
Chapter 1

Introduction

Understanding phylogenetic relationships between organisms is a

prerequisite for almost any evolutionary study, as all contemporary

species share a common history through their ancestor. Today, phylo-

genetics relies on using mathematical methods to infer the past from

features of contemporary species.

A phylogenetic tree (also called the evolutionary tree) is a directed

graph showing the relationships between a group of contemporary taxa

(leaves) and their hypothetical ancestors. The simplest tree consists of

two taxa, where the leaves of the tree are labelled by bimolecular DNA

sequences.

DNA is the basis of heredity; it consists of very long sequences of

four bases (nucleotides): adenine (A), guanine (G), cytosine (C), and

thymine (T). In human, the DNA consist of approximately 3.1 billion

nucleotides; other species have more or less DNA, depending partly on

the number of genes. These DNA sequences undergo changes within

any population over the course of many generations, as random muta-

tions arise and become fixed in the population. The construction of the

phylogenetic trees is of interest in its own right in evolutionary studies.

It is also useful in many other ways, for example in the prediction of

gene function (Eisen, 1998).

Phylogenetic methods are based on assumptions (see e.g. Zharkikh,

1994; Swofford et al., 1996; Felsenstein, 2004a, 2004b). Evolutionary

models describe the substitution process in sequences of nucleotides

through time. A phylogenetic reconstruction method is statistically

consistent if phylogenetic estimates converge towards the true tree as

more data (longer sequences) are analysed. All phylogenetic methods
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make assumptions about the process of sequence evolution either im-

plicity (in the case of parsimony methods) or explicitly (in the case

of distance and probabilistic methods). In theory, phylogenetic meth-

ods are statistically consistent as long as their assumptions are met.

However, every method is known to be inconsistent under some condi-

tions (Felsenstein, 2004). When their assumptions are violated, current

methods are prone to converge towards an incorrect solution (see e.g.

Huelsenbeck, 1995; Swofford, 2001; Kolaczkowski, 2004; Ho and Jer-

miin, 2004; Jermiin, 2004).

We attempt to provide general methods to analyse this sort of

data, which permits partial removal of the restriction of the station-

arity and homogeneity assumptions. In particular, models are moti-

vated by the bacterial data analyzed by Gaultier and Guoy (1995) who

inferred a phylogeny among five eubacterial species using the small-

subunit ribosomal RNA sequences from Aquafix pyrophilus, Thermo-

toga maritima, Thermus thermophilus, Deinococcus radiodurans, and a

fifth species chosen from the following genera: Chlamydia, Spirochaeta,

Bacterides, Agrobacterium, Escherichia, Fusobacterium, Clostridium,

Bacillus, Micrococcus, and Anabaena. They used a nucleotide substi-

tution model that assumes that πA = πT and πC = πG whereas πC + πG

was allowed to vary across the tree; hence, they used a non-stationary

and non-homogeneous model to infer their eubacterial phylogeny. Ex-

amining the marginal distributions for this bacterial data we can see the

evolutionary processes are not stationary. It is clear that the marginal

distributions for Aquifex, Thermus, and Thermotoga are approximately

equal as are the marginal distributions for Bacillus and Deinococcus.

This suggested a possible model, where from the root of the tree we

permit different Markov processes to operate along different descendant

lineages.

Most currently available evolutionary models assume that the evo-

lutionary processes at nucleotide sites are independent and identically

distributed, so it is sufficient to describe the evolutionary process at a
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single site. This is done by specifying a continuous time finite Markov

model depending on the time parameter t ≥ 0. We start Chapter 2 by

reviewing Markov models on phylogenetic trees. In the beginning we

introduce a single continuous time finite Markov chain then extend it to

K matched sequences. We develop programs to calculate the joint dis-

tribution of K matched sequences under the new model we suggested

for the bacterial data.

In order to study the performance of phylogenetic methods to es-

timate phylogeny and evolutionary parameters, we need nucleotide se-

quences generated under controlled conditions. Monte Carlo simula-

tions provide an opportunity to produce such data. Several computer

programs have been developed to simulate evolution of nucleotide se-

quences on a known bifurcating tree (listed in Jermiin et al., 2003)

but most of these have restricted attention to stationary and homoge-

neous cases and in general have not given detailed descriptions of their

relation to the Markov processes of substitutions. In Chapter 3, we de-

scribe three methods to simulate the evolution of nucleotide sequences

on a known bifurcating tree. In the first method, we calculate the joint

probabilities and obtain the random numbers of sites containing each

arrangement of matched nucleotides using the multinomial distribu-

tion; in the second method, we use the Markov process at each site (as

in Rambaut and Grassly, 1997), or the equivalent embedded Markov

chain and simulated waiting times, to obtain the simulated results at

the ends of the tree; and in the third method, we describe a simulation

method employed in the program called Hetero (Jermiin et al., 2003).

We also give generalizations for these methods to be able to simulate

K matched sequences.

Most phylogenetic methods assume that the sequences of nucleotides

have evolved under stationary, reversible, and homogeneous conditions.

When these assumptions are violated by the data, there is an increased

probability of errors in the phylogenetic estimates. Methods to examine
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aligned sequences for violations of phylogenetic assumptions are avail-

able, but they are rarely used. In Chapter 4, we describe and compare

the available tests for symmetry of K-dimensional contingency tables

from homologous sequences, and develop two new tests to evaluate dif-

ferent aspects of the evolutionary processes. For any pair of sequences,

we consider a partition of the test for symmetry into a test for marginal

symmetry and a test for internal symmetry. The proposed tests can

be used to identify appropriate models for estimation of evolutionary

relationships under a Markovian model. Simulations under more or

less complex evolutionary conditions were done to display the perfor-

mance of the tests. Finally, the tests were applied to an alignment of

small-subunit ribosomal RNA sequences of five species of bacteria to

outline the evolutionary processes under which they evolved.

In Chapter 5, we review distance methods without giving compre-

hensive details. We define the additive and ultrametric distances. The

paralinear distance is based on the general Markov model of evolu-

tion. It is an additive distance between sequences under general as-

sumptions. We proceed by explaining how to generate trees from the

distance matrix using the hierarchical clustering method, noting that

it is equivalent to the UPGMA method of Sokal and Michener (1958).

Finally we illustrate by examples the different situations where we can

or cannot find the exact tree lengths and topology.

In Chapter 6, we discuss estimation using maximum likelihood.

First we discuss the estimation method for a two leaf tree under station-

ary, homogeneous and reversible processes, then extend to K matched

sequences allowing for non-stationary and non-homogeneous processes.

Then we use the methods of Chapters 4 and 5 to choose the topology

of the phylogenetic tree. Throughout the thesis we will restrict atten-

tion to cases where we permit non-heterogeneity for each side of the

root. We describe the method of estimation under the general Markov

model for this topology using the an optimization function, from the

statistical package R, to maximize the log likelihood ratio. We proceed
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by giving different examples examining the accuracy of the method

by generating joint distribution functions F (t) with known parameters

and from data sets simulated from these joint distributions. We obtain

estimates from these data sets to examine the properties of the method

of estimation. Then we apply the method of estimation to two sets of

real data. Next we consider non-parametric and parametric bootstrap

methods to obtain bias and standard deviation for the estimates. We

apply these bootstrap methods to the simulated data set examples, for

which we consider estimation, to examine the properties under condi-

tions where the models hold. Then we use these bootstrap methods

to give information about the estimates of the parameters for the real

data sets.

We complete with a discussion, where we conclude that the meth-

ods of estimation work well for simulated data where the models are

known to hold. However, this is not the case for the real data. Al-

though we get improved estimates relative to the methods in current

use, it is clear that more complex models will be required to give an

adequate fit for these real data sets. For example, approaches allowing

site heterogeneity, as in Pagel and Meade (2004), may be needed.

Note that throughout the thesis, we develop and use functions in

S-Plus or R packages, which are provided in the appendices.
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Chapter 2

Markov Process for Substitution Models

Phylogenetic methods are based on assumptions (see e.g. Zharkikh,

1994; Swofford et al., 1996; Felsenstein, 2004a, 2004b) and when these

are violated by the data, there is an elevated risk of errors in the es-

timates of phylogeny (for a set of increasingly complex scenarios, see

Ho and Jermiin, 2004). Given this risk, there is a need to understand

better when phylogenetic methods are likely to produce reliable results

and when they are likely to fail (see e.g. Jermiin et al., 2004).

Evolutionary models describe the substitution process in sequences

of nucleotides through time. They are used to model this process along

the edges of phylogenetic trees. In this chapter we will concentrate on

the process operating at the level of nucleotides.

Most currently available evolutionary models assume that the evo-

lutionary processes at nucleotide sites are independent and identically

distributed, so it is sufficient to describe the evolutionary process at a

single site. This is done by specifying a continuous time finite Markov

model depending on the time parameter t ≥ 0.

2.1. The Markov Process for One Nucleotide Site

In the beginning we will introduce a single continuous time finite

Markov chain as follows. Consider a random variable X that takes

values in a discrete space 1, 2, 3, 4 but whose values can change in

continuous time. The value of X at time t is denoted by X(t). The

Markov process is based on the assumptions that all nucleotide sites

change independently, all sites evolve by the same Markov process and

the conditional probabilities of nucleotide substitutions do not change

over time.
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We will describe the substitution process X(t), t ≥ 0, by the transition

function

Pij(t) = P [X(t) = j|X(0) = i], (2.1)

where Pij(t) is the probability that the nucleotide labelled i changes to

the nucleotide labelled j during the period of t.

We will represent Pij(t) in matrix notation as P (t) and write it as

P (t) =









P11(t) P12(t) P13(t) P14(t)

P21(t) P22(t) R23(t) P24(t)

P31(t) P32(t) P33(t) P34(t)

P41(t) P42(t) P43(t) P44(t)









.

Any row in this matrix corresponds to the state from which the tran-

sition is made, and any column in the matrix corresponds to the state

to which the transition is made. Thus, the sum of probabilities in any

particular row in the transition matrix must be 1.

For a homogeneous process having a finite number of states, the prob-

abilities Pij(t) can be found by solving a matrix differential equation.

To derive this equation we use the short-time approximation

Pij(t) = Rijt + o(t) (2.2)

for i 6= j, where Rij is the transition rate from state i to state j.

Equation (2.2) implies the further short-time approximation

Pii(t) = 1 − Rit + o(t), (2.3)

where Ri =
∑

i6=j Rij.

Now consider the Chapman-Kolmogorov relation (see for example

Iosifescu, 1980)

Pij(t + h) = Pij(t)Pjj(h) +
∑

k 6=j

Pik(t)Pkj(h), (2.4)
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which says the process must pass through some intermediate state k at

time t enroute to state j at time t+h. Substituting the approximations

(2.2) and (2.3) in (2.4) yields

Pij(t + h) = Pij(t)(1 − Rjh) +
∑

k 6=j

Pik(t)Rkjh + o(h). (2.5)

Sending h to 0 in the difference quotient

Pij(t + h) − Pij(t)

h
= −Pij(t)Rj +

∑

k 6=j

Pik(t)Rkj +
o(h)

h
,

produces the forward differential equation

P
′

ij(t) = −Pij(t)Rj +
∑

k 6=j

Pik(t)Rkj (2.6)

The system of differential equation (2.6) can be summarized in ma-

trix notation by introducing the matrix P (t) and R = (Rij). The

forward equation in this notation becomes

P
′

(t) = P (t)R (2.7)

with

P (0) = I,

where P
′

(t) = (P
′

ij(t)) and I is the identity matrix. The solution of the

initial value problem (2.7) is furnished by the matrix exponential

P (t) = eRt, (2.8)

where

R =









R11 R12 R13 R14

R21 R22 R23 R24

R31 R32 R33 R34

R41 R42 R43 R44









Here R is a time independent rate matrix satisfying

1. Rij ≥ 0, i 6= j

2. Rii = −∑4
i6=j Rij = −Ri, so R1 = 0, where 1 = (1, 1, 1, 1)T

and 0 = (0, 0, 0, 0)T
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3. πT R = 0T , where π = (π1, π2, π3, π4)
T is the stationary distri-

bution.

Suppose that a Markov process has transition matrix P (t) and at

time t the probability that the process is in state j is equal to πj,

j = 1, 2, 3, 4. This implies that at time u, u ≥ t, the probability that

the process is in state j is equal to
∑4

k=1 πkPkj(u − t). Suppose that

for every j these two probabilities are equal, so that

πj =
4∑

k=1

πkPkj(u − t), j = 1, 2, 3, 4.

Definition 2.1. A vector πT = (π1, π2, π3, π4) with 0 ≤ πi ≤ 1,

i = 1, · · · , 4 and π1 + π2 + π3 + π4 = 1 is called a stationary prob-

ability distribution of a Markov process if πT R = (0, 0, 0, 0)T . This is

equivalent to requiring that πT P (t) ≡ π.

In this case we say that the process is stationary with stationary

distribution π. So if P (X(t) = j) = πj, j = 1, · · · , 4, for all t, then

X(.) is a stationary process. The matrix R can be reparameterised as:

R =









R11 α12π2 α13π3 α14π4

α21π1 R22 α23π3 α24π4

α31π1 α32π2 R33 α34π4

α41π1 α42π2 α43π3 R44









, (2.9)

where Rii = −∑j 6=i αijπj, i = 1, · · · , 4. We can regard the 12 param-

eters α12, α13, · · · , α43 as free, in which case π is the left eigenvector of

R corresponding to the eigenvalue 0.

Assuming that R is diagonalizable, then we can write R as

R = MΛM−1, (2.10)

where M is a 4×4 matrix containing the right eigenvectors as columns

and Λ is a 4 × 4 diagonal matrix containing the eigenvalues of R,

which are thus functions of α12, α13, · · · , α43. Therefore, the transition
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probability matrix (2.8) can be expressed as

P (t) = eRt

=
∞∑

n=0

(Rt)n

n!

=
∞∑

n=0

tn

n!
MΛnM−1

= MeΛtM−1

=
4∑

k=1

eλktukv
T
k , (2.11)

where Λ = diag(λ1, · · · , λ4), with λ1 = 0, M = (u1, · · · , u4) and

M−1 = (v1, · · · , v4)
T , since

Rn = MΛM−1MΛM−1 · · ·MΛM−1

= MΛnM−1.

Note that if f0 is the vector of the initial probabilities, so f T
0 = (f01, · · · , f04),

then P (X(t) = i) = (fT
0 P (t))i and, in particular, if f0 = π then

P (X(t) = i) = (πT P (t))i = πi

2.1.1. The General Reversible Case. Some stochastic processes

have the property that when the direction of time is reversed the behav-

ior of the process remains the same. In this section we will assume that

the model is reversible, where reversibility of the substitution process

X(.) intuitively means that the substitution viewed from now into the

future is probabilistically identical to its behavior from now back into

the past. This means that the direction of evolution does not affect

the probabilities of different sites in two sequences. This property is

described formally in the following definition.

Definition 2.2. A stochastic process X(t) is reversible if (X(t1), X(t2),

..., X(tn)) has the same distribution as (X(τ − t1), X(τ − t2), ..., X(τ −
tn)) for all t1, t2, ..., tn, τ.

Note that reversible processes must be stationary.
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Theorem 2.1. A stationary Markov process is reversible if and only if

there exists a collection of positive numbers πj summing to unity that

satisfy the balance equation

πiRij = πjRji, 1 ≤ i, j ≤ 4. (2.12)

Proof: see Kelly (1979).

