further avenues of inquiry. 

The use of low-cost commodity clusters in medical imaging research is an area of 

potential growth, due to the unprecedented cost-to-performance ratio of current systems. The 

peak simulation rate obtained from the cluster described in this thesis was approximately 36 

times slower than ‘real-time’, for a high-resolution digital brain phantom containing 10.26 

MBq, including attenuation modelling, but neglecting the parallel execution overheads. 
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Assuming that demand for efficient and realistic Monte Carlo simulations continues, these 

findings suggests that efficient job-splitting and output data merging will become an 

important area of research. Although these issues were effectively ‘side-stepped’ during this 

project (due to the relatively small data merging overheads with respect to the lengthy 

simulations that were undertaken), the issue is likely to become more important as processor 

speed increases or as the number of computing nodes employed in parallel is increased. 

Image reconstruction algorithm is well known to play an important role in determining 

image noise properties, and further research into the effects of image reconstruction algorithm 

and parameters in the context of TSPO brain PET imaging is warranted. The use of the 

relatively simple single-slice re-binning approach in this work could be extended to more 

commonly used Fourier re-binning approach, or to fully 3D reconstruction algorithms. Of 

particular interest are the findings that OS-EM produced a strongly skewed distribution of 

image voxel values at count levels typically found in all frames of a dynamic [
11

C]-PK11195 

study. The use of direct ‘4D’ reconstruction algorithms is an area that has also been shown to 

improve the quantification of binding parameters (Angelis et al., 2011; Matthews, Angelis, 

Kotasidis, Markiewicz, & Reader, 2010), but was not investigated here. 

The limits of PET with respect to activity detectability at very low count rates requires 

further exploration, particularly in the context of intrinsic lutetium-176 activity that is found 

in the detectors of many contemporary PET tomographs. The findings of this research 

suggest that adequate precision of binding parameters may be obtained even at lower tissue 

concentrations than that found with [
11

C]-PK11195, providing that the tissue kinetics may be 

adequately described with a one-tissue compartmental model. However the question of 

minimum detectable activity was not explored in this study, nor did the noise model 

developed for this study take account the effects of intrinsic detector radioactivity. A Monte 

Carlo investigation of detection and quantification limits at low count rates, including 

accurate modelling of lutetium-176 background and TSPO tracer distributions, could help to 

answer this question. 

Effects of positron range on image quality were ignored in this research. Simulation of 

positron interactions within the GATE software is possible, but requires much longer 

computation times than was considered feasible. Although the range in tissue for carbon-11 

and fluorine-18 positrons is expected to be small with respect to the spatial resolution of the 
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scanner simulated (<2 mm versus 6 mm), any effects due to this non-zero range would not 

have been captured in the data from this study. 



205 

 

Chapter 7 Appendices 

7.1  Appendix 1: Nomenclature of the 18kDa 

Translocator Protein 

The 18kDa Translocator Protein, abbreviated to TSPO, is also known as the Peripheral 

Benzodiazepine Receptor, usually abbreviated to PBR. It has also been referred to in the 

literature as the Peripheral Benzodiazepine Binding Site, or PBBS (Banati, 2002). The 

designation ‘PBR’ originated because it was first discovered in organs outside the central 

nervous system (i.e. in the periphery) and was found to bind Diazepam (Valium™), a well-

known drug and ligand for the central benzodiazepine receptor. Although the term ‘PBR’ was 

used for many years, ‘18kDa Translocator Protein’ was proposed as a more accurate 

alternative (Papadopoulos et al., 2006) and has gained currency in recent years. For 

consistency, the term ‘TSPO’ is preferred in this thesis. 
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7.2  Appendix 2: Pilot Study on a High Performance 

Computer Cluster 

A high performance cluster (referred to as the ‘second cluster’ in 3.1 ) consisting of 23 

nodes (42 computing cores total) was studied to assess the feasibility of performing large 

scale PET simulations for the purpose of determining the signal-to-noise ratio of dynamic 

brain PET scans. Each node consisted of either a dual core or quad core CPU, and was 

equipped with 2 Gbytes of memory.  

A simulation using the GATE software and the digital emission and attenuation 

phantoms described in 3.1.2.3, 3.1.2.3.1 and 3.1.2.3.2 was run. A total of 35 MBq of activity 

was distributed within the soft tissues of the digital phantom. The scanner description macro 

given in appendix 7.4 was used. A PET acquisition of 0.001 seconds was run using one core 

of a quad-core computing node on the cluster. The simulation was then repeated by 

duplicating the first simulation and running it in parallel with the first simulation on the same 

quad-core node. Likewise three simultaneous simulations were run on the same quad-core 

node. Finally four simultaneous simulations were run on the same node. The time taken and 

memory used by each run was recorded, and the results are presented below. 