When such a condition exists, then π is the stationary distribution

of the process, that is πT R = 0.

Define S as a symmetric matrix such that

S =









S11 S12 S13 S14

S21 S22 S23 S24

S31 S32 S33 S34

S41 S42 S43 S44









, (2.13)

where S satisfies

1. Sij ≥ 0, i 6= j

2. Sii = −∑4
j 6=i Sijπj/πi

3. Sπ = 0, where 0 = (0, 0, 0, 0)T .

Let s be the vector of the off-diagonal elements in the S matrix, that

is s = (S12, S13, S14, S23, S24, S34). Now let

R = SΠ (2.14)

where Π = diag(π), then R satisfies the balance equation listed above,

and the Markov process is reversible. Further, we can express R as in

(2.9) with αij = αji and Sij = αij. Also

Π1/2RΠ−1/2 = Π1/2SΠ1/2.

Let λ be an eigenvalue of R with right eigenvector v, then λ is also

an eigenvalue of Π1/2RΠ−1/2 with eigenvector u = Π1/2v.
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Returning to equation (2.10), when R = MΛM−1. Let M =

Π−1/2U , where U is an orthogonal matrix, that is U T = U−1 and Π is

the diagonal matrix of π, so that

M−1 = U−1Π1/2 = UT Π1/2.

We can rewrite R as

R = Π−1/2UΛUT Π1/2 (2.15)

so the transition probability matrix can be expressed as

P (t) =
∞∑

n=0

tn

n!
Π−1/2UΛnUT Π1/2

= Π−1/2UeΛtUT Π1/2, (2.16)

since

Rn = Π−1/2UΛUT Π1/2Π−1/2UΛUT Π1/2 ... Π−1/2UΛUT Π1/2

= Π−1/2UΛnUT Π1/2.

In order to calculate the transition probability function P (t), we pre-

pared an S-Plus function, which depends on the following parameters:

π, S and t.

2.2. The Markov Process for Paired Nucleotides Sites

We now present the theory for the case when we have two lineages.

Consider two nucleotide sequences of length n evolving from a common

ancestor by independent Markov processes at each site. That is, at each

homologous site in the two sequences, we have two Markov processes

X(t) and Y (t), t ≥ 0, operating independently from the same common

ancestor, for which X(0) = Y (0).
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The substitution process X(t), t ≥ 0, can be described by the

transition function

PX(t) = (P X
ij (t))

= (P [X(t) = j|X(0) = i])

= eRX t, (2.17)

with a corresponding function for Y (.), that is

P Y (t) = (P Y
ij (t))

= (P [Y (t) = j|Y (0) = i])

= eRY t. (2.18)

Define

fij(t) = P [X(t) = i, Y (t) = j|X(0) = Y (0)], (2.19)

where fij(t) is the joint probability that two sequences have i and j,

respectively, at a given homologous site, i, j = 1, 2, 3, 4.

Let the probability of the initial frequency for the bases be defined by

the vector f0 such that

f0 = (f01, f02, f03, f04)
T ,

where f0k is the probability of the kth base, that is

f0k = P (X(0) = Y (0) = k),

where
∑4

k=1 f0k = 1. Now since the two processes X(t) and Y (t) behave

independently and identically, conditionally on X(0) = Y (0), then

fij(t) =
4∑

k=1

f0kP
X
ik (t)P Y

jk(t) (2.20)

Let F (t) = (fij(t)), and since P (t) = (Pij(t)), then we can write fij(t)

in matrix notation as

F (t) = P X(t)T F (0)P Y (t), (2.21)

where

F (0) = diag(f01, f02, f03, f04).

13



The product nF (t) is the expected divergence matrix between two se-

quences of length n and the theoretical equivalent of the observed di-

vergence matrix.

2.2.1. Process for Paired Nucleotides Sites. We will restrict

attention here to R = SΠ, with S being a symmetric matrix. In the

case of paired nucleotides sites, where the two processes X(t) and Y (t),

coming from a common ancestor X(0) = Y (0), are stationary, this will

result in reversible processes. However, we will retain this symmetry

of S when we consider non-stationary processes for simplicity.

The substitution process X(t), t ≥ 0, can be described by the

transition function

PX(t) = Π
−1/2
X

4∑

k=1

eλXktUXkU
T
XkΠ

1/2
X (2.22)

with a corresponding function for Y (.), that is

P Y (t) = Π
−1/2
Y

4∑

k=1

eλY ktUY kU
T
Y kΠ

1/2
Y , (2.23)

where UX and UY correspond to U of Section 2.1.1 for the processes X

and Y . So we can write (2.21) as

F (t) = P X(t)T F (0)P Y (t)

= Π
1/2
X UXeΛX tUT

XΠ
−1/2
X F (0)Π

−1/2
Y UY eΛY tUT

Y Π
1/2
Y

= Π
1/2
X (

4∑

i=1

4∑

j=1

e(λXi+λY j)tUXiU
T
XiΠ

−1/2
X F (0)Π

−1/2
Y UY jU

T
Y j)Π

1/2
Y

= Π
1/2
X (

4∑

i=1

4∑

j=1

e(λXi+λY j)tUXiU
T
Y jaij)Π

1/2
Y , (2.24)

where

aij = UT
XiΠ

−1/2
X F (0)Π

−1/2
Y UY j. (2.25)

Note that equations (2.22) and (2.23) will hold for rate matrices and

transition matrices even if the process is not stationary.
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2.3. Stationary and Homogeneous Processes

Suppose that we have two processes X(t) and Y (t) with transition

functions P X(t) and P Y (t), then we say that the two processes X(t) and

Y (t) are homogeneous if they have the same transition matrices, that is

if P X(t) = P Y (t). We use homogeneous both for a time homogeneous

process, where the rate is constant for all times, and, when it refers to

more than one process, for equality of transition matrices throughout a

tree. Now for the case of stationary and homogeneous processes, that

is when ΠX = ΠY = F (0) and P X(t) = P Y (t), F (t) will be symmetric,

see for example (2.27). F (t) will also be symmetric if P X(t) = P Y (t)

even if F (0) 6= ΠX = ΠY .

If we assume in, addition, that the processes are reversible, we can

write P (t) instead of P X(t) and P Y (t), Π instead of ΠX , ΠY and F (0),

and Ui instead of UXi
and UYi

. Now we can rewrite F (t) in (2.24) as

F (t) = Π1/2(
4∑

i=1

4∑

j=1

e2λitUiU
T
j aij)Π

1/2

= Π1/2

4∑

i=1

e2λitUiU
T
i Π1/2

= F (t)T ,

since

UT
i Uj = 0, i 6= j, UT

i Ui = 1, λ1 = 0,

and

aij = UT
i Π−1/2F (0)Π−1/2Uj

= UT
i Π−1/2ΠΠ−1/2Uj

= UT
i Uj.

So aij = 0 if i 6= j and aii = 1 if i = j.

Note that if the sequences have evolved under a stationary, homo-

geneous and reversible process and nF (t) is known, then it is possible
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to determine uniquely the nine parameters in π and S (if we take t as

some arbitrary value).

Knowing that F (t)1 = π, we can obtain Π−1/2F (t)Π−1/2, which allows

us to get the eigenvalues and eigenvectors, that is

Π−1/2F (t)Π−1/2 =
4∑

i=1

e2λitUiU
T
i . (2.26)

So for given t we can obtain

Π1/2RΠ−1/2 =
4∑

i=1

λiUiU
T
i , and S = RΠ−1.

In other cases, the parameters cannot be determined without some re-

strictions being imposed.

Example 2.1. The calculations presented here were obtained using

functions in the S-Plus or R languages. Consider the case of stationar-

ity, with Π = F (0) = diag(0.25, 0.25, 0.25, 0.25), where

SX =









−0.6 0.2 0.2 0.2

0.2 −0.6 0.2 0.2

0.2 0.2 −0.6 0.2

0.2 0.2 0.2 −0.6









and take t = 0.5. Then the transition probability, P X(t) = eRX t, equals

PX(t) =









0.9286 0.0237 0.0237 0.0237

0.0237 0.9286 0.0237 0.0237

0.0237 0.0237 0.9286 0.0237

0.0237 0.0237 0.0237 0.9286









Now, if we assume homogeneity (i.e.P X(t) = P Y (t) and therefore im-

plying SX = SY ), then we get a joint distribution function that equals
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F (t) =









0.2160 0.0113 0.0113 0.0113

0.0113 0.2160 0.0113 0.0113

0.0113 0.0113 0.2160 0.0113

0.0113 0.0113 0.0113 0.2160









(2.27)

Notice that both P X(t) and F (t) are symmetric matrices since the

processes leading to them were symmetric and homogeneous. Finally,

if the sequences contain 10000 nucleotides (i.e. n = 10000), then

nF (t) =









2160.12 113.29 113.29 113.29

113.29 2160.12 113.29 113.29

113.29 113.29 2160.12 113.29

113.29 113.29 113.29 2160.12









is the expected divergence matrix.

2.4. The Markov Process for K Matched Sequences

First, before we describe the K matched sequences, we need to

define what we mean by the tree topology: “the evolutionary tree”.

2.4.1. The Evolutionary Tree. The evolutionary tree is a di-

rected graph showing the relationship between groups of taxa and their

hypothetical common ancestor. The root of the tree is a common an-

cestor of all the taxa, the other nodes are either the contemporary

taxa at the tips of the tree, called external nodes, or speciation events,

called internal nodes, from which two new taxa bifurcate. The length

of each edge represents the evolutionary time t. For any rooted tree of

K matched sequences we will have 2K − 1 nodes and 2K − 2 edges.

Now we will represent the case when we have K matched nucleotide

sequences having equal length n derived from a common ancestor X(0),

with a known tree topology. Each edge has length t`, where ` takes

one of the values {1, · · · , K − 2} for edges leading to an internal node

and {−1, · · · ,−K} for edges leading to a leaf, where we number the

nodes with positive and negative integers for internal and leaf nodes,
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respectively. We take the edge length to be proportional to time, where

the sum of the edge lengths of the edges from the root to any leaf is

taken to be t. At each nucleotide site consider the Markov processes

giving rise to X1(t), · · · , XK(t), the values of the processes at the leaf

node. We can generalize the paired nucleotide case to this situation

by noting that at time t = 0 we have X1(0) = · · · = XK(0). If the

two edges of the tree starting at this ancestral node are of lengths tA

and tB, and the taxa split into groups X1(tA) = · · · = Xm(tA) and

Xm+1(tB) = · · · = XK(tB), then the joint probability of the processes

at these nodes is

F (tA, tB) = P A(tA)T F (0)P B(tB), (2.28)

where P A is the transition matrix of the Markov process operating

along the lineage from the common ancestor to the node corresponding

to A, P B is the transition matrix of the Markov process operating along

the lineage from the common ancestor to the node corresponding to B,

and tA and tB are the edge lengths from the root node to the nodes

corresponding to A and B, respectively, as we can see below in Figure

1
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Figure 1. Two Edge Tree
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Now for the next step if the new nodes are not external nodes,

we repeat the same process for the internal nodes, starting from the

node nearest to the root, using in place of F (0) in (2.28) the diagonal

matrix of the conditional probabilities at the node corresponding to the

nearest node A, given the values taken at the node corresponding to B.

Multiplication by the marginal probabilities at the node corresponding

to B gives a 43 array of joint probabilities of the nodes deriving from

A and the node corresponding to B.

At any step, take for example the z-th step, before the process splits

at this step, the subtree will have z tips and after this step the subtree

will have (z + 1) tips.

For the z-th step, we start from the internal node nearest to the

root, using in place of F (0) the diagonal matrix of the conditional

probabilities at the node corresponding to the z-th step, given the

values taken at the nodes corresponding to all other tips. This replaces

the conditional probability of this internal node given the value at

the z − 1 other tips by the conditional probability at the two tips

deriving from this internal node conditional on the other z − 1 tips.

Multiplication by the joint distribution of the other z − 1 tips gives a

4z+1 array for the joint distribution after the z-th step.

We repeat this process for each new internal node starting always

from the internal node nearest to the root and dividing the group of

that node into two groups until at the end all groups have just one

member. Finally, we get X1(t), · · · , XK(t) at the leaves of the tree, as

we can see in Figure 2.

This permits us to generate the entire 4K array of probabilities

Fi1,··· ,iK (t, · · · , t) = P (X1(t) = i1, · · · , XK(t) = iK),

ij = 1, · · · , 4, j = 1, · · · , K.

In order to illustrate the way of finding the joint distribution function

for a K edge tree we will provide more details in the next section.
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2.5. Three-tipped Phylogenetic Tree

For any tree we will divide the tree into two types of processes X

and Y depending on the first bifurcation from the root. Suppose that

we have three matched nucleotide sequences, derived from a common

ancestor and a known tree. Take, for example, the tree shown in Figure

3. In this figure let Xr denote the nucleotide appearing at a particular

site in species r, r = 1, 2, 3. Let t1 be the divergence time from the

internal node, to the tips 1 and 2, t be the divergence time from the

root to any one of the three species (1, 2) and 3, which we will assume

known and equal to a constant.
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Figure 3. The three-tipped tree

Define

fijk(t) = P [X1(t) = i,X2(t) = j,X3(t) = k | X1(0) = X2(0) = X3(0),

X1(z) = X2(z), 0 ≤ z ≤ t − t1],

where fijk(t) is the probability that for a given site, the first, second and

the third sequences have nucleotides i, j and k, where i, j, k = 1, · · · , 4.

Now by conditioning on the ancestral nucleotides at the root and the
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internal node in Figure 3, we have

Fijk(t) =
4∑

l=1

4∑

h=1

PX
li (t1)P

X
lj (t1)P

X
hl (t − t1)P

Y
hk(t)fh(0),

where fh(0) is the probability of the nucleotides at the root, i, j, l, h =

1, · · · , 4.

We can rewrite Fijk(t) in another way, that is at the beginning we

define the probability function

Flk(t − t1, t) =
4∑

h=1

PX
hl (t − t1)P

Y
hk(t)fh(0)

=
[
(PX)T (t − t1)F (0)P (t)Y

]

lk
, (2.29)

where Flk(t − t1, t) is the probability that for a given site the first

sequence has nucleotide l at the internal node after a period of time

t − t1 and the second sequence has nucleotide k after a period of time

t. So in order to calculate the joint distribution function for the three

species 1, 2 and 3 in Figure 3 we find the conditional probability for

species 1 and 2 given Flk(t − t1, t) at the internal node.

Note that

Flk(t − t1, t) = Fl|k(t − t1|t)fk(t),

where

fk(t) =
4∑

l=1

Flk(t − t1, t).

So

Fijk(t) =

[
4∑

l=1

PX
li (t1)P

X
lj (t1)Fl|k(t − t1|t)

]

fk(t)

=
[
(PX)T (t1)DkP

X(t1)
]

ij

= Fijk(t), (2.30)

where Dk = diag(F1k(t− t1, t), · · · , F4k(t− t1, t)). From the joint distri-

bution function Fijk(t), we can find the marginal distribution at each
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tip, as such the marginal distribution at node 3 is given by

F..k(t) =
4∑

i=1

4∑

j=1

Fijk(t)

and the marginal distribution at node 2 is given by

F.j.(t) =
4∑

i=1

4∑

k=1

Fijk(t)

finally the marginal distribution at node 1 is given by

Fi..(t) =
4∑

j=1

4∑

k=1

Fijk(t)

Define the joint distribution function for the two tips 1 and 2 as

Fij.(t) =
4∑

k=1

Fijk(t)

with a corresponding definition for all the other pairs.

Example 2.2. Consider the tree in Figure 3. Assume that the pro-

cesses are stationary and homogeneous by taking

Π = ΠX = ΠY = F (0) and RX = RY .

Let Π = diag(0.25, 0.25, 0.25, 0.25). Define the S matrix as

S =









−1.2 0.4 0.4 0.4

0.4 −1.2 0.4 0.4

0.4 0.4 −1.2 0.4

0.4 0.4 0.4 −1.2









, (2.31)

and the s-vector = (0.4, 0.4, 0.4, 0.4, 0.4, 0.4). Let t = 1 and t1 = 0.6.

Now using (2.30) we can calculate the 43 array, which represents the

joint distribution function Fijk(1) for the whole tree. Depending on

the joint distribution function Fijk(1), we can calculate the marginal

distribution for all the tips, that is

Fi..(1) = F.i.(1) = F..i(1) = (0.25, 0.25, 0.25, 0.25).
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We can also see that Fi.k(1) is symmetric and equal to F.ik(1) but not

equal to Fik.(1). We obtain exactly the same result of symmetry and

equality of the tips marginal distributions, for the case of stationarity

and non-homogeneity, such that ΠX = ΠY = F (0) and RX = ρRY ,

where ρ > 1. From this example we can see that, depending on the

marginal distributions of the tips, we can not tell that the assumption

of homogeneity is justified, even though all the tips have the same mar-

ginal distribution. Also we cannot tell that the stationarity assumption

is justified or not, as we will see in the next example.

Example 2.3. Consider the same tree topology given in Example 2.2.

Assume that the process is not stationary by taking

ΠX = ΠY = diag(0.2, 0.2, 0.2, 0.4) and F (0) = diag(0.25, 0.25, 0.25, 0.25).

Assume also the process is homogeneous by taking RX = RY . Let

t = 1, t1 = 0.6 and the s-vector be as in Example (2.2), where the S

matrix can be calculated using (2.13). By finding Fijk(1) for the whole

tree and the marginal distribution for the three edges, we can see that

Fi..(1) = F.i.(1) = F..i(1) = (0.2335, 0.2335, 0.2335, 0.2995).

Also we can see that Fi.k(1) is symmetric and equal to F.ik(1) but not

equal to Fik.(1).

In general, for any tree of K matched sequences, if all the marginal

distributions are equal to each other, we cannot say that we have a

homogeneous or stationary processes.

Example 2.4. Consider that we have the same tree topology and the

same assumption of non-stationarity as the previous example, but in

this example let

ΠX = diag(0.2, 0.2, 0.2, 0.4),

ΠY = diag(0.3, 0.3, 0.3, 0.1)

and

F (0) = diag(0.25, 0.25, 0.25, 0.25).
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Take t = 1, t1 = 0.6 and the s-vector as in as in Example (2.2). Now

since ΠX 6= ΠY , this will result in a non-homogeneous process.

By finding the marginal distributions for each tip depending on the

joint distribution Fijk(1), we can see that

Fi..(1) = F.i.(1) = (0.2335, 0.2335, 0.2335, 0.2995)

and

F..i(1) = (0.2665, 0.2665, 0.2665, 0.2005).

Also we can see that Fi.k(1) is symmetric and equal to F.ik(1) but not

equal to Fik.(1). These results show that, if the marginal distributions

for a tree are not the same we can say that the process is not stationary,

but we cannot tell any thing about the homogeneity assumptions, since

we can get the same result of non equality for the marginal distribution

at the tips, in the case of non-stationarity, where ΠX = ΠY 6= F (0)

and homogeneous processes.

Example 2.5. Consider the same tree topology and the same assump-

tion of non-stationarity by taking ΠX , ΠY , F (0), t, t1 and the s-vector

as in Example 2.3, but in this case let RX = ρRY , where ρ = 3. We

can see that

Fi..(1) = F.j.(1) = (0.2335, 0.2335, 0.2335, 0.2995)

and

F..k(1) = (0.2151, 0.2151, 0.2151, 0.3548).

Also, depending on the joint distribution function, we can see that

Fi.k(1) is symmetric and equal to F.jk(1).

Knowing that we have the same edge length t = 1 from the root to

any tips, and ΠX = ΠY = Π, we can see that F..k(1) is going faster

toward the stationary distribution π = (0.2, 0.2, 0.2, 0.4)T than both

Fi..(1) and F.j.(1). The reason for this is, the rate matrix for the edge

corresponding to the site k is multiplied by a factor ρ = 3.
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In the last two examples we have shown that for the case of non-

stationarity and non-homogeneity, we cannot tell whether the non-

homogeneity came from different rate matrices RX 6= RY , or from

different stationary probability for each side of the tree, ΠX 6= ΠY , by

just examining the marginal probability of the tips.

2.6. Programs

In this section we will describe the programs that we developed in

order to calculate the joint distribution function for any rooted tree of

K matched sequences. We used S-Plus or R Packages to write these

programs.

In order to understand how the gn and gn2 programs work, we

need to describe what we mean by the Merge Matrix and the vector of

heights, which will be used in our programs.

The Merge Matrix. The merge matrix is a (K − 1) × 2 matrix,

where K is the number of sequences (taxa) and therefore also the num-

ber of tips in the tree. The merge matrix contains negative and positive

numbers. The positive numbers represent the rows of the merge matrix

and also represent the internal nodes. The negative numbers represent

the external nodes.

The merge matrix gives the order of bifurcation in the phylogenetic

tree, that is the first row in the matrix represents the last two nodes in

the tree splitting from an internal node, and so on for the other rows,

till we reach the last row in the matrix, which represents the two nodes

splitting from the root of the tree.
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Example 2.6. We will give here an example to show how we can derive

the tree topology from the merge matrix. Let the merge matrix be

merge =









−1 −2

1 −3

−4 −5

3 2









. (2.32)

From the dimension of the merge matrix 4 × 2, we know that we

have a five taxa tree. Also, we can see that we have five terminal edges

since in the merge matrix the smallest negative number is -5, which

represents the fifth edge, see Figure 4(D).

At the beginning we start from the last row in the merge matrix,

that is the root of the tree which splits into two new nodes 3 and 2, as

we can see in Figure 4(A). Since both of the new nodes are positive,

implying that we have two internal nodes, the process will take the

largest number from them, number 3, and go to the row in the merge

matrix corresponding to this number, then the process will split node

3 into two new nodes -4 and -5 see Figure 4(B). As we can see the last

two nodes are negatives, which means that the we have external nodes

and the process will stop in this direction. The process then will take

the next largest number in row 4, which is number two, then node 2

will split into two new nodes 1 and -3 given in row 2, as we can see

in Figure 4(C), then the process will take node 1 since it is the largest

positive number we still have to split this node into two new nodes

-1 and -2 as we can see in Figure 4(D). Now since all the nodes are

negative the process will stop.

The Vector of Heights. The vector of heights is a vector of size

(K − 1) giving the lengths from all internal nodes (including the root)

to any leaf, where length is the sum of the edge lengths for edges

connecting the internal node to its descendent leaves.
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2.6.1. The gn Program. We will show here how the gn program

we developed works, in order to calculate the joint distribution function

Fi1,··· ,iK (t, · · · , t) = P (X1(t) = i1, · · · , XK(t) = iK),

ij = 1, · · · , 4, j = 1, · · · , K.
(2.33)

for any tree of K matched sequences. The gn program uses a tree de-

scription based on a matrix describing the tree topology. An example

of this matrix is given in (2.32) with a corresponding 5 taxa tree given

in Figure 4(D). The gn program works on a tree where the length from

the root to any external node is fixed.

The gn program depends on the following parameters πX , πY , f0,

ρ, the s-vector and a vector of heights depending on the size of the tree.

The program recursively uses (2.28) at each internal node, commencing

with the root node and proceeding from the bottom of the merge matrix

using edge lengths calculated inside the program from the differences

in the lengths between the nodes at each step and the next two nodes

which bifurcate from that node, where the lengths of the external nodes

will be given (as a vector of heights). It is possible to allow different

transition matrices on each edge, but this would be impractical for

large values of K. For any tree, our program will divide the tree into

two parts depending on the first bifurcation at the root. That is the

program restricts attention to two transition matrices P X(t) and P Y (t),

with properties of reversible processes; we use rate matrices RX =

SXΠX and RY = SY ΠY , where SX and SY are symmetric matrices

depending on ΠX , ΠY and the s-vector. We use transitions based on

PX(t) for all edges associated with the node given by the first element

of the last row of the matrix describing the topology (those on the right

of the root node in the Figure 4(D)) and P Y (t) is used for the edges on

the other side of the tree. Further, if πX 6= πY , the initial distribution

at the root node can differ from these. In this case the processes are

not reversible, since they are not stationary, but we restrict attention

to transition matrices of the form just described.
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2.6.2. The gn2 Program. We will describe here a generalization

of the gn program developed in order to calculate the joint distribution

function (2.33) for any tree of K matched sequences. The gn2 pro-

gram allows us to have different rates for each edge, which allows us

to have different lengths from the root to the external nodes, the rates

here represent the lengths of edges. Note that we can not distinguish

between the time and the length of the edge.

This program can be applied to any type of bifurcating tree, it re-

quires the set of parameters πX , πY , f0, the s-vector, a tree description

based on a matrix describing the tree and a matrix of instantaneous

rates for each edge. The following two matrices correspond to those

necessary in order to generate sequences on a rooted, 5-leafed tree in

Figure 5. The first matrix describes the tree with the nodes labelled

and the second matrix gives the rates or lengths of the eight edges in

the tree.

merge =









−1 −2

−4 −5

2 −3

3 1









, rate =









.2 .2

.5 .5

.3 .8

.2 1.8









≡
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ρ−4 ρ−5

ρ2 ρ−3

ρ3 ρ1
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Figure 5. Rooted five-leaf tree
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In order to reduce the number of parameters we use the two sta-

tionary distributions, πX for all edges to the left of the root node and

πY for all other edges. Further, if πX 6= πY , the initial distribution at

the root node can differ from these. The program proceeds recursively

at each internal node commencing with the root node, and proceeding

from the bottom of the first matrix using the rate associated with each

edge from the second matrix. In the case illustrated by the matrices

and the tree in the Figure 5, the program starts at the root giving the

joint distribution for the nodes 3 and 1. Then it goes to node 3 giving

the joint distribution at the nodes 1, 2 and -3, and so on.

Note that the two programs, gn and gn2, start at the root node and

proceed to the end nodes via each bifurcation at an internal node. This

is necessary since in general we may not have stationary, homogeneous

or reversible processes. This differs from the Felsenstein (1981) method,

which proceeds by pruning pairs of end nodes and so applies only to

stationary processes. The method of generating the entire probability

distribution here is only feasible for relatively small values of K, say

K ≤ 15, since it needs memory for 4K probabilities.

2.7. Evolutionary Models

All phylogenetic methods make assumptions, whether implicit or

explicit, about the substitution models that operate at the DNA or pro-

tein levels (see for example Felsenstein, 1973, Goldman, 1990, Penny,

1992). Models are abstractions or simplifications of hypothesis of the

real world, but they are intended to include the most important fea-

tures and omit irrelevant detail.

2.7.1. The Jukes-Cantor Model. The simplest (and earliest)

model of nucleotide substitution is the Jukes-Cantor model (Jukes,

1969). The Jukes-Cantor model set the S matrix defined in (2.13)
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as

S =









−3α α α α

α −3α α α

α α −3α α

α α α −3α









,

where α is a positive constant called the evolutionary rate. For the

Jukes-Cantor model, given that UUT = I and
∑4

i=2 uiu
T
i = I − 1

4
J ,

where J = 11T , u1 = 1
2
1 and π = 1

4
1, the rate matrix R defined in

(2.14) and (2.15) can be written as

R = α

(
1

4
J − I

)

, (2.34)

so the instantaneous transition rates Rij and Rii are defined by Rij =

α/4 for all i 6= j and Rii = −3α/4.

Now for the transition probability matrix P (t) defined in (2.16), since

λ1 = 0, λ2 = λ3 = λ4 = α, we can rewrite the transition matrix P (t)

as

P (t) = u1u
T
1 + e−αt

4∑

i=2

uiu
T
i

=
1

4
J + e−αt(I − 1

4
J). (2.35)

That is

Pii(t) =
1

4
+

3

4
e−tα,

Pij(t) =
1

4
− 1

4
e−tα, i 6= j.

From the last two equations we can see that as t → ∞, both Pii(t) and

Pij(t) approach 1
4
.

The Jukes-Cantor model assumes stationarity with stationary prob-

ability distribution equal to π = (1/4, 1/4, 1/4, 1/4)T . It assumes also

that the model is reversible.
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2.7.2. The Kimura Models. The Kimura model is a general-

ization of the Jukes-Cantor model. The highly symmetric assump-

tions implicit in the Jukes-Cantor model are not realistic. A transver-

sion is the replacement of (A → C,C → A,A → T, T → A,C →
G,G → C,G → T, T → G) and transition is the replacement of

(A → G,G → A,C → T, T → C). Kimura (1980) proposed a two-

parameter model to allow for differences in the rates of transition and

transversion. In the Kimura model the matrix S is set as

S =









−α − 2β α β β

α −α − 2β β β

β β −α − 2β α

β β α −α − 2β









.

The Kimura model turns into the Jukes-Cantor model when β = α. Its

stationary probability distribution is unique (and is identical to that

of the Jukes-Cantor model); also the model is reversible.

A generalization for this model is given by the Kimura 3ST model.

The rate matrix for this model is of the form

S =









−α − β − γ α β γ

α −α − β − γ γ β

β γ −α − β − γ α

γ β α −α − β − γ









.

2.7.3. The Felsenstein Model. The Felsenstein (1981) model is

also a generalization of the Jukes-Cantor model. The rate matrix R is

set as

R =









−α + απ1 απ2 απ3 απ4

απ1 −α + απ2 απ3 απ4

απ1 απ2 −α + απ3 απ4

απ1 απ2 απ3 −α + απ4









.

where α is the model parameter and (π1, π2, π3, π4) is the stationary

distribution.
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This model also generalized the Jukes-Cantor model, to which it

will be reduced if π1 = π2 = π3 = π4 = 0.25.

2.7.4. The Hasegawa-Kishino-Yaho Model. The Hasegawa (1985)

model (HKY) depends on five parameters and assumes that the rate

matrix R is given by

R =









−βπ2 − αϕ1 βπ2 απ3 απ4

βπ1 −βπ1 − αϕ1 απ3 απ4

απ1 απ2 −βπ4 − αϕ2 βπ4

απ1 απ2 βπ3 −βπ3 − αϕ2









,

where ϕ1 = π3 + π4, ϕ2 = π1 + π2. The HKY model is an amalgam of

Kimura’s (1980) two parameters model and Felsenstein’s (1981) model,

since if β = α this will reduce this model to Felsenstein model and if

π1 = π2 = π3 = π4 = 0.25 it will reduce it to Kimura model.

2.7.5. The General Time-Reversible Markov Model. The

general time-reversible Markov model (Lanave, 1984) assumes that the

process is stationary, with a rate matrix R given by

R =









R11 S12π2 S13π3 S14π4

S21π1 R22 S23π3 S24π4

S31π1 S32π2 R33 S34π4

S41π1 S42π2 S43π3 R44









, (2.36)

where Rii = −∑y 6=i Siyπy, i = 1, · · · , 4. A necessary condition for

the Markov process with rate matrix (2.36) to be reversible is that

Sij = Sji, i 6= j. If the initial probabilities are equal π, then the process

is stationary, and this is also a sufficient condition for reversibility.