 

Cores Used Execution Time 

(seconds) 

Memory Used 

(Gbytes) 

Swap Space Used 

(Gbytes) 

1 39 1.16 0.21 

2 40 1.94 0.17 

3 46 1.94 1.10 

4 >200 1.94 1.94 

The results above indicate that memory on this node is insufficient to support four 

independent simultaneous GATE simulations. Swap space (hard disk drive space used by the 

operating system to supplement the memory) was able to compensate for this inadequacy 

when three simulations were run concurrently, but with a noticeable increase in execution 

time. Four simulations were not able to be run within a reasonable time frame and the 

program was terminated after 200 seconds. Examination of the cluster hardware revealed that 
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only 18 out of a total of 42 CPU cores could be utilised due to this memory limitation. By 

extrapolation, completion of 50 repeated acquisitions of 10 minutes duration would require 

approximately 2.4 years execution time using this system- well outside the goal of 6 weeks or 

less.  
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7.3  Appendix 3: Historical Exchange Rate of Australian 

to U.S. Dollars 

The cost of constructing the high performance computing cluster in this project is 

expressed in Australian dollars (AUD), because all components were sourced within 

Australia. To facilitate comparison with other cluster systems cited from the literature, all of 

which are quoted in U.S. dollars (USD or $US), the following historical exchange rate plot is 

provided. Data was obtained from the Reserve Bank of Australia web site in January 2013 

(Reserve Bank of Australia, 2013) http://www.rba.gov.au/statistics/hist-exchange-

rates/index.html and covers the period over which this research was undertaken. Exchange 

rates are averaged over calendar month intervals. 
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7.4  Appendix 4: GATE Description Macro for the Philips 

Allegro PET Scanner 

The following GATE script describing the Philips Allegro PET scanner was used 

during the initial timing, memory and fictitious interactions experiments. This script was 

modified from one supplied courtesy of Dr. G. O’Keeffe, Centre for PET at Austin Health, 

Melbourne. 

# sub-routine for setup of the Philips Allegro PET system: 

 

#     W O R L D 

/gate/world/geometry/setXLength 1.2 m 

/gate/world/geometry/setYLength 1.2 m 

/gate/world/geometry/setZLength 1.2 m 

/gate/world/setMaterial Air 

 

#     D E T E C T O R 

/gate/world/daughters/name cylindricalPET 

/gate/world/daughters/insert cylinder 

/gate/cylindricalPET/setMaterial Air 

/gate/cylindricalPET/geometry/setRmax 52. cm 

/gate/cylindricalPET/geometry/setRmin 28. cm 

/gate/cylindricalPET/geometry/setHeight 24.02 cm 

/gate/cylindricalPET/vis/forceWireframe 

 

#     S H I E L D I N G 

/gate/cylindricalPET/daughters/name Shielding 

/gate/cylindricalPET/daughters/insert cylinder 

/gate/Shielding/setMaterial Lead 

/gate/Shielding/geometry/setRmax 46.132 cm 

/gate/Shielding/geometry/setRmin 28. cm 

/gate/Shielding/geometry/setHeight 2.86 cm 

/gate/Shielding/vis/forceSolid 

#/gate/Shielding/vis/forceWireframe 

/gate/Shielding/vis/setColor white 

 

#     R E P E A T   S H I E L D I N G 

/gate/Shielding/repeaters/insert linear 

/gate/Shielding/linear/setRepeatNumber 2 

/gate/Shielding/linear/setRepeatVector 0. 0. 21.16 cm 

 

 

#     D E T E C T O R  =  R S E C T O R 

/gate/cylindricalPET/daughters/name rsector 

/gate/cylindricalPET/daughters/insert box 

/gate/rsector/geometry/setXLength 40 mm 

/gate/rsector/geometry/setYLength 94.5 mm 

/gate/rsector/geometry/setZLength 18.3 cm 

/gate/rsector/setMaterial Glass 

/gate/rsector/placement/setTranslation  45.2 0 0 cm 

/gate/rsector/vis/forceWireframe 

 

#     M O D U L E 

/gate/rsector/daughters/name module 
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/gate/rsector/daughters/insert box 

/gate/module/geometry/setXLength 20. mm 

/gate/module/geometry/setYLength 94.5 mm 

/gate/module/geometry/setZLength 18.3 cm 

/gate/module/setMaterial PTFE 

/gate/module/placement/setTranslation  -10. 0 0 mm 

/gate/module/vis/forceWireframe 

 

#      C R Y S T A L 

/gate/module/daughters/name crystal 

/gate/module/daughters/insert box 

/gate/crystal/geometry/setXLength 20. mm 

/gate/crystal/geometry/setYLength 4 mm 

/gate/crystal/geometry/setZLength 6 mm 

/gate/crystal/setMaterial GSO 

/gate/crystal/placement/setTranslation 0 0 0 mm 

 