For a two leaf tree the general time-reversible Markov model is a nine

free parameter model, which are six parameters for the rate matrix,

s = (S12, S13, S14, S23, S24, S34) and three parameters for π, since
∑4

i=1 πi = 1.

34



2.7.6. The General Markov Model for our Programs. In

this subsection we will describe the general Markov model for which

we develop the gn and gn2 programs.

As we mentioned while describing the way the two programs work, for

any tree with K matched sequences, our programs will divide the tree

into two parts depending on the first bifurcation from the tree root. Our

model will have 16 + (K − 2) parameters for the gn program, which

are six parameters for the s-vector, three parameters for πX , three

parameters for πY , three parameters for f0, one ρ and K − 2 heights,

note that the height from the root to any external node is equal to one.

For the gn2 program will have 15+(2K − 3) parameters, which are six

parameters for the s-vector, three parameters for πX , three parameters

for πY , three parameters for f0 and 2K − 3 for the rate matrix. Note

that these lengths need a different standardization and we make the

sum of all rates equal to a fixed value since multiplying the rate matrix

by a constant scale and dividing the elements of the s-vector by the

same constant will produce the same distribution function.
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Chapter 3

Simulation the Evolution of Matched Nucleotide

Sequences on a Phylogeny

3.1. Introduction

In order to study the performance of phylogenetic methods to es-

timate phylogeny and evolutionary parameters, we need nucleotide

sequences generated under controlled conditions. Monte Carlo sim-

ulations provide an opportunity to produce such data. The scientist

chooses: (i) a rooted, bifurcating tree with labelled tips and known

edge lengths; (ii) a Markov model for each edge that describes the in-

stantaneous rates of change from one nucleotide to one of the other

nucleotides; and (iii) an ancestral sequence from which the descendant

sequences evolve. The simulated data can then be used, for example,

to evaluate the performance of the phylogenetic methods (Gaut and

Lewis, 1995) or the reliability of phylogenetic results (Rambaut and

Grassly, 1997).

Several computer programs have been developed to simulate evo-

lution of nucleotide sequences on a known bifurcating tree (listed in

Jermiin et al., 2003) but most of these have restricted attention to

stationary and homogeneous cases and in general have have not given

detailed descriptions of their relation to the Markov processes of sub-

stitutions. Indeed, there are many studies of molecular evolution that

have used Monte Carlo simulations without describing in sufficient de-

tail the statistical and computational aspects of the software that was

developed to do the simulations (see e.g. Van Den Bussche et al., 1998;

Conant and Lewis, 2001). The fact that the computational implemen-

tation of the Markov process was not described in detail means that
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these and many other simulation studies cannot be replicated. In some

cases the simulation programs are no longer available.

In this chapter we describe three methods to simulate the evolu-

tion of nucleotide sequences on a known bifurcating tree. In the first

method, we calculate the joint probabilities and obtain the random

numbers of sites containing each arrangement of matched nucleotides

using the multinomial distribution; in the second method, we use the

Markov process at each site (as in Rambaut and Grassly, 1997), or

the equivalent embedded Markov chain and simulated waiting times,

to obtain the simulated results at the ends of the tree; and in the

third method, we describe a simulation method employed in the pro-

gram called Hetero (Jermiin et al., 2003), and we show that the third

method produces results that approximate those from the other two

methods. The methods cater for different computational situations,

and therefore require different statistical approaches.

3.2. Generating Random DNA Samples from a Multinomial

Distribution

A multinomial distribution with parameters n, p1, p2, ..., pr, where

n is a positive integer and 0 ≤ pi ≤ 1,
∑r

i=1 pi = 1, results from n

independent trials, each of which can result in an outcome of one of

r types, with probabilities p1, p2, ..., pr. Let Ni be the total number of

outcomes of type i in n trials, then the multinomial distribution is

P (N1 = n1, N2 = n2, ..., Nr = nr) =

(

n

n1 ... nr

)

pn1

1 pn2

2 ... pnr

r ,

provided that n1 + n2 + ... + nr = n, where
(

n

n1 ... nr

)

=
n!

n1! n2! ... nr!
.

The binomial distribution is a special case of multinomial distribution

with r = 2. Further, for k < r and given N1 + · · · + Nk = m, the con-

ditional distribution of Nk+1 is binomial with parameters n − m and
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pk+1/(1 − (p1 + · · · + pk)).

For the case of a two edge tree r = 16. Now knowing the joint dis-

tribution function and the sample size, we will generate the observed

divergence matrix

N =









N11 N12 N13 N14

N21 N22 N23 N24

N31 N32 N33 N34

N41 N42 N43 N44









,

where Nij is the number of times we observe Xk(t) = i, Yk(t) = j, 1 ≤
k ≤ n, i, j = 1, · · · , 4. Given that all nucleotide sites are independent

and identically distributed random samples, Nij will be distributed as a

joint multinomial distribution with parameters n (the sequence length)

and

F (t) =









f11(t) f12(t) f13(t) f14(t)

f21(t) f22(t) f23(t) f24(t)

f31(t) f32(t) f33(t) f34(t)

f41(t) f42(t) f43(t) f44(t)









,

where F (t) is the joint probability distribution for the two sequences

X(.) and Y (.). Here we take p1 = f11, p2 = f12, · · · , f44 = p16, and write

N11 for N1, and so forth. Now in order to generate the multinominal

distribution of Nij, first generate N11 random sample from binomial

distribution with parameter n and f11(t); given N11, conditionally N12

is a random sample from binomial distribution with parameters n−N11

and f12(t)/(1−f11(t)); given N11 and N12, conditionally N13 is a random

sample from the binomial distribution with parameters n−( N11+N12)

and f13(t)/(1− (f11(t) + f12(t))); and so forth. The last two terms are,

given N11, N12 . . . N42, conditionally N43 is a random sample from

the binomial distribution with parameters n − N11 − N12 − · · · − N42

and f43(t)/(1 − f11(t) − · · · − f42(t)), and given N11, N12 . . . N43,

conditionally N44 is a random sample from binomial distribution with

parameters n−N11−· · ·N43 and (f44(t)/(1−f11(t)−· · ·−f43(t))) = 1.
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We shall now give a numerical example in which we generate the

observed divergence matrix N from the binomial distribution, and then

find the matched sequences from the observed divergence matrix.

Example 3.1. For a two edge tree, consider the case of stationarity

but not homogeneity processes. That is let

ΠY = F (0) = ΠX and SX 6= SY .

Taking ΠX = diag(0.25, 0.25, 0.25, 0.25),

SX =









−0.6 0.2 0.2 0.2

0.2 −0.6 0.2 0.2

0.2 0.2 −0.6 0.2

0.2 0.2 0.2 −0.6









(3.1)

and

SY =









−0.7 0.2 0.2 0.3

0.2 −0.9 0.3 0.4

0.2 0.3 −0.9 0.4

0.3 0.4 0.4 −1.1









.

Taking the same time for the two edges t=0.5, we can calculate the

theoretical joint distribution function F (t).

For a sequence containing 10000 nucleotides, that is n = 10000, the

expected divergence matrix is given by

nF (t) =









2135 114 114 138

114 2086 139 162

114 139 2086 162

138 162 162 2037









(3.2)

Now depending on the joint distribution function F (t) and a sample

size n = 10000, we can simulate an observed divergence matrix, an
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example being

N =









2189 120 126 143

120 2105 142 151

117 150 2013 152

152 163 139 2018









.

which is similar to the expected divergence matrix (3.2).

In the previous example we showed how to generate random nu-

cleotide sequences from a multinomial distribution. We can apply this

method to any tree of K matched sequences. That is, depending on

the joint distribution function F (t) of K matched sequences, we can

generate a 4K observed divergence array using the same multinomial

process described for two matched sequences.

From the 4K array we can find the K matched sequences. For

instance, in the previous example, where K = 2, we obtained two

matched sequences with 2189 sites having the value A in both se-

quences, 120 sites having the value A for the first sequences and G

for the second sequence, and so on; that is

2189 120 · · · 2018

Sequence 1
︷ ︸︸ ︷

AAA · · ·A
︷ ︸︸ ︷

AAA · · ·A · · · · · ·
︷ ︸︸ ︷

TTT · · ·T
Sequence 2 AAA · · ·A GGG · · ·G · · · · · · TTT · · ·T

We have developed an S-Plus function to calculate the divergence

array N for any set of K matched sequences. This function depends

on the joint distribution function F (t) for the tree and on the sample

size n. We also we developed another function, which changes any 4K

divergence array N to K matched sequences.
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3.3. Generating Random DNA Samples From The Process

At Each Site

Consider the processes at the first site, X(t) and Y (t): at time t = 0,

the processes satisfy X(0) = Y (0), where P (X(0) = i) = f0i. After t

time units, the processes are in states X(t) and Y (t), where P (X(t) =

j|X(0) = i) = P X
ij (t) and P (Y (t) = j|Y (0) = i) = P Y

ij (t). Repeating

this construction independently n times leads to two sequences of n

independent states corresponding to X(t) and Y (t). From these two

matching sequences, we can find the observed divergence matrix N

such that Nij is the number of times that X(t) = i and Y (t) = j.

This method of simulation has been proposed earlier by (Rambaut and

Grassly, 1997).

Alternatively, we could use embedded Markov chains, X̃(m),m =

0, 1, · · · , which as well only involves the rate matrix(see for example

section 8.3 of Iosifescu, 1980). At time T0 = 0 the process is in state

X̃(0) = X(0); the process stays in state X̃(0) for a positive time, but

at the end of some random time, T1, it jumps to a new state X̃(1) with

probability Qij where,

Qij = P [X̃(m + 1) = j|X̃(m) = i]

=







Rij

−Rii
, if i 6= j,

0, if i = j.

The process stays in this state for some time until, at the end at some

time, T2, it jumps to another state X̃(2), and so on. We continue this

process until we reach a fixed time t such that TM−1 ≤ t < TM , then

take X(t) = X̃(M − 1). Let the random variable

WM = TM+1 − TM

be the positive time that the process stays in the state X̃(M), called

the “sojourn time” in the state. Conditional on X̃(M) = i, WM is
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distributed as an exponential variable with parameter Ri, that is

P (WM > t|X̃(M) = i) = e−Rit,

where Ri = −Rii is the absolute value of the diagonal of the rate matrix.

Taking Ỹ (0) = Y (0) = X(0) and proceeding as above independently

we get Y (t). Repeating the construction independently n times leads

to sequences of n independent states corresponding to X(t) and Y (t).

From these two matching sequences we can find the observed divergence

matrix N such that Nij is the number of times that X(t) = i and Y (t) =

j. We would not generate simulated data using this embedded chain

but we describe it since there are some similarities to the generation

method of the next section.

Example 3.2. Consider Example 3.1 in Section 3.2. First we generate

a sequence of 10000 nucleotides taken as the common ancestor. Condi-

tional on this sequence, we generate two independent sequences using

the method of Rambaut and Grassly (1997) described previously. This

led to

N =









2234 110 122 136

102 2090 153 150

126 129 1994 149

143 181 167 2014









which is again similar to the expected divergence matrix (3.2). The

matrix is the realization of the same processes.

Example 3.3. Consider exactly the same case as the previous exam-

ple. Although we would not in practice use the embedded method, we

illustrate it here, conditional on the same common ancestor sequence,

by generating two independent sequences using the embedded method.

This leads to

N =









2146 103 103 122

113 2053 159 171

118 135 2087 173

156 129 176 2056
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which is also similar to the expected divergence matrix (3.2) and it is

the realization of the same processes.

3.3.1. Generalization of the Rambaut and Grassly Method.

We shall show here the generalization of the Rambaut and Grassly

(1997) method in order to be able to simulate K matched sequences.

Suppose there are K matched nucleotide sequences of length n de-

rived from a common ancestor with a known tree topology. Each edge

has length t`, where ` takes one of the values {1, · · · , K − 2} for edges

leading to an internal node and {−1, · · · ,−K} for edges leading to

a leaf, where we number the nodes with positive and negative inte-

gers for internal and leaf nodes, respectively. At time t = 0, take

X1(0) = · · · = XK(0), generating X1(0) using

P (X1(0) = i) = f0i, i = 1, · · · , 4.

If the two edges of the tree starting at this ancestral node are of lengths

tA and tB, and the taxa split into groups X1(tA) = · · · = Xm(tA) and

Xm+1(tB) = · · · = XK(tB), then we generate these using

P [X1(tA) = j|X1(0) = i] = P A
ij (tA) (3.3)

and

P [Xm+1(tB) = j|Xm+1(0) = i] = P B
ij (tB) (3.4)

i, j = 1, · · · , 4, where P A and PB denote the transition matrices of the

Markov processes operating along the two lineages descending from

the common ancestor and tA and tB are the edge lengths from the root

node. This process of generation is repeated at each of the descendant

internal nodes; for example, at the second step, if tA < tB, depending

on the sequence on the node corresponding to A the process gener-

ates two sequences. This is continued until we get K matched values

X1(t), · · · , XK(t) at the tree leaves. Repeating this construction inde-

pendently n times gives K matched sequences. From these sequences,

we find the 4K divergence array N .
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We developed an S-Plus function to generate the divergence array

N for any K matched sequence tree, this function requires a tree de-

scription based on a matrix describing the tree, a set of parameters θ

and the sequence length n. We use here the same technique we used

for the gn program, that is, we use the two rate matrices, RX = SΠX

for all edges to the left of the root node and RY = SΠY for all other

edges. So P A(t) = P B(t) in (3.3) and (3.4) is equal to either P X(t) or

P Y (t) for all internal nodes except the root node. The set of param-

eters required for this algorithm is: πX , πY , f0, six variables for the

symmetric S matrix, ρ and a vector of heights depending on the size

of the tree. This means that this function allows us to generate the

observed divergence matrix N in this general case.

3.4. Generating Random DNA Samples Using An

Approximation Method

In this method, which has been implemented in a program called

Hetero (Jermiin et al., 2003), we use only the rate matrices. Consider

a two leaf tree first. Generate independent and identically distributed

random variables

X01, X02, . . . , X0n

taking values 1, · · · , 4 with probability

P (X0k = i) = f0i, k = 1, 2, · · · , n , i = 1, · · · , 4 .

Note that according to this notation Xmn is the random variable cor-

responding to the the n-th nucleotide in the m-th step in the Markov

process − accordingly, X07 represents the nucleotide at the seventh po-

sition in the ancestral sequence. Let Y0k = X0k, this means that we

have two sequences exactly the same, that is

{X01, X02, . . . , X0n} = {Y01, Y02, . . . , Y0n}.

Now from the first sequence X01, X02, . . . , X0n, select randomly

an element W from 1, · · · , n, with probability 1/n, then change the
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element in the W -th position X0W to X1W with transition probability

P (X1W = j|X0W = i,W ) =







1 + RX
ii , if i = j,

RX
ij , if i 6= j.

Now consider any element from the sequence, take for example X01 = i,

so the transition probability of changing X01 to X11 is

P (X11 = j|X01 = i) =







(1 − 1
n
) + 1

n
(1 + RX

ii ), if i = j,

1
n
RX

ij , if i 6= j.

After the first step we get the sequence

X11, X12, . . . , X1n.