#     L A Y E R   G S O 

/gate/crystal/daughters/name GSO 

/gate/crystal/daughters/insert box 

/gate/GSO/geometry/setXLength 20. mm 

/gate/GSO/geometry/setYLength 4 mm 

/gate/GSO/geometry/setZLength 6 mm 

/gate/GSO/placement/setTranslation 0 0 0 mm 

/gate/GSO/setMaterial GSO 

 

#  R E P E T I T I O N    C R Y S T A L 

/gate/crystal/repeaters/insert cubicArray 

/gate/crystal/cubicArray/setRepeatNumberX 1 

/gate/crystal/cubicArray/setRepeatNumberY 22 

/gate/crystal/cubicArray/setRepeatNumberZ 29 

/gate/crystal/cubicArray/setRepeatVector 0. 4.3 6.3 mm 

 

#  R E P E T I T I O N    R S E C T O R 

/gate/rsector/repeaters/insert ring 

/gate/rsector/ring/setRepeatNumber 28 

 

# Sub-routine for digitizer setup of Allegro PET scanner: 

 

/gate/digitizer/Singles/insert adder 

/gate/digitizer/Singles/insert readout 

/gate/digitizer/Singles/readout/setDepth 1 

/gate/digitizer/Singles/insert blurring 

/gate/digitizer/Singles/blurring/setResolution 0.18 

/gate/digitizer/Singles/blurring/setEnergyOfReference 511. keV 

 

/gate/digitizer/Singles/insert deadtime 

/gate/digitizer/Singles/deadtime/setDeadTime 210. ns 

/gate/digitizer/Singles/deadtime/setMode paralysable 

/gate/digitizer/Singles/deadtime/chooseDTVolume module 

 

/gate/digitizer/Singles/insert timeResolution 

/gate/digitizer/Singles/timeResolution/setTimeResolution 3. ns 

/gate/digitizer/Singles/timeResolution/verbose 0 

 

/gate/digitizer/Singles/insert thresholder 

/gate/digitizer/Singles/thresholder/setThreshold 0.420 MeV 

/gate/digitizer/Singles/insert upholder 
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/gate/digitizer/Singles/upholder/setUphold 0.700 MeV 

 

# C O I N C I D E N C E     S O R T E R  

/gate/digitizer/Coincidences/setWindow 6.5 ns 

/gate/digitizer/Coincidences/minSectorDifference 7 
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7.5  Appendix 5: Estimating the Simulation Time for 

[
11

C]-PK11195 with GATE. 

The plot below is reproduced from published data on the brain kinetics of [
11

C]-

PK11195 in normal grey matter (Kropholler et al., 2005). Data shown are not decay corrected 

and therefore show the actual tissue radioactivity concentration as a function of time since 

injection. Distribution of uptake for this radiotracer is known to be approximately uniform 

throughout the grey matter of the brain in normal subjects. 

  

The same data are shown in the table below, divided into 24 discrete time frames as 

for a typical dynamic PET acquisition. The final column shows the calculated total number of 

radioactive disintegrations for each frame. For the purposes of this calculation a somewhat 

unrealistic assumption was made that all tissues within the head have the same radioactive 

time-activity curve as grey matter. Although this is approximately true for this tracer with 

respect to brain tissue, it is unlikely to be so for non-brain tissues such as skull, CSF, muscle 

and skin. However since these non-brain tissues are of limited interest in this work, assigning 

them incorrect tissue values is unlikely to alter the findings significantly. Radioactive decay 

within frames was assumed to be zero for these calculations- i.e. constant mid-frame time 

activity concentrations were assumed. 
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Frame 
Mid frame 

Time[s] 

Frame 

Duration[s] 