If we randomly choose any element from this new sequence, the prob-

ability that this element is equal to j is

fX
1j =

∑

i6=j

(
1

n
f0iR

X
ij ) + f0j(1 +

RX
jj

n
).

In matrix notation this is

(fX
1 )T = fT

0 (I +
1

n
RX).

For the second step we just repeat the first step depending on the new

sequence

X11, X12, . . . , X1n.

This implies that after the second step we have a new sequence X21, X22, · · · , X2n,

with probability of selecting any element from this sequence and this

element is equal to j is

(fX
2 )T = (fX

1 )T (I +
1

n
RX)

= (f0)
T (I +

1

n
RX)2.

We continue this process, and after m repetitions of the process, we

get the sequence

Xm1, Xm2, . . . , Xmn.
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Let m = nt, so we have nt steps of size 1/n, then

(fX
nt)

T = (fX
0 )T (I +

1

n
RX)nt,

but

(fX
nt)

T = fT
0 (I +

1

n
RX)nt

= fT
0 etRX+O( 1

n
)

= fT
0 PX(t)(1 + O(

1

n
)),

that is

(fX
nt)

T ≈ (f0)
T PX(t).

In the same way we apply this procedure for the second sequence

Y01, Y02, Y03, . . . , Y0n, such that for m = nt we get

(fY
nt)

T = (f0)
T (I +

1

n
RY )nt

≈ (f0)
T P Y (t)

From the two sequences

Xnt1, Xnt2, . . . , Xntn, and Ynt1, Ynt2, . . . , Yntn

we can simulate an observed divergence matrix N .

Suppose that at the same time we start from the two sequences

{X01, X02, · · · , X0n} = {Y01, Y02, . . . , Y0n}.

Select randomly two elements, W and L from 1, · · · , n, each with prob-

ability 1/n, then change the elements in the W -th and L-th positions,

X0W to X1W and Y0L to Y1L with transition probability

P (X1W = j, Y1L = j′|X0W = i, Y0L = i′,W, L)

=







(1 + RX
ii )(1 + RY

i′i′), if i = j, i′ = j′

(1 + RX
ii )R

Y
i′j′ , if i = j, i′ 6= j′

(1 + RY
i′i′)R

X
ij , if i 6= j, i′ = j′

RX
ij R

Y
i′j′ , if i 6= j, i′ 6= j′
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Now from the first sequence take for example X01 = i and from the

second sequence take for example Y01 = i′, then the transition proba-

bility of changing X01 to X11 and Y01 to Y11 is

P (X11 = j, Y11 = j′|X01 = i, Y01 = i′)

=







(1 + 1
n
RX

ii )(1 + 1
n
RY

i′i′), if i = j, i′ = j′

(1 + 1
n
RX

ii )
1
n
RY

i′j′ , if i = j, i′ 6= j′

(1 + 1
n
RY

i′i′)
1
n
RX

ij , if i 6= j, i′ = j′

( 1
n
)2RX

ij R
Y
i′j′ , if i 6= j, i′ 6= j′

After the first step, we get the sequences

X11, X12, ... , X1n and Y11, Y12, ... , Y1n.

If we randomly choose any two elements one from the first sequence

and the other from the second sequence, then the probability that these

elements are j and j ′, respectively, is

f1jj′ = [(I +
1

n
RX)′F (0)(I +

1

n
RY )]jj′ = (F1)jj′

For the second step we just repeat the first step depending on the new

sequences, so we will get another two sequences

X21, X22, ... , X2n and Y21, Y22, ... , Y2n,

with probability of selecting any two elements from the first sequence

and the other from the second sequence and these elements are j and

j′ respectively is

f2jj′ = [(I +
1

n
RX)′F1(I +

1

n
RY )]jj′

= [((I +
1

n
RX)′)2F (0)(I +

1

n
RY )2]jj′ .
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After m steps of repeating this process, we get the sequences

Xm1, Xm2, · · · , Xmn; Ym1, Ym2, · · · , Ymn.

If m = nt then the probability of selecting any two elements from

the first sequence and the other from the second sequence and these

elements are j and j ′, respectively, is

fntjj′ = [((I +
1

n
RX)′)ntF (0)(I +

1

n
RY )nt]jj′

that is

(fntjj′) = ((I +
1

n
RX)′)ntF (0)(I +

1

n
RY )nt.

Now

(I +
1

n
RX)nt = etRX+O( 1

n
)

= PX(t)(1 + O(
1

n
))

' PX(t),

so

(fntjj′) ' PX(t)T F (0)P Y (t)

= F (t).

Example 3.4. Consider the same set of parameters described in Exam-

ple 3.1 and a sequence of 10000 nucleotides, using the previous method

of generation, the observed divergence matrix is

N =









2119 115 132 141

119 2063 125 155

118 125 2101 150

148 183 134 2072









which is again similar to the expected divergence matrix (3.2). The

matrix is an approximate realization of the same processes.
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3.4.1. Generalization for the Approximation Method. We

will show here the generalization of the previous approximation method

in order to be able to simulate K matched sequences.

Suppose there are K matched nucleotide sequences of length n de-

rived from a common ancestor with a known tree topology. Define the

edge length as in the generalization of Rambaut and Grassly (1997)

method. At the beginning, at time t = 0, the process generates a

sequence of length n, X01, · · · , X0n, from the numbers 1, · · · , 4, with

probability

P (X0k = i) = f0i, i = 1, · · · , 4, k = 1, · · · , n.

Let Y0k = X0k, k = 1, · · · , n. If the two edges of the tree starting from

the ancestral node are of lengths tA and tB, then the process generates

two sequences each of length n, such that, for the edge corresponding to

node A, from the ancestor sequence X01, · · · , X0n, we randomly select

an element W from 1, · · · , n with probability 1/n, then change the

element in the W -th position X0W to X1W with probability

P (X1W = j|X0W = i,W ) =







1 + RA
ii , if i = j,

RA
ij, if i 6= j,

where RA denotes the rate matrix of the Markov processes operat-

ing along the lineage descending from the common ancestor to the

node corresponding to A. This means that we will get the sequence

X11, · · · , X1n. We repeat this process m = ntA times, where tA rep-

resents the length from the ancestral node to the node corresponding

to A. This repetition will give us the sequence Xm1, · · · , Xmn for the

node corresponding to A.

Simultaneously, for the edge corresponding to node B, from the

ancestor sequence Y01, · · · , Y0n, we randomly select an element L from

1, · · · , n with probability 1/n, then change the element in the L-th
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position Y0L to Y1L with probability

P (X1L = j|X0L = i, L) =







1 + RB
ii , if i = j,

RB
ij , if i 6= j,

where RB denotes the rate matrix of the Markov processes operat-

ing along the lineage descending from the common ancestor to the

node corresponding to B. This means that we will get the sequence

Y11, · · · , Y1n. We repeat this process u = ntB times, where tB repre-

sents the length from the ancestral node to the node corresponding to

A. This repetition will give us the sequence Xu1, · · · , Xun for the node

corresponding to B.

This process of sequence generation is repeated at each of the de-

scendant internal nodes; for example, at the second step, if tA < tB,

depending on the sequence on the node corresponding to A the process

generates two sequences. This is continued until we get K matched

sequences at the tree leaves. From these K matched sequences, we find

the 4K divergence array N .

We developed an S-Plus function to generate the divergence ar-

ray N for any set of K matched sequences generalizing the program

called Hetero (Jermiin et al., 2003). The function requires the same

set of parameters that the generalization of the Rambaut and Grassly

(1997) method required. We also use the same technique with two rate

matrices, RX = SXΠX for all edges to the left of the root node and

RY = SY ΠY for all other edges.

3.5. Examples based on Five Matched Sequences

We will use the Multinomial method described in Section 3.2 to gen-

erate the divergence array N , for larger trees (five leaf tree), knowing

that the other two methods will give the same result.

In the following example we discuss the case of five matched se-

quences evolving on a tree under non-stationary and non-homogeneous
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conditions. The purpose of this example to generate a set of data

similar to the real data we will analyze in the next chapter.

Example 3.5. Consider the case of five leaf tree, where the topology

of the tree is described by the following merge matrix, corresponding

to Figure 4(D),

merge =









−1 −2

−4 −5

1 −3

3 2









. (3.5)

Assume that the process is neither stationary nor homogeneous, by

taking

π = πX = πY = (0.2, 0.2, 0.2, 0.4)T ,

f0 = (0.25, 0.25, 0.25, 0.25)T and the s-vector = (0.2, 0.2, 0.2, 0.2, 0.2, 0.2).

Let RX = ρRY , ρ = 3, and take the vector of heights to be (0.1, 0.6, 0.8, 1).

Now using the gn program described in Chapter 2, we can compute

the theoretical joint distribution function F (t) for the tree. For a sam-

ple size n = 10000 and depending on the theoretical joint distribution

function, using the multinomial method we can generate the expected

45 divergence array N .

From the joint distribution function F (t), the marginal distribution

for the nodes −1,−2 and −3 are

Fi....(1) = F.i...(1) = F..i..(1) = (0.2409, 0.2409, 0.2409, 0.2772)

and for the nodes -4 and -5 are

F...i.(1) = F....i(1) = (0.2274, 0.2274, 0.2274, 0.3177).

The reason for this difference between the marginal distributions is

because the edges −1,−2 and −3 are derived from the same process,

which is different from the process from which the edges −4 and −5 are

derived. By comparison, using the multinomial method we can simu-

late an observed joint divergence array N , from which the estimated
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marginal distribution at each end node obtained by summing N/10000

over other dimensions for −1,−2 and −3 are

(0.2392, 0.2386, 0.2434, 0.2788),

(0.2400, 0.2380, 0.2440, 0.2780),

(0.2401, 0.2417, 0.2408, 0.2774),

and for -4 and -5 are

(0.2286, 0.2261, 0.2280, 0.3173),

(0.2267, 0.2229, 0.2329, 0.3175),

Notice that these estimated marginals are very close to the marginals

derived from the theoretical joint distribution F (t). Notice also that

the marginal distributions for the edges -4 and -5 are closer to the

stationary distribution, π, than the marginal distributions for the edges

−1,−2 and −3, since the rate matrix for the edges −4 and −5 is

multiplied by a factor ρ = 3.

We can obtain any 4 × 4 observed divergence matrix for any pair

such as (−1,−2) by summing N over the other three dimensions.

Example 3.6. Consider the same tree as the previous example and

assume non-stationary and non-homogeneous processes, but in this case

let

πT
X = (0.2, 0.2, 0.2, 0.4),

πT
Y = (0.3, 0.3, 0.3, 0.1)

and

fT
0 = (0.25, 0.25, 0.25, 0.25).

Let RX = RY , and take the s-vector and the height vector as in the

previous example. Now depending on the theoretical joint distribution

function F (t) and a sample of size n = 10000, using the multinomial
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method we can generate the expected 45 divergent array N . The es-

timated marginal distribution at each end node obtained by summing

N/10000 over other dimensions for −1,−2 and −3 are

(0.2472, 0.2356, 0.2403, 0.2769),

(0.2471, 0.2409, 0.2343, 0.2777),

(0.2434, 0.2449, 0.2359, 0.2758),

which are very close to the marginal distributions derived from the

joint distribution F (t) for the same edges

Fi....(1) = F.i...(1) = F..i..(1) = (0.2409, 0.2409, 0.2409, 0.2772),

and the same holds for node −4 and −5, in which case the estimated

marginals are

(0.2594, 0.2580, 0.2540, 0.2286),

(0.2577, 0.2586, 0.2619, 0.2218),

which are very close to the marginal distribution derived from the joint

distribution F (t) for edge −4 and −5

F...i.(1) = F....i(1) = (0.2591, 0.2591, 0.2591, 0.2228).

3.6. Discussion

We have described three methods to simulate evolution of nucleotide

sequences on a phylogenetic tree. The methods cater for different math-

ematical and computational limitations and requirements.

In addition to producing the simulated sequences, the first method

also uses a theoretical joint probability distribution produced by the

method in section 2.4. The method is relatively easy to implement,

and computational time is essentially independent of the number of

sequences K, and their length n. The method may, however, use too

much memory when K is very large, because the method requires stor-

age of at least 4K elements (i.e. the joint probability distribution).

The second method produces the simulated sequences using Kn

steps, in each of which only a small number of computations is required.
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The method is relatively easy to implement, and requires memory for

at least Kn elements. A version of the method was implemented in

Seq-Gen (Rambaut and Grassly, 1997).

The third method also requires memory for at least Kn elements

but may require more computational time than the other methods, es-

pecially when the edge lengths are long, the rates of change are low, and

n is large. However, the method is simpler to implement because ex-

ponentiation of the rate matrices is not needed. Moreover, the method

allows for additional features to be considered, including continued

monitoring of properties of the sequence data (e.g. the number of

times that each site has changed across the tree, and the change in

nucleotide content over time). The method was implemented in Hetero

(Jermiin et al., 2003).

It is possible to extend the simulation methods to processes with

different rates at nucleotide sites. All methods could be easily extended

to generate sequences under a codon model with only three fixed differ-

ent rates. However, only the second and third methods can be extended

to give a different randomly chosen rate at each site by choosing a rate

for each site from the assumed distribution of rates, as has been pro-

posed (Rambaut and Grassly, 1997).
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Chapter 4

Tests of Homogeneity

4.1. Introduction

Most phylogenetic methods assume that the sequences of nucleotides

have evolved under stationary, reversible, and homogeneous conditions.

When these assumptions are violated by the data, there is an increased

probability of errors in the phylogenetic estimates. Methods to exam-

ine aligned sequences are available, but they are rarely used, either

because they are unknown or because they are poorly understood.

We describe and compare the available tests for symmetry of k-

dimensional contingency tables from homologous sequences, and de-

velop two new tests to evaluate different aspects of the evolutionary

processes. For any pair of sequences, we consider a partition of the test

for symmetry into a test for marginal symmetry and a test for inter-

nal symmetry. The proposed tests can be used to identify appropriate

models for estimation of evolutionary relationships under a Markovian

model. Simulations under more or less complex evolutionary condi-

tions were done to display the performance of the tests. Finally, the

tests were applied to an alignment of small-subunit ribosomal RNA

sequences of five species of bacteria with the aim to outline the evolu-

tionary processes under which they evolved.

Suppose we have k matched observations of n independently and

identically distributed variables taking values in r categories. An exam-

ple of such data would be an alignment of k = 5 sequences of n = 2000

nucleotides (implying that r = 4) or amino acids (implying that r = 20)

− other examples are discussed in, for instance, Agresti (1990, Chapters

10 and 11). Data of this nature can be summarized in k-dimensional
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tables with rk categories. Hypotheses of interest concern symmetry

in these tables. In the particular cases of homologous nucleotide or

amino acid sequences, tests of symmetry or marginal symmetry can be

used to consider goodness of fit of the Markov models used to describe

evolutionary processes. The importance of using these infrequently-

used tests prior to phylogenetic analysis of aligned sequence data has

long been common knowledge (Tavaré, 1986; Lanave and Pesole, 1993;

Rzhetsky and Nei, 1995; Waddell and Steel, 1997; Waddell et al., 1999)

but has not yet been accommodated by the wider scientific community.

The importance of employing these tests was recently emphasized by

Jermiin et al. (2004).