Decay 

Corrected 

for carbon-

11 

Non Decay 

Corrected 

Total 

Disintegrations 

1 15 30 0.000 0.000 0.00E+00 

2 37.5 15 0.000 0.000 0.00E+00 

3 50 10 0.001 0.001 5.33E+04 

4 60 10 5.337 5.158 1.98E+08 

5 70 10 6.244 6.002 2.31E+08 

6 80 10 5.594 5.346 2.06E+08 

7 92.5 15 5.607 5.320 3.07E+08 

8 107.5 15 5.744 5.404 3.12E+08 

9 122.5 15 5.819 5.429 3.13E+08 

10 137.5 15 5.841 5.403 3.12E+08 

11 172.5 55 5.766 5.229 1.11E+09 

12 230 60 5.546 4.868 1.12E+09 

13 290 60 5.297 4.494 1.04E+09 

14 395 150 4.930 3.942 2.28E+09 

15 545 150 4.530 3.327 1.92E+09 

16 695 150 4.238 2.859 1.65E+09 

17 845 150 4.012 2.486 1.43E+09 

18 1070 300 3.752 2.048 2.36E+09 

19 1370 300 3.470 1.598 1.84E+09 

20 1670 300 3.237 1.258 1.45E+09 

21 1970 300 3.036 0.995 1.15E+09 

22 2270 300 2.857 0.790 9.12E+08 

23 2720 600 2.625 0.565 1.30E+09 

24 3320 600 2.364 0.362 8.35E+08 

        Average: 9.29E+08 

        Total: 2.23E+10 

Notwithstanding the assumptions mentioned above, it may be seen that the total 

number of nuclear disintegrations for an hour long dynamic scan is approximately 2.23x10
10

. 

Assuming a nuclear decay branching ratio ≈ 1 for carbon-11, the number of 511 keV photon 

pairs required to be simulated is also 2.23x10
10

. 
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7.6  Appendix 6: GATE Benchmark Results 

A single installation of the GEANT4 Application for Tomographic Emission (GATE), 

version 6.0, was used throughout these experiments. To test the validity of this GATE 

installation, two benchmark simulations are provided within the software package. The 

benchmark programs were run on the single desktop system described in 3.1.2.2 which also 

served as the head node of the computer cluster used in all subsequent experiments described 

in this thesis. Output results from the benchmark simulations are presented below, along with 

the corresponding reference values for each variable. 

SPECT Benchmark Variable Reference mean Value Obtained % Difference 

Emitted Particles 17999920 18004800 0.03 

Detected Counts 35758 36029 0.76 

Primary Photons % 35.6 36.000 1.12 

Scatter Phantom 53.3 52.9 -0.75 

Scatter Table 3.0 2.9 -3.33 

Scatter Collimator 0.34 0.38 11.76 

Scatter Crystal 6.4 6.6 3.12 

Scatter Backcompartment 1.2 1.2 0.00 

Scatter Order 1 48.2 48.7 1.04 

Scatter Order 2 26.4 26.4 0.00 

Scatter Order 3 12.8 12.7 -0.78 

Scatter Order 4 6.6 6.5 -1.52 

Scatter Order >4 6.0 5.6 -6.67 

 

PET Benchmark Variable Reference mean Value % Difference 

Total Decays 36812600 36812600 0.000 

Random coincidences 23536 24297 3.233 

Unscattered coincidences 312725 332501 6.324 

Scattered coincidences 370116 374648 1.224 

Simulated O-15 half-life (s) 121.85 123.003 0.946 

Results of the benchmark simulations are in broad agreement with the supplied 

reference values. For the SPECT simulation, scatter within the collimator and ‘order>4’ 

scattering show more than 5% absolute difference from the reference values. For the PET 
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simulation, unscattered coincidences are 6.3% higher than the reference value. All other PET 

variables show a difference of less than 5% from the reference mean values. 
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7.7  Appendix 7: Effects of Gamma Discard Energy 

Setting on Observed Count Rates 

Full results from the experiment described in 3.2  are presented in the following table. 

Global counts are reported, including all planes, segments and lines of response of the 

simulated PET scanner. 

Activity 

(MBq) 

Acq 

time 

(sec) 

Gamma 

Discard 

(keV) 

Total 

Singles 

Singles 

Rate 

(/sec) 

Total 

Trues 

Trues 

Rate 

(/sec) 

Total 

Scatters 

Scatter 

Rate 

(/sec) 

Total 

Randoms 

Random

s Rate 

(/sec) 

5.0 4.0 0 2379036 594759 122104 30526 36838 9210 3764 941 

5.0 4.0 10 2378724 594681 122968 30742 37608 9402 3671 918 

5.0 4.0 50 2379259 594815 123115 30779 37727 9432 3575 894 

5.0 4.0 100 2380830 595208 122266 30567 37705 9426 3824 956 

5.0 4.0 150 2384445 596111 122235 30559 37827 9457 3831 958 

5.0 4.0 200 2382878 595720 123020 30755 37704 9426 3869 967 

5.0 4.0 250 2387296 596824 123059 30765 37897 9474 3678 920 

5.0 4.0 300 2384958 596240 123196 30799 37764 9441 3814 954 

5.0 4.0 350 2388644 597161 123226 30807 38181 9545 3723 931 

5.0 4.0 400 2366136 591534 123320 30830 36250 9063 3824 956 

5.0 4.0 450 2257263 564316 124244 31061 26977 6744 3363 841 

5.0 4.0 500 2082365 520591 123668 30917 6379 1595 2842 711 

5.0 4.0 510 2044374 511094 123938 30985 630 158 2838 710 

10.0 2.0 0 2350831 1175416 118388 59194 35793 17897 7276 3638 

10.0 2.0 10 2350567 1175284 119331 59666 36406 18203 7156 3578 

10.0 2.0 50 2350947 1175474 119255 59628 36613 18307 7004 3502 

10.0 2.0 100 2353379 1176690 118959 59480 36563 18282 7370 3685 

10.0 2.0 150 2358299 1179150 118736 59368 36746 18373 7381 3691 

10.0 2.0 200 2360122 1180061 119891 59946 36697 18349 7482 3741 

10.0 2.0 250 2366925 1183463 120176 60088 37027 18514 7282 3641 

10.0 2.0 300 2365394 1182697 120582 60291 36948 18474 7371 3686 

10.0 2.0 350 2371181 1185591 120806 60403 37405 18703 7159 3580 

10.0 2.0 400 2349732 1174866 120941 60471 35527 17764 7386 3693 

10.0 2.0 450 2242242 1121121 121767 60884 26468 13234 6592 3296 

10.0 2.0 500 2069836 1034918 121544 60772 6318 3159 5798 2899 

10.0 2.0 510 2032399 1016200 121797 60899 622 311 5611 2806 

20.0 1.0 0 2298899 2298899 111696 111696 33805 33805 13824 13824 

20.0 1.0 10 2298242 2298242 112793 112793 34357 34357 13619 13619 

20.0 1.0 50 2297778 2297778 112378 112378 34634 34634 13458 13458 

20.0 1.0 100 2303084 2303084 111988 111988 34519 34519 13865 13865 

20.0 1.0 150 2314052 2314052 112770 112770 34873 34873 14064 14064 

20.0 1.0 200 2319953 2319953 114201 114201 34840 34840 14259 14259 

20.0 1.0 250 2330269 2330269 114581 114581 35582 35582 14047 14047 

20.0 1.0 300 2330702 2330702 115298 115298 35329 35329 14181 14181 

20.0 1.0 350 2339510 2339510 115794 115794 35969 35969 14144 14144 
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20.0 1.0 400 2321227 2321227 116199 116199 34310 34310 14137 14137 

20.0 1.0 450 2217036 2217036 117602 117602 25559 25559 12982 12982 

20.0 1.0 500 2048070 2048070 117585 117585 6118 6118 11130 11130 

20.0 1.0 510 2011397 2011397 117739 117739 617 617 10902 10902 

40.0 0.5 0 2189781 4379562 99694 199388 29938 59876 24691 49382 

40.0 0.5 10 2186826 4373652 100008 200016 30534 61068 24538 49076 

40.0 0.5 50 2185893 4371786 99611 199222 30563 61126 24367 48734 

40.0 0.5 100 2198805 4397610 99431 198862 30934 61868 24932 49864 

40.0 0.5 150 2213064 4426128 101370 202740 31013 62026 25006 50012 

40.0 0.5 200 2229392 4458784 103170 206340 31504 63008 25687 51374 

40.0 0.5 250 2244977 4489954 104165 208330 32147 64294 25617 51234 

40.0 0.5 300 2253290 4506580 105195 210390 32216 64432 25942 51884 

40.0 0.5 350 2267017 4534034 106278 212556 33109 66218 26258 52516 

40.0 0.5 400 2252305 4504610 107356 214712 31353 62706 26089 52178 

40.0 0.5 450 2155848 4311696 108816 217632 23586 47172 24003 48006 

40.0 0.5 500 1996989 3993978 109665 219330 5694 11388 21027 42054 

40.0 0.5 510 1962507 3925014 109869 219738 558 1116 20315 40630 

60.0 0.3 0 1873941 6246470 78901 263003 23801 79337 30140 100467 

60.0 0.3 10 1875460 6251533 79316 264387 24350 81167 29936 99787 

60.0 0.3 50 1876475 6254917 79890 266300 24521 81737 30220 100733 

60.0 0.3 100 1888003 6293343 79922 266407 24641 82137 30275 100917 

60.0 0.3 150 1909019 6363397 81854 272847 25302 84340 30834 102780 

60.0 0.3 200 1931883 6439610 84280 280933 25869 86230 31622 105407 

60.0 0.3 250 1949071 6496903 85977 286590 26523 88410 31914 106380 

60.0 0.3 300 1965378 6551260 87555 291850 26505 88350 32336 107787 

60.0 0.3 350 1975625 6585417 87876 292920 27451 91503 32786 109287 

60.0 0.3 400 1970291 6567637 89405 298017 26303 87677 32456 108187 

60.0 0.3 450 1889522 6298407 90535 301783 19830 66100 30135 100450 

60.0 0.3 500 1754179 5847263 92452 308173 4656 15520 26751 89170 

60.0 0.3 510 1724467 5748223 92523 308410 447 1490 25880 86267 
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7.8  Appendix 8: GATE Description Macro for the Generic 

PET Scanner 

The following GATE macro script describes the geometry of the PET scanner that was 

introduced in Chapter 4, and used for all subsequent experiments presented in this thesis. As 

the comments (lines beginning with #) at the top of the macro indicate, the scanner 

description was adapted from one supplied with the GATE software distribution (version 6.0) 

attributed to Sébastien Jan. It uses the ‘ecat’ layout option available in GATE to simulate the 

geometry of a PET scanner using the block detector design. 