In the simple case where K = 2, matched pairs tests can be used

to test for symmetry and marginal symmetry. The null hypothesis for

symmetry is

H0B : fij = fji, i 6= j, i, j = 1, . . . , r,

where fij is the probability that a randomly chosen variable belongs to

the ij-th category (Bowker, 1948), and the null hypothesis for marginal

symmetry is

H0S : fi. = f.i, i = 1, . . . , r,

where fi. is the sum of fij over j (Stuart, 1955). The two hypothe-

ses are obviously the same in a 2 × 2 contingency table - in general,

however, symmetry implies marginal symmetry, whereas the opposite

is not so. We will show that Bowker’s (1948) chi-squared test statistic

for symmetry can be partitioned into two independent components, one

component being Stuart’s (1955) chi-squared test statistic for marginal

symmetry, and the other component being a chi-squared test statistic

for internal symmetry. This partition was formally proposed by O’Neill

(1975).

In the more complex cases where K > 2, a test of marginal symme-

try has been formulated for analyses of nucleotide sequences (Rzhetsky

and Nei, 1995), but their test was not described for more general terms.

Denote by fi1,··· ,iK the probability of an observation belonging to the
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ij-th category of the j-th variable, j = 1, · · · , K, ij = 1, . . . , r. Write

f j
ij

=
K∑

`=1,`6=j

r∑

i`=1

fi1,··· ,iK .

Clearly, f j
i are the marginal probabilities of the j-th variable. We

will use similar notation for an observed table. For instance, ni1,··· ,iK

represents the observed frequency or count in the i1, · · · , iK-th cell of

a rK table, and nj
i represents the total number of observed counts in

the i-th category of the j-th dimension. We will derive a combined test

for marginal symmetry of all sequences, essentially equivalent to that

proposed by Rzhetsky and Nei (1995), and relate this test to tests for

all pairs.

Finally, we consider a Markov model for evolution and discuss the

use of these tests in deciding on appropriate topologies for a set of

data assumed to be generated under the model. We obtain results by

simulation that illustrates the use of the tests and we apply the tests

to bacterial data that have been discussed previously, for example, in

Galtier and Guoy (1995).

4.2. Bowker’s Test for Symmetry

Consider an r × r contingency table with the ij-th cell containing

the frequency nij. We will derive an orthogonal decomposition of the

test statistic of Bowker (1948) for testing symmetry in terms of that of

Stuart’s (1955) test for marginal symmetry, which we will show later.

The test statistic of Bowker (1948) for symmetry is given by

S2
B =

∑

i<j

(nij − nji)
2

nij + nji

,

or alternatively,

S2
B = mT B−1m,

where

mT = (n12−n21, . . . , n1r−nr1, n23−n32, . . . , n2r−nr2, . . . , nr−1,r−nr,r−1),
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and B is a diagonal matrix with elements n12 +n21, . . . , n1r +nr1, n23 +

n32, . . . , n2r + nr2, . . . , nr−1,r + nr,r−1.

4.3. Stuart’s Test for Marginal Symmetry

Consider an r × r table with the ij-th cell frequency nij. Let

d = (n1. − n.1, . . . , nr−1. − n.r−1)
T

and V be the (r − 1) × (r − 1) matrix with the elements

vij =

{

ni. + n.i − 2nii, i = j

−(nij + nji), i 6= j.

Here V is the estimated covariance matrix of d under the assumption

of marginal symmetry. The test statistic of Stuart (1955) for marginal

symmetry is given by

S2
S = dT V −1d.

To derive an alternative expression of S2
S in terms of m, which was

defined in the previous section, notice that d can be written as

d = Cm, (4.1)

where C is a (r−1)× r(r−1)
2

matrix, uniquely defined by equation (4.1),

with the following form for the case r = 4,

C =






1 1 1 0 0 0

−1 0 0 1 1 0

0 −1 0 −1 0 1






As a result, Stuart’s test statistic is expressed as

S2
S = mT CT V −1Cm.

A test statistic for marginal symmetry closely related to Stuart’s

test statistic was presented by Bhapkar (1966) as

S2
SB = dT G−1d,
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where G is simply the estimated covariance matrix of d,

G = V − ddT /n.

Noting that

G−1 = V −1 +
V −1ddT V −1

(1 − dT V −1d/n)
,

it can be seen, as was shown by Ireland et al. (1969), that

S2
SB = S2

S/(1 − S2
S/n).

4.4. Test for Internal Symmetry

Following O’Neill’s (1975) formal proposal, we will now develop

a test for internal symmetry that depends on Bowker’s (1948) and

Stuart’s (1955) tests.

Note that, conditional on the elements of B, the elements of B−1/2m

are asymptotically independent standard normal variables, under the

assumption of symmetry, implying that this is also the unconditional

distribution. Accordingly,

S2
S = mT B−1/2B1/2CT V −1CB1/2B−1/2m

is distributed asymptotically as χ2
r−1, where B1/2CT V −1CB1/2 is a pro-

jection matrix of rank r − 1, as can be seen directly by verifying that

V = CBCT .

Consequently

S2
I = S2

B − S2
S

= mT B−1/2(I − B1/2CT V −1CB1/2)B−1/2m,

which leads immediately to the following theorem.

Theorem 4.1. Under the hypothesis of symmetry, H0B, S2
S and S2

I are

asymptotically distributed as independent chi-square variables with r−1

and (r − 1)(r − 2)/2 degrees of freedom, respectively. In addition S2
S is

asymptotically distributed as a chi-square variable with r− 1 degrees of

freedom, under the null hypothesis of marginal symmetry H0S.
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It is worth noting that the statistic for testing internal symmetry is

S2
I = mT B−1QT (QB−1QT )−1QB−1m,

where CQT = 0. Accordingly, we must consider contrasts QB−1m to

help interpret internal symmetry. In the case r = 4 we could take

Q =






1 0 −1 0 1 0

0 1 −1 0 0 1

0 0 0 1 −1 1






We develop a function using the S-Plus and R packages to calculate

the p-values of the previous three tests for all the pairs in a K edge

tree.

4.5. Tests with Several Matched Observations

The simplest extension to K matched observations is to obtain tests

for all pairs of observations as in the last three sections. Of course, as

K increases this leads to problems of multiple comparisons, so we need

to interpret p-values with some care. This simple approach enables us,

however, to find observations that match on the basis of symmetry,

marginal symmetry and internal symmetry. The p-values can be set

out in a two-way table for all pairs, giving a useful method of grouping

the observations, even though there are multiple comparison problems.

This will be illustrated for nucleotide sequences later.

We may also wish to have an overall test for marginal symmetry.

The null hypothesis is

H0S : f j
i = fi, i = 1, · · · , r, j = 1, · · · , K.

Such a test was proposed by Rzhetsky and Nei (1995) for the analysis

of nucleotide sequences. We will derive an equivalent test here and

relate it to the tests for pairs given in the previous sections.

Consider the case when K = 3, which will have obvious extensions

to any K. Let

ηT = (ηT
1 , ηT

2 , ηT
3 ),
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where ηT
j = (nj1, · · · , njr) is the number of sites in the j-th sequence

for which the variable takes a value 1, · · · , r. We can then write the

expectation and covariance matrix of η as

1

n
E(η) =






f1

f2

f3






= f

and

1

n
V ar(η) =






D̈1 F12 F13

F21 D̈2 F23

F31 F32 D̈3




− ffT

= V − ffT ,

where

fT
j = (f j

1 , ..., f
j
r ), Fjj′ =

∗∑ r∑

i`=1

fi1,··· ,iK , and D̈j = diag(fj),

where
∗∑

denotes summation over ` 6= j or j ′.

Let

L =

(

Ir −Ir 0rr

Ir 0rr −Ir

)

and

H =

(

Ir−1 0r−1,1 0r−1,r−1 0r−1,1

0r−1,r−1 0r−1,1 Ir−1 0r−1,1

)

where Ih, is an h × h unit matrix and 0h,K denotes a h × K matrix

of zeros. Now put d = HLη; multiplication by L compares sequences

1 and 2 and sequences 1 and 3, while multiplication by H selects the

first r − 1 values, thus giving exactly 2(r − 1) contrasts which have a

covariance matrix of full rank. This generalizes d of (4.1).
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We consider the hypothesis

H0S : f1 = f2 = f3.

Under H0S,
1

n
E(HLη) = E(d) = 0

and
1

n
V ar(HLη) =

1

n
V ar(d) = HLV LT HT .

V can be estimated by V̂ , which can be obtained by replacing fj by

f̂j = ηj/n and Fjj′ by F̂jj′ = Njj′/n, where Njj′ is the observed r × r

matrix of observations for each pair of sequences j and j ′. Then, to

test H0S we can use the statistic

Ts = dT (HLV̂ LT HT )−1d/n

Under H0S, this is asymptotically distributed as a χ2
(r−1)(K−1) variate.

Equivalently, we can use the computationally simpler,

Ts = ηT LT (LV̂ LT + J2,r)
−1Lη

where

J2,r =

(

Jr 0

0 Jr

)

for Jr = 1r1
T
r and 1r is a vector of length r with all elements 1.

The method developed here is described in general terms and for a

general purpose, but can be used to analyse molecular sequence data.

The method differs slightly from that of Rzhetsky and Nei (1995) by

estimating the covariance matrix under H0S instead of estimating it

under the general model. For the case K = 2, Rzhetsky and Nei’s

(1995) test statistic is that of Bhapkar (1969), while the test statistic

considered here is just that of Stuart (1955).

We have developed a function using the S-Plus and R packages to

calculate the p-value of the previous test for any tree with K matched

nucleotide sequences.
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We now finish this chapter by giving some examples that show how

these tests are working and why they are useful for the estimating

procedure.

4.6. Analysis of Simulated Nucleotide Sequences

Example 4.1. Consider two matched sequences generated under the

model P (t) = eRt and (2.28) with the same time-independent rate

matrix

R =









−0.6 0.2 0.2 0.2

0.2 −0.6 0.2 0.2

0.2 0.2 −0.6 0.2

0.2 0.2 0.2 −0.6









,

which implies that πT = (0.25, 0.25, 0.25, 0.25) is the stationary dis-

tribution of the process, but with f0 = (0.2, 0.2, 0.2, 0.4)T , and with

t1 = t2 = 1. If we simulate the evolution of two nucleotide sequences

of length 1000 using any of the methods in the previous chapter, then

we can obtain the observed divergence matrix N and apply the tests.

Doing so 1000 times, we obtained p-values for all tests that are uni-

formly distributed on (0, 1), as expected, illustrating that in the case

of homogeneity (i.e., RA = RB) the tests do not indicate the lack of

stationarity, which was obviously present in this simulated data.

Example 4.2. Consider the simplest case of non-homogeneity. If R2 =

ρR1, t1 = t2 = 1, but f0 6= π, as in the previous example, then we might

expect the test for marginal symmetry to indicate lack of symmetry and

the test for internal symmetry to give no evidence of an effect. This

indeed occurred: with a simulation taking parameters as in the first

example, with RA = R and RB = ρR, giving uniform p-values for

the test for internal symmetry but having 60% and 90% of p-values

less than 0.05 in the test for marginal symmetry, for ρ equal to 3 and

5, respectively. This shows that the test for marginal symmetry can

detect lack of stationarity when sequences have evolved under non-

homogeneous conditions e.g., when (R2 = ρR1).
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Example 4.3. Consider a model under which the test for marginal

symmetry is not significant but the test for internal symmetry shows

significant differences. For simplicity we will consider the general time-

reversible Markov model for which ΠR is symmetric, and again we will

take t1 = t2 = 1. Consider the spectral decomposition

Π1/2RΠ−1/2 =
4∑

j=1

λjuju
T
j = UΛUT

where Λ = diag(λ1, · · · , λ4). By taking unequal values of λ1, · · · , λ4

and different uj for A and B (i.e., the two sequences), while keeping

stationarity (f0 = πA= πB), we achieve a suitable model. We took

f0 = (0.25, 0.25, 0.25, 0.25)T ,

λ1 = 0, λ2 = 5, λ3 = 3, λ4 = 2,

uT
A1 = (0.5, 0.5, 0.5, 0.5),

uT
A2 = (1,−1, 0, 0)/

√
2,

uT
A3 = (1, 1,−2, 0)/

√
6,

uT
A4 = (1, 1, 1,−3)/

√
12,

and

uT
B1 = (0.5, 0.5, 0.5, 0.5),

uT
B2 = (1, 0, 0,−1)/

√
2,

uT
B3 = (1, 0,−2, 1)/

√
6,

uT
B4 = (1,−3, 1, 1)/

√
12.

Using this and so obtaining F (t) from (2.28), and then getting 1000

simulations of matched sequences of length 1000, we obtained p-values

for the test for marginal symmetry, which were uniform, as expected;

on the other hand, we obtained 14% of p-values less than 0.05 for the

test for internal symmetry. We then increased λ2 to 10, 15 and 20,

and obtained 55%, 68%, and 78% p-values less than 0.05, respectively.

This illustrates that the test for internal symmetry measures divergence
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from symmetry in addition to that which might be due to marginal

symmetry.

In the previous three examples we apply our test on a two edge

tree. Now we will discuss different models for larger trees.

Example 4.4. Consider the case of non-stationarity and homogene-

ity for a tree of five matched sequences. Consider a model for a tree

corresponding to the “merge” matrix

merge =









−1 −2

−4 −5

−3 1

2 3









. (4.2)

We use the heights (0.1, 0.5, 0.8, .1), corresponding to the internal nodes

represented by the rows of the previous merge matrix. Take

π = πX = πY = (0.1, 0.1, 0.1, 0.7)T ,

fT
0 = (0.25, 0.25, 0.25, 0.25) and the s-vector = (0.2, 0.2, 0.2, 0.2, 0.2, 0.2).

Let RX = RY = SΠ, where S is calculated using (2.13). Now, using any

of the simulated methods described in Chapter 3, take, for example, the

multinomial method, we generate simulated data set of size n = 1000

with 1000 replications from this model. We apply the overall test using

the statistic Ts in section 4.5 as well as the matched pairs tests of

homogeneity on all the 10 pairs of sequences. We can see that all p-

values were uniformly distributed, as seen in Table 4.1, which shows

the percentage of p-values from Stuart’s test less than 0.05.

The other two matched pairs tests gave similar uniformly distributed

results whereas the overall test Ts gave a mean and standard deviation

of 11.9 and 4.7, respectively, compared to the mean and standard de-

viation of a χ2
12 variate of 12 and 4.9. These results imply that the

test of marginal symmetry is unable to detect that the sequences have
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Seq 1 Seq 2 Seq 3 Seq 4

Seq 2 4.2

Seq 3 5.1 4.4

Seq 4 5.1 4.9 4.5

Seq 5 4.4 5.3 4.8 5.2

Table 4.1. Percentage of p-values of Stuart’s (1955)
test less than 0.05 - based on simulated data

evolved under non-stationary conditions, when the evolutionary pro-

cesses otherwise are homogeneous. We obtained the same test results

for the case of stationary and homogeneous processes.

Example 4.5. In this example consider the case of non-stationarity

and non-homogeneity for the same five edge tree described in equation

(4.2), define π and f0 as in the previous example but in this case let

RX = SΠ, RY = ρSΠ, and ρ = 2 where the S matrix and the height

vector are defined as in the previous example. Simulating data set of

size n = 1000 with 1000 replications under these variables, we obtained

the result in Table 4.2, which shows the percentage of p-values from

the test for marginal symmetry that were less than 0.05. The values

of Ts for this case led to a mean and standard deviation of 41 and 11,

respectively.