# Sub-routine for setup of an ecat clinical PET scanner  

# geometry in GATE. 

# Adapted from the macro supplied with GATE V6.0 by S. Jan 

# A cylindrical scanner with 16.8cm axial FOV and  

# 4mmx4mmx20mm LSO crystals arranged in blocks of  

# 13x13 crystals, with 1/3mm crystal and block spacing and 

# with 86.07cm cylinder diameter is implemented here. 

# This geometry is intended to be similar to, but not exactly  

# replicate, the geometry of current generation CTI/Siemens 

# clinical (human) PET systems, such as the Biograph(TM)16 

# PET/CT scanner. 

# 

# C. Constable Feb 2011. 

#  

#***************************************************************** 

 

#     W O R L D 

 

/gate/world/geometry/setXLength 1.5 m 

/gate/world/geometry/setYLength 1.5 m 

/gate/world/geometry/setZLength 1.5 m 

 

#     E C A T 

 

/gate/world/daughters/name ecat 

/gate/world/daughters/insert cylinder 

/gate/ecat/setMaterial Vacuum 

/gate/ecat/geometry/setRmax 45.0355 cm 

/gate/ecat/geometry/setRmin 43.0355 cm 

/gate/ecat/geometry/setHeight 16.8667 cm 

/gate/ecat/vis/forceWireframe 

 

#     B L O C K 

 

/gate/ecat/daughters/name block 

/gate/ecat/daughters/insert box 

/gate/block/placement/setTranslation 440.355 0.0 0.0 mm 

/gate/block/geometry/setXLength 20.0 mm 

/gate/block/geometry/setYLength 56.0 mm 

/gate/block/geometry/setZLength 56.0 mm 

/gate/block/setMaterial Air 

/gate/block/vis/forceWireframe 
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# C R Y S T A L 

 

/gate/block/daughters/name crystal 

/gate/block/daughters/insert box 

/gate/crystal/geometry/setXLength 20.0 mm 

/gate/crystal/geometry/setYLength 4.0 mm 

/gate/crystal/geometry/setZLength 4.0 mm 

/gate/crystal/setMaterial LSO 

/gate/crystal/vis/setColor yellow 

 

# R E P E A T    C R Y S T A L 

 

/gate/crystal/repeaters/insert cubicArray 

/gate/crystal/cubicArray/setRepeatNumberX 1 

/gate/crystal/cubicArray/setRepeatNumberY 13 

/gate/crystal/cubicArray/setRepeatNumberZ 13 

/gate/crystal/cubicArray/setRepeatVector 0. 4.33333 4.33333 mm 

 

# R E P E A T    BLOCK 

 

/gate/block/repeaters/insert linear 

/gate/block/linear/setRepeatNumber 3 

/gate/block/linear/setRepeatVector 0. 0. 56.33333 mm 

/gate/block/repeaters/insert ring 

/gate/block/ring/setRepeatNumber 48 

 

#     A T T A C H    S Y S T E M  

/gate/systems/ecat/block/attach block 

/gate/systems/ecat/crystal/attach crystal 

 

# A T T A C H    C R Y S T A L  SD 

/gate/crystal/attachCrystalSD 
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7.9  Appendix 9: GATE Description Macro for the PET 

Detector Electronics 

The following GATE macro script describes the event processing electronics of the 

PET scanner that was introduced in Chapter 4, and used for all subsequent experiments 

presented in this thesis. As the comments (lines beginning with #) at the top of the macro 

indicate, the electronics were modelled after the Siemens Pico-3D PET detector electronics 

(Martinez et al., 2006). 

# Sub-routine for digitizer setup of the ECAT type PET scanner. 

# Digitizer parameters are chosen to model the published   

# performance characteristics 

# of the Siemens/CTI Pico3D (TM) electronics as found on Siemens 

# Biograph/Hi-Rez(TM) type PET scanners. Specifically, a timing  

# window of 4.5ns, timing resolution of 500ps, dead-time of  

# 136ns, an energy threshold of 425keV and an energy resolution  

# of 15% are modelled. 

# 

# C. Constable, Feb 2011. 

# 

 

/gate/digitizer/convertor/verbose 0 

 

# A D D E R 

/gate/digitizer/Singles/insert adder 

 

#       R E A D O U T  

/gate/digitizer/Singles/insert readout 

/gate/digitizer/Singles/readout/setDepth 1 

 

#      E N E R G Y   B L U R R I N G 

 

# settings for LSO block detector at 511 keV with  

# 92% quantum efficiency... 

 

/gate/digitizer/Singles/insert crystalblurring 

/gate/digitizer/Singles/crystalblurring/setCrystalResolutionMin 

 0.12 

/gate/digitizer/Singles/crystalblurring/setCrystalResolutionMax 

 0.18 

/gate/digitizer/Singles/crystalblurring/setCrystalQE 0.92 

/gate/digitizer/Singles/crystalblurring/setCrystalEnergyOfReferenc

e 511. keV 

 

#       E N E R G Y   W I N D O W 

/gate/digitizer/Singles/insert thresholder 

/gate/digitizer/Singles/thresholder/setThreshold 425. keV 

/gate/digitizer/Singles/insert upholder 

/gate/digitizer/Singles/upholder/setUphold 650. keV 

 

#       T I M I N G   R E S O L U T I O N 

/gate/digitizer/Singles/insert timeResolution 

/gate/digitizer/Singles/timeResolution/setTimeResolution 500. ps 
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#       D E A D    T I M E  

/gate/digitizer/Singles/insert deadtime 

/gate/digitizer/Singles/deadtime/setDeadTime 136. ns 

/gate/digitizer/Singles/deadtime/setMode paralysable 

/gate/digitizer/Singles/deadtime/chooseDTVolume block 

 

 

# C O I N C I    S O R T E R  

/gate/digitizer/Coincidences/setWindow 4.5 ns 

/gate/digitizer/Coincidences/setOffset 0. ns 

/gate/digitizer/Coincidences/describe 

 

/gate/digitizer/name delay 

/gate/digitizer/insert coincidenceSorter 

/gate/digitizer/delay/setWindow 4.5 ns 

/gate/digitizer/delay/setOffset 600. ns 

/gate/digitizer/delay/describe 

 

 

/gate/digitizer/name finalCoinc 

/gate/digitizer/insert coincidenceChain 

/gate/digitizer/finalCoinc/addInputName delay 

/gate/digitizer/finalCoinc/addInputName Coincidences 

/gate/digitizer/finalCoinc/usePriority true 

/gate/digitizer/finalCoinc/describe 
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7.10  Appendix 10: GATE Physics Macro 

The following GATE macro script describes physics processes of the PET scanner that 

was introduced in Chapter 4, and used for all subsequent experiments presented in this thesis. 

# Sub-routine that sets up the physics processes for  

# PET simulations 

# involving a clinical(human) scanner. 

# Standard tables for photoelectric and compton interactions used. 

# 

# 

# Modified April 2010 for ecat simulations. 

# Modified Nov 2010 to meet GATE v6.0 requirements. 

# 

# C. Constable. 

# 

 

 

/gate/physics/addProcess PhotoElectric 

/gate/physics/addProcess Compton 

/gate/physics/addProcess GammaConversion 

/gate/physics/addProcess LowEnergyRayleighScattering 

 

/gate/physics/addProcess ElectronIonisation 

/gate/physics/addProcess Bremsstrahlung 

/gate/physics/addProcess PositronAnnihilationStd 

 

/gate/physics/addProcess MultipleScattering e+ 

/gate/physics/addProcess MultipleScattering e- 

 

/gate/physics/processList Enabled 

/gate/physics/processList Initialized 

 

# Cuts- adapted from 'GATE/...../examples' for an ecat system... 

 

/gate/physics/Gamma/SetCutInRegion      crystal 1.0 mm 

/gate/physics/Electron/SetCutInRegion   crystal 1.0 cm 

/gate/physics/Positron/SetCutInRegion   crystal 1.0 cm 

 

 

#/gate/physics/Gamma/SetCutInRegion      phantom 0.5 mm 

#/gate/physics/Electron/SetCutInRegion   phantom 30.0 cm 

#/gate/physics/Positron/SetCutInRegion   phantom 0.1 mm 

 

#/gate/physics/SetMaxStepSizeInRegion    phantom 0.01 mm 

 

 

 

# if fictitious interactions used in a voxelized phantom, then: 

  

/gate/physics/addProcess Fictitious 
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7.11  Appendix 11: Measurement of Linear Attenuation 

Coefficient s for Skull and Water in GATE 

In order to validate the use of ‘skull’ and ‘water’ materials from the GATE materials 

database for PET simulations, measurements of their respective linear attenuation coefficients 

(μ) were made and compared to published values. These measurements also provided the a-

priori values for μ that were used in the segmentation of the attenuation image. 