Seq 1 Seq 2 Seq 3 Seq 4

Seq 2 5.2

Seq 3 5.4 4.9

Seq 4 94.6 95.5 95.6

Seq 5 94.8 94.6 96.2 5.5

Table 4.2. Percentage of p-values of Stuart’s (1955)
test less than 0.05 - based on simulated data
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From Table 4.2, we can easily see that the processes leading to

nodes −1,−2 and −3 are homogeneous and the processes leading to

nodes −4 and −5 are homogeneous.

Example 4.6. Consider the case of non-stationarity and non-homogeneity

for the tree corresponding to the merge matrix (4.2). Now, assume that

the non-homogeneity came from having different π for each side of the

tree root, that is take

πT
X = (.2, .2, .2, .4), πT

Y = (.3, .3, .3, .1), fT
0 = (0.25, 0.25, 0.25, 0.25).

and s-vector = (0.2, 0.2, 0.2, 0.2, 0.2, 0.2). Simulating 1000 times with a

sample size n = 1000, we obtained the result in Table 4.3. The values

of Ts for this case led to a mean and standard deviation of 47 and 12,

respectively.

Seq 1 Seq 2 Seq 3 Seq 4

Seq 2 4.7

Seq 3 5.4 5.2

Seq 4 98.5 97.5 96.9

Seq 5 97.1 98.6 99.0 5.0

Table 4.3. Percentage of p-values of Stuart’s (1955)
test less than 0.05 - based on simulated data

Again, the results (Table 4.3) show that the processes leading to

nodes −1,−2 and −3 are homogeneous and the processes leading to

nodes −4 and −5 are homogeneous.

From the last two examples, we can see that the paired test for

marginal symmetry cannot distinguish between the case when the lack

of homogeneity came from first having different rate matrices for each

side of the tree, that is SX 6= SY , second having different π for each

side of the tree, that is πX 6= πY or from both.
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4.7. Analysis of Real Nucleotide Sequences

Molecular evolution of real data, that is nucleotide sequences from

a set of genomes, may or may not have evolved under stationary and

homogeneous conditions. We test two data sets by applying the three

matched pairs tests of homogeneity and the overall test of marginal

symmetry.

Example 4.7. Gaultier and Guoy (1995) inferred a phylogeny among

five eubacterial species using the small-subunit ribosomal RNA se-

quences from Aquafix pyrophilus, Thermotoga maritima, Thermus ther-

mophilus, Deinococcus radiodurans, and a fifth species chosen from the

following genera: Chlamydia, Spirochaeta, Bacterides, Agrobacterium,

Escherichia, Fusobacterium, Clostridium, Bacillus, Micrococcus, and

Anabaena. They used a nucleotide substitution model that assumes

that πA = πT and πC = πG whereas πC + πG was allowed to vary across

the tree; hence, they used a non-stationary and non-homogeneous model

to infer their eubacterial phylogeny.

To illustrate the use of the matched pairs test of symmetry, we have

used essentially the same data, except that the fifth species was rep-

resented by Bacillus subtilis. The alignment consists of 1238 matched

sites from five species. The overall test for marginal symmetry based

on Ts from Section 4.5 was applied giving an observed value 108.6 com-

paring to χ2
12, indicating a significantly large deviation from marginal

symmetry (p ≤ 0.0001). More information was obtained by using the

pair-wise tests of symmetry, marginal symmetry and internal symme-

try, which gave the p-values shown in Table 4.4.

It is clear that all divergence matrices for the set Aquifex, Thermus,

and Thermotoga show symmetry, as does the divergence matrix for

Bacillus and Deinococcus, but all divergence matrices for pairs between

these sets are highly asymmetric. Further there is no indication of
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Test A B D Ts

Bowker 0.000

B Stuart 0.000

Int Sym 0.295

Bowker 0.000 0.995

D Stuart 0.000 0.946

Int Sym 0.754 0.958

Bowker 0.509 0.000 0.000

Ts Stuart 0.731 0.000 0.000

Int Sym 0.263 0.544 0.863

Bowker 0.132 0.000 0.000 0.415

Ta Stuart 0.325 0.000 0.000 0.267

Int Sym 0.095 0.417 0.297 0.546

Table 4.4. Tests of bacterial data - A: Aquifex, B:
Bacillus, D: Deinococcus, Ts: Thermus, Ta: Thermotoga

differences in internal symmetry. The simplest model for which this

outcome for the tests would be expected must satisfy

• lack of stationary;

• all terminal edges to Aquifex, Thermus and Thermotoga have

the same rate matrix R1 whereas the terminal edges to Bacillus

and Deinococcus have the same rate matrix R2;

• R1 6= R2.

We can present the third condition here in a simpler form if we

take R1 = S1Π1 and R2 = ρS2Π2, where either ρ 6= 1 or Π1 6= Π2,

and Π1 and Π2 are diagonal matrices with the stationary distributions

of R1 and R2, respectively. Consideration of this simple form using

the same s-vector (off-diagonal elements in S1 and S2) for both R1

and R2 has support because the test for internal symmetry was not

significant, although such an assumption is not strictly justified. We

might also take S1 and S2 to be symmetric, making the process on
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each edge reversible under stationarity, although the tests do not give

information on this.

Example 4.8. We will give here simulated data having the same struc-

ture as the bacterial data and apply our test on it. Consider the case

Test Seq 1 Seq 2 Seq 3 Seq 4

Bowker 0.1154

Seq 2 Stuart 0.1093

Int Sym 0.2429

Bowker 0.7658 0.8958

Seq 3 Stuart 0.6704 0.9901

Int Sym 0.6186 0.5456

Bowker 0.0000 0.0000 0.0000

Seq 4 Stuart 0.0000 0.0000 0.0000

Int Sym 0.4169 0.0978 0.6611

Bowker 0.0000 0.0000 0.0000 0.2800

Seq 5 Stuart 0.0000 0.0000 0.0000 0.4488

Int Sym 0.9677 0.5725 0.7915 0.1859

Table 4.5. Tests of simulated sequences.

of non-stationarity and non-homogeneity for a five edge tree described

by the merge matrix (4.2), by taking

πT
X = (0.1, 0.1, 0.1, 0.7), πT

Y = (0.3, 0.3, 0.3, 0.1),

fT
0 = (0.25, 0.25, 0.25, 0.25) and the s-vector = (0.2, 0.2, 0.2, 0.2, 0.2, 0.2).

Let RX = SXΠX and RY = ρSY ΠY , where ρ = 3, SX and SY are cal-

culated using (2.13). Now simulate data of size n = 1000 and applying

our tests on it gave us the result in the Table 4.5.

From Table 4.5, we can easily see that all the divergence matrices for

the external nodes set 1, 2 and 3 show symmetry, as does the divergence

matrices for the external nodes set 4 and 5, but the divergence matrices

for pairs between these sets are highly asymmetric. Also there is no
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indication of differences in internal symmetry. So all the results give us

what we expected, since we generate the data under non-stationary and

non-homogeneous processes. Note that these results do not address the

question of whether the bacterial phylogeny informed by Galtier Gouy

(1995) is right. It merely shows that we can generate data that have

similar properties to the real data.

Example 4.9. We consider an alignment of 1206 nucleotides from the

mitochondrially-encoded NADH dehydrogenase submit 5 genes of: Hu-

man, Chimpanzee, Bonobo, Gorilla, Orangutan, Gibbon and Macaque.

The overall test for marginal symmetry Ts was applied giving a non-

significant observed value 25.35 comparing to χ2
18. Also, the matched

pairs tests of homogeneity were applied and gave the p-values shown

in Table 4.6.

Its clear that none of the three tests indicate a lack of symmetry,

which indicates that the model for this data may satisfy stationarity

and homogeneity assumptions.

4.8. Discussion

The tests presented in this chapter assume that the individual ob-

servations are independently and identically distributed. It is possible

to weaken this condition in two ways. First, it is not necessary to as-

sume that results from the sequences are independent, but instead we

can assume that, conditional on the values at the root, the processes

on the two branches evolve independently. If the individual observa-

tions do not evolve independently, then the effective sample size will be

smaller, and the tests will not be appropriate, since the test statistics

will not then have the given asymptotic distributions. Second, we may

consider a model in which certain sites are invariant, in the sense that

the value of the nucleotide taken at the root must remain unchanged.

In this case we simply change values of n1,··· ,1, · · · , n4,··· ,4, which does

not affect any of the test statistics S2
B, S2

S , S2
I or Ts, considered here, al-

though it does make asymptotically negligible changes to the statistics
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Test Hu Bo Ch Go Or Gi

Bowker 0.065

Bo Stuart 0.101

Int Sym 0.131

Bowker 0.523 0.251

Ch Stuart 0.722 0.306

Int Sym 0.280 0.239

Bowker 0.313 0.148 0.779

Go Stuart 0.417 0.108 0.488

Int Sym 0.236 0.332 0.849

Bowker 0.362 0.020 0.142 0.102

Or Stuart 0.256 0.022 0.070 0.039

Int Sym 0.471 0.142 0.465 0.531

Bowker 0.188 0.159 0.583 0.103 0.344

Gi Stuart 0.420 0.200 0.324 0.041 0.264

Int Sym 0.115 0.201 0.747 0.520 0.427

Bowker 0.327 0.513 0.640 0.295 0.244 0.725

Ma Stuart 0.326 0.274 0.412 0.105 0.096 0.682

Int Sym 0.325 0.716 0.706 0.767 0.669 0.544

Table 4.6. Tests of hominoid data - Hu: Human, Bo:
Bonobo, Ch: Chimpanzee, Go: Gorilla, Or: Orangutan,
Gi: Gibbon, Ma: Macaque

of Bhapkar (1966) and Rzhetsky and Nei (1995). More generally, if the

site evolved independently under the same stationary condition but un-

der different homogeneous models (i.e. rate heterogeneity across sites),

then the joint distribution would be a mixture of the joint distribu-

tions at each site, but would retain the symmetries of the probabilities

at each site. So, the tests here would retain their properties of testing

for symmetry. We note that consistency with the hypotheses of sym-

metry does not imply stationarity and homogeneity, but only that the

data is consistent with such hypotheses. For example, if the stationary
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distributions of different sites differ and at each site the substitution

process is stationary, then the hypotheses of symmetry will still hold,

so the tests have no power to detect such differences. The problems

of lack of independence of evolution and rate heterogeneity across sites

may be mitigated by partitioning according to codon position, so it is

recommended that sequence data be partitioned into appropriate bins

before conducting the tests.
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Chapter 5

Phylogenetic Distance

5.1. Introduction

There are several methods for constructing phylogenetic trees. In

some of these methods a distance matrix is used to construct a phy-

logenetic tree by joining the sequences having the smallest distance

between them. For every pair of sequences in the multiple sequence

alignment, distance matrix methods calculate an estimate of the evolu-

tionary distances separating the sequences. The evolutionary distances

here are the product of time and the rate of evolution (see Felsenstein,

1996). The evolutionary tree chosen is then the one that makes the

best prediction given these pairwise distances based on some criterion.

We will not give a comprehensive view of the distance methods in

phylogenetics but will instead give some definitions and discuss the

paralinear distance and hierarchical clustering as we will use them.

Other methods will only be reviewed as they relate to our technique.

Definition 5.1. Let X be a set and let D be a real function from pairs

of elements of X. We say that D is a distance function on X if

1: Duv > 0 for all u, v ∈ X, u 6= v,

2: Duu = 0 for all u ∈ X,

3: Duv = Dvu for all u, v ∈ X,

4: The triangle inequality holds:

Duv ≤ Duw + Dwv for all u, v, w ∈ X.

We would like distances to have the additivity and ultrametric prop-

erties.
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Definition 5.2. A distance matrix D is additive if there exists a tree

with positive edge weights such that Drs =
∑

e∈hrs
w(e), where hrs de-

notes the path between leaves r and s in the tree, and w(e) is the weight

of edge e in the path hrs.

@
@

@
@

@@

¡
¡

¡¡

@
@

@

¡
¡

¡
¡

¡
¡

A C

DB

Figure 6. Additive tree

The evolutionary distance between each pair of sequences would be

equal to the sum of the lengths of each edge lying on the path between

the members of each pair. Mathematically, additive distances satisfy

the four point condition for any four taxa A,B,C and D,

DAB + DCD ≤ max(DAC + DBD, DAD + DBC),

where Drs is the distance between taxa r and s, and “max” is the

maximum value function (see Figure 6).

Ultrametric distances are more constrained than tree-additive dis-

tances. Mathematically, the ultrametric distances satisfy the inequality

that for any three taxa A, B and C,

DAC ≤ max(DAB, DBC). (5.1)

For this inequality to be true, two of the tree pairwise distances must

be equal and at least as large as the third (see Figure 7). Phylogeneti-

cally, ultrametric distances will precisely fit a tree so that the distance
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between any two taxa is equal to the sum of the branches joining them,

and the tree can be rooted so that all of the taxa are equidistant from

the root (see Hillis, 1996). The rooted trees that we will discuss assume

every common ancestor is equidistant from all its descendants. Hence,

if an ultrametric distance measure between species is given, then there

is a unique rooted tree joining these species that gives these distances.
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Figure 7. Additive and ultrametric tree

The tree in Figure 7 satisfies the additive properties:

DAB = t1 + t2 + t4

DAC = t1 + t2 + t3

DBC = t3 + t4,

and the ultrametric properties:

t3 = t4

t2 = t1 + t3 = t1 + t4,

where Drs is the distance between taxa r and s.

5.2. Measuring Distances from Sequence Data

Distance methods attempt to estimate the mean number of changes

per site between two sequences since their divergence. Counting the

number of differences may not fully approximate the true amount of
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divergence, especially when multiple substitutions have occurred at the

same site. Hence, we are interested in the case of a distance function

on a finite set X = (X1, X2, ..., XK) of nucleotide sequences for which

we would like to build a phylogenetic tree.

Many distance methods have been created with the aim of correct-

ing the observed distances by estimating the actual amount of substi-

tutions that have occurred through time. One of the first substitution

models used in the estimation of evolutionary distance is the one of

Jukes and Cantor (1969). The estimated distance becomes

Drs = −3

4
ln

(

1 − 4

3
Grs

)

, r, s = 1, · · · , K

where Grs is the proportion of pairs of sites in sequences r and s, which

have different nucleotides, (see, for example Tavaré, 1986).

Lanave et al. (1984) developed the general time-reversible Markov

model, which considers six conditional rates of change (a symmetric S

matrix) as well as non-uniform nucleotide content. This is the most

general model of the time-reversible Markov models of nucleotide sub-

stitution.

The paralinear distance is an even more general measure of the

distance between two sequences. It was designed to deal with variable

nucleotide frequencies in each pair-wise sequence comparison and is

based on the general Markov model of evolution discussed in Chapter

2. The paralinear distance is an additive distance between sequences

under very general assumptions, is easy to calculate, and uses data

efficiently. Lake (1994), defined the paralinear distance, D̂rs, between

two sequences r and s as:

D̂rs = −loge
det(Nrs)

(det(Nr))1/2(det(Ns))1/2
, r, s = 1, · · · , K (5.2)

where D̂rs is the estimated distance between the two sequences r and

s, log is the natural logarithm function, det is the determinant of a

matrix, Nrs is the observed matrix for the sequences r and s described

in Chapter 3, Nr and Ns are the diagonal matrices, estimates of the
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nucleotide compositions of sequences r and s, respectively, and can be

constructed from the Nrs matrix. For each pair of sequences, r and s, a

4×4 matrix Nrs is constructed, which contains the observed frequencies

for every possible pair of nucleotides. It is basically a summary of the

relative frequencies of bases between two taxa. An equivalent general

distance was developed by Steel (1993) and Lockhart et al (1994).