A series of simulations were run in which the attenuation of varying lengths of ‘water’ 

and ‘skull’ materials was measured in GATE. The following diagram illustrates the 

geometrical arrangement of source, detector and attenuating media for this simulation. 

 

A one-dimensional beam source emitting 511 keV photons was placed 40 cm distant 

from a radiation detector. In between the source and detector, a length of absorbing material 

was simulated with the same cross-sectional dimensions as the detector (i.e. 4 mm x 4 mm). 

For each material (water and skull), 8 simulations were run corresponding to the following 

lengths of attenuating medium: 0 cm (no attenuation), 2 cm, 4 cm, 6 cm, 8 cm, 10 cm, 12 cm 

and 15 cm. As for all dynamic PET scan simulations reported in this thesis, the fictitious 

interactions tracking algorithm was used with a 100 keV gamma discard setting. A 

scintillation detector composed of Gadolinium oxyorthosilicate (GSO) was simulated, 

measuring 4 mm x 6 mm x 20 mm. Energy resolution of the detector was set to 18% at 511 

keV, and an energy acceptance window of 420 – 700 keV was applied. No detector dead time 

was included in this simulation. A minimum total of 40,000 counts were collected for each 

combination of material and length. 

The output data from these simulations are plotted below. The natural logarithm of the 

ratio of counts at zero attenuation to counts at each absorber thickness was calculated, and μ 

for both materials was determined by linear regression as follows: water μ = 0.09596 cm
-1

, 

skull μ = 0.1457 cm
-1

. The value for water μ thus calculated is very close to that reported in 

the literature for soft tissue at 511 keV (Meikle et al., 1993). A recent study investigating 
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attenuation correction for cerebral PET reported the average skull linear attenuation 

coefficient at 511 keV across 325 subjects was 0.143 cm
-1

 (Catana et al., 2010). These 

findings indicate that GATE can provide highly realistic modelling of the attenuation of soft 

tissue and skull bone. 

 

  

0.0E+00

1.0E+05

2.0E+05

3.0E+05

4.0E+05

0 5 10 15

C
o

u
n

ts
 

Absorber Thickness (cm) 

Counts Vs. Absorber Thickness 
(511keV) 

water

skull



225 

 

7.12  Appendix 12: Grey Matter Regions-of-Interest 

Three grey matter regions-of-interest (ROIs), described in 4.2.5.1 are displayed below. 

Regions-of-interest are displayed in white, superimposed on the entire grey matter voxel 

volume (displayed in grey). Regions were selected from grey matter voxels that contained 

minimal partial volume error, defined as less than 10% loss of counts from grey matter, and 

no more than 10% ‘spill-in’ of counts from white matter voxels. Spill out and spill in were 

estimated from separate high-count simulations of grey-matter-only and white-matter-only 

emission phantoms. 
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7.13  Appendix 13: Parameter Selection for OS-EM 

Reconstruction of GATE Simulated [
11

C]-PK11195 

Scans 

Ordered subset expectation maximisation (OS-EM) reconstruction was used in 

addition to filtered back projection to reconstruct the dynamic [
11

C]-PK11195 PET 

simulation. Selection of an appropriate number of iterations was made by examining the 

mean-squared error and the grey matter to white matter contrast ratio, as a function of 

maximum likelihood expectation maximization (ML-EM) iteration number, for two sample 

frames of the simulation. Frame 10 was chosen as an example of a low count density frame, 

while frame 14 was chosen due to its relatively high count density. Post reconstruction filter 

width (FWHM) was chosen by attempting to match the spatial resolution of the OS-EM 

reconstructions to the filtered back projection (FBP) reconstructions of a point source 

simulation.  

Transverse image plane number 38, for frame 14, is shown below for increasing 

iteration number. The minimum mean squared error for frame 10 (low count frame) occurred 

at iteration number 3, and for frame 14 (high counts) at iteration number 5. The contrast ratio 

for grey:white matter reached a plateau, defined as ≤1% change, for frame 10 at iteration 

number 37, and for frame 14 at iteration number 35. On the basis of these findings, all frames 

of the [
11

C]-PK11195 dynamic simulation were reconstructed with the OS-EM algorithm, 

using 12 iterations and 3 subsets.  
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In an attempt to match the spatial resolution of the two reconstruction algorithms used (FBP 

and OS-EM), their outputs for a point source image reconstruction were analysed. 

Application of a 3 mm Gaussian post reconstruction filter was found to closely match the 

spatial resolution (transverse FWHM) of the OS-EM to the FBP reconstruction. The results of 

this analysis are presented in the table below. 

 Radial offset 1 cm FWHM 

(mm) 

Radial offset 10 cm FWHM 

(mm) 

FBP (Hanning, 0.7) 6.09 6.25 

OS-EM (3 mm filter) 5.96 6.20 
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