From the theoretical joint distribution function F (t) described in

Chapter 2, the paralinear distance associated with sequences of infinite

lengths can be written as

Drs = −log(det(F−1/2
r FijF

−1/2
s )), r, s = 1, · · · , K. (5.3)

Now let

Prs = F−1
r Frs, r, s = 1, · · · , K

where Prs is the transition matrix from sequence r to sequence s, and

Psr = (FrsF
−1
s )T , r, s = 1, · · · , K

where Psr is the transition matrix from sequence s to sequence r, then

the paralinear distance between the two sequences r and s can be writ-

ten as

Drs = −1

2
(log(|det(Prs)|) + log(|det(Psr)|)), r, s = 1, · · · , K. (5.4)

We can define distances between all nodes in a similar way, where we

have Markov processes generating the joint distribution as in Chapter 2.

We have written a function to calculate the paralinear distance between

K matched sequences in the R package. The function depends on the

joint distribution function of all pairs of the K matched sequences. We

will use only the paralinear distance throughout the remainder of this

chapter.

5.3. Generating Trees from Distances

Sokal and Michener (1958) introduced the Unweighted Pair Group

Method with Arithmetic Average (UPGMA) method, which assumes

that the sequences diverged at a constant rate and the distance between
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them met the additive property. In the UPGMA method, phylogenetic

trees are constructed by combining the two closest external nodes and

recalculating new distance measures for the new grouping. If distances

are ultrametric, then the UPGMA method will produce an ultrametric

tree.

Saitou and Nei (1987) developed a neighbor-joining method, whereby

pairs of external nodes are identified as neighbours so that the tree with

minimum total length is obtained. If the distances are additive, then

this method will produce the correct unrooted tree.

The hierarchical clustering method depends on the distance matrix

for a set of taxa. In the statistical package R, the hierarchical clus-

tering function, hclust, “ · · · performs a hierarchical cluster analysis

using a set of dissimilarities for the n objects being clustered. Initially,

each object is assigned to its own cluster and then the algorithm pro-

ceeds iteratively, at each stage joining the two most similar clusters,

continuing until there is just a single cluster”.

We will use the average method “ave”, where the distance between

clusters is the average of the distances between the points in one cluster

and the points in the other cluster. The result of the hierarchical

clustering function hclust gives a merge matrix describing the tree

topology and a vector of heights describing the lengths between each

of the external nodes and the first node connecting it to another node.

In the R package the hierarchical clustering function hclust is given

as

hclust(as.dist(D), method = “ave”),

where as.dist(D) gives the lower triangle of the distance matrix D and

“ave” is the method of connection between the taxa.

Note that this method is equivalent to the UPGMA method of Sokal

and Michener (1958).
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5.4. Analysis Based on the Joint Distribution Function and

Simulated Nucleotide Sequences

In this section, we give examples of how the paralinear distance

and the hierarchical clustering function work under different assump-

tions. We will illustrate by examples that when we have stationary

and homogeneous processes over the tree then the hierarchical cluster-

ing methods produce a correct tree topology and edge lengths. In other

cases we may get an incorrect tree topology or incorrect edge lengths.

The examples depend on the joint distribution functions F (t) calcu-

lated using the gn program, except for Example 5.7, where we use the

gn2 program. Both gn and gn2 programs were described in Chapter 2.

Example 5.1. Consider the case of stationary and homogeneous pro-

cesses for a tree with five matched sequences, described by the merge

matrix (4.2). Let

π = f0 = (0.25, 0.25, 0.25, 0.25)T

and RX = RY = SΠ, where the S matrix is defined as in equation

(3.1). Take the height vector to be (0.1, 0.5, 0.8, 1.0). From the joint

distribution function array F (t) for this model, we can find the distance

matrix D for the five matched sequences using the paralinear distance

(5.3), which gives the result shown in Table 5.1.

Seq 1 Seq 2 Seq 3 Seq 4

Seq 2 0.12

Seq 3 0.96 0.96

Seq 4 1.20 1.20 1.20

Seq 5 1.20 1.20 1.20 0.6

Table 5.1. Paralinear distance matrix for F (t) under
stationary and homogeneous assumptions
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Dividing the distance matrix by half the largest distance between

the external nodes, forces the total distance from the root to any ex-

ternal node to be 1. The largest distance between the external nodes

and the root in the case of stationary, homogeneous and reversible pro-

cesses is equal to < = −∑4
i=1 Riiπi, where the matrix R was defined in

Chapter 2. Now, dividing the distance matrix in Table 5.1 by < = 0.6

gives the exact distances between the five leaves, see Table 5.2.

Seq 1 Seq 2 Seq 3 Seq 4

Seq 2 0.2

Seq 3 1.6 1.6

Seq 4 2.0 2.0 2.0

Seq 5 2.0 2.0 2.0 1

Table 5.2. Paralinear distance matrix for F (t)/.6 un-
der stationary and homogeneous assumptions

Applying the hclust function on the distance matrix, gives the

exact shape of tree described by the merge matrix shown below

merge =









−1 −2

−4 −5

−3 1

2 3









,

and a vector of heights,

heights = (0.12, 0.60, 0.96, 1.20).

Forcing the largest height of the tree to be 1, by dividing the vector of

heights by the largest height, 1.2, gives the following vector of heights,

heights = (0.1, 0.5, 0.8, 1.0),

which is the exact vector of heights we used to calculate the joint distri-

bution function. From the distance matrix in Table 5.2 and the merge
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matrix we get from the hclust function, we can find the phylogenetic

tree, as we can see in Figure 8.
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Figure 8. Ultrametric tree

We can see that the tree satisfies the properties of an additive and

ultrametric tree, since the distance from the root to any external tips

is equal to one and also it satisfies the equations:

D−1−4 = D−1−5 = D−2−4 = D−2−5 = D−3−4 = D−3−5 = 2

and

D−1−3 = D−2−3 = 1.6,

so we can say, that in the case of stationary and homogeneous pro-

cesses, the distances gave the exact topology of the tree and the exact

distances, except for a multiplier.

Example 5.2. Consider the same case of stationary and homogeneous

processes for a tree with five matched sequences, as described in the

previous example. Depending on the joint distribution function calcu-

lated in the previous example, we simulate a data set of size n = 1000

and find the observed divergence array N using any of the methods

described in Chapter 3. Finding the distance matrix depending on the

observed array N , gives the result shown in Table 5.3.

82



Seq 1 Seq 2 Seq 3 Seq 4

Seq 2 0.08

Seq 3 0.88 0.89

Seq 4 1.06 1.09 1.13

Seq 5 1.14 1.16 1.22 0.57

Table 5.3. Paralinear distance matrix for simulated
data under stationary and homogeneous assumptions

Applying the hclust function on this distance matrix, gives the

tree topology we used to generate the joint distribution function from

where this data was simulated, and the following vector of heights,

heights = (0.08, 0.57, 0.89, 1.13).

Forcing the largest height of the tree to be 1, by dividing the vector of

heights by the largest height, 1.13, gives the following vector of heights,

heights = (0.07, 0.50, 0.78, 1.00),

which is very close to the vector of heights used to calculate the joint

distribution function.

Remark: In the rest of this chapter we will look only at the exact joint

distributions rather than simulated ones. Knowing that the simulated

data give us approximately the same result, as we can see in Example

5.2.

Example 5.3. Consider the case of stationary and non-homogeneous

processes for the same tree described in the previous example. Let

π = f0 = (0.25, 0.25, 0.25, 0.25)T ,

RX = SΠ and RY = ρSΠ, where the S matrix is defined as in equation

(3.1). Take ρ = 3 and the heights vector to be (0.1, 0.5, 0.8, 1.0).

Finding the distance matrix for the joint distribution function under

this model gives the result in Table 5.4.
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Seq 1 Seq 2 Seq 3 Seq 4

Seq 2 0.36

Seq 3 2.88 2.88

Seq 4 2.40 2.40 2.40

Seq 5 2.40 2.40 2.40 0.60

Table 5.4. Paralinear distance matrix for F (t) under
stationary and non-homogeneous assumptions

Applying the hclust function on this distance matrix, gives the

merge matrix

merge =









−1 −2

−4 −5

1 2

−3 3









, (5.5)

and a vector of heights = (0.36, 0.60, 2.40, 2.64). We can see that

the distance matrix and the hclust function in this case (of stationar-

ity and non-homogeneity, where non-homogeneity comes from different

rate matrices for each side of the root) did not give the correct tree

topology or edge lengths, (Figure 9).

We can see that the we do not get the same heights as the one we

used to generate the data even when we divide the height vector by

the maximum height.

Using the correct tree topology from which we generated the joint

distribution, and the height vector from the hclust function after we

divide it by the maximum height, we can find an ultrametric rooted

tree, (Figure 10). In this example the true tree is not ultrametric.

However, the hclust function gives an ultrametric tree fitting the data

as closely as possible. We also have fitted an ultrametric tree using the

heights from the hclust output and the true topology as given by the

true merge matrix.
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Figure 9. Ultrametric tree from the merge matrix (5.5)
and the vector of heights after dividing it by 2.64
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Figure 10. Ultrametric tree

We cannot find an ultrametric rooted tree depending on the merge

matrix from the hclust function and the distance matrix in Table 5.4,

which has distances corresponding to the original distances. However,

we can find an additive rooted tree as we can see in Figure 11. Note

that ε can be chosen arbitrarily between 0 and 1.44.
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Figure 11. Additive tree

Example 5.4. Consider the case of non-stationarity and non-homogen-

eity for a five edge tree described in Example 5.1. Let the non-homogen-

eity come from having a different stationary distributions for each side

of the root, that is

πX = f0 = (0.25, 0.25, 0.25, 0.25)T , πY = (0.1, 0.1, 0.1, 0.7)T .

and the s-vector = (0.2, 0.2, 0.2, 0.2, 0.2, 0.2). Take the heights vector

as defined in Example 5.1, RX = SXΠX and RY = SY ΠY , where SX

and SY are calculated using (2.13). Finding the distance matrix from

the joint distribution of this model, gives the result shown in Table 5.5.

Seq 1 Seq 2 Seq 3 Seq 4

Seq 2 0.11

Seq 3 0.90 0.90

Seq 4 1.17 1.17 1.17

Seq 5 1.17 1.17 1.17 0.60

Table 5.5. Paralinear distance matrix for F (t) under
non-stationary and non-homogeneous case (1)
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Applying the hclust function on the distance matrix in Table 5.5

gives the merge matrix

merge =









−1 −2

−4 −5

−3 1

2 3









, (5.6)

and a vector of heights = (0.11, 0.60, 0.90, 1.17). Note that this

height vector and the distance matrix in Table 5.5 gives the same edge

lengths. The tree describing by the merge matrix (5.6) and the distance

matrix in Table 5.5 (after dividing it by the largest distance (1.17)) is

shown in Figure 12.
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Figure 12. Ultrametric tree from the merge matrix (5.6)
and the vector of heights after dividing it by 1.17

Also, notice that the distance matrix in Table 5.5 contains additive

and ultrametric distances but they did not give the heights we used

to calculate the joint distribution from even if we divide them by the

largest distance between the root and the external nodes, see Figure

12.

We can see that the hclust function under this case (of non-

stationary and non-homogeneity, where the non-homogeneity came from

87



different stationary distributions for each side of the root) gives the ex-

act tree topology but this is not always the case. We can see this by

taking

πX = f0 = (0.05, 0.05, 0.05, 0.85)T and πY = (0.3, 0.3, 0.3, 0.1)T .

Finding the distance matrix from the joint distribution under this

model, gives the result shown in Table 5.6.

Seq 1 Seq 2 Seq 3 Seq 4

Seq 2 0.24

Seq 3 2.22 2.22

Seq 4 2.08 2.08 2.08

Seq 5 2.08 2.08 2.08 0.60

Table 5.6. Paralinear distance matrix for F (t) under
non-stationary and non-homogeneous case (2)

Applying the hclust function on the distance matrix in Table 5.6

gives the merge matrix

merge =









−1 −2

−4 −5

1 2

−3 3









, (5.7)

and a vector of heights = (0.24, 0.60, 2.08, 2.15). Note that this

height vector and the distance matrix in Table 5.6 gives different edge

lengths. Using the the merge matrix (5.7) and the previous vector

of heights after dividing it by the maximum length, we can find an

ultrametric phylogenetic tree (Figure 13).
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Figure 13. Ultrametric tree from the merge matrix (5.7)
and the vector of heights after dividing it by 2.15

Example 5.5. Consider the case of non-stationary and homogeneous

processes for the same tree topology as in the previous example. Let

πX = πY = (0.25, 0.25, 0.25, 0.25)T , f0 = (0.1, 0.1, 0.1, 0.7)T ,

and RX = RY = SΠX , define the S matrix and the vector of heights as

in Example 5.1. Finding the distance matrix from the joint distribution

of this model, gives the result shown in Table 5.7.

Seq 1 Seq 2 Seq 3 Seq 4

Seq 2 0.17

Seq 3 1.41 1.41

Seq 4 1.80 1.80 1.80

Seq 5 1.80 1.80 1.80 0.86

Table 5.7. Paralinear distance matrix for F (t) under
non-stationary and non-homogeneous assumptions
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Applying the hclust function on this distance matrix, gives the

merge matrix

merge =









−1 −2

−4 −5

−3 1

2 3









, (5.8)

and a vector of heights = (0.17, 0.86, 1.41, 1.80). Note that this

height vector and the distance matrix in Table 5.7 gives the same edge

lengths. The tree describing the merge matrix (5.8) and the distance

matrix in Table 5.7 (after dividing it be the largest distance (1.80)) is

shown in Figure 14.
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Figure 14. Ultrametric tree from the merge matrix (5.8)
and the vector of heights after dividing it by 1.80

We can see that the hclust function under this case of non-stationary

and homogeneity gives the exact tree topology but not the exact heights

we used to generate the joint distribution array as we can see in Figure

14.

Example 5.6. Consider the case of non-stationary and non-homogeneous

processes for the same tree topology as in the previous example. Let

πX = f0 = (0.25, 0.25, 0.25, 0.25)T , πY = (0.1, 0.1, 0.1, 0.7)T ,
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RX = SXΠX and RY = ρSY ΠY , where ρ = 3, the s-vector and the

height vector are defined as in Example 5.1 and SX and SY are calcu-

lated using (2.13). Finding the distance matrix from the joint distri-

bution of this model, gives the result shown in Table 5.8.

Seq 1 Seq 2 Seq 3 Seq 4

Seq 2 0.31

Seq 3 2.55 2.55

Seq 4 2.22 2.22 2.22

Seq 5 2.22 2.22 2.22 0.60

Table 5.8. Paralinear distance matrix for F (t) under
non-stationary and non-homogeneous assumptions

Applying the hclust function on the distance matrix in Table 5.8,

gives the merge matrix

merge =









−1 −2

−4 −5

1 2

−3 3









, (5.9)

and the height vector, heights = (0.31, 0.60, 2.22, 2.39). Note that

this height vector and the distance matrix in Table 5.8 with respect to

the merge matrix (5.9), gives different edge lengths. The unrooted tree

describing by the merge matrix (5.9) and the distance matrix in Table

5.8 is shown in Figure 15. Note that since the tree is not ultrametric

we can take the root at any point on the edge of length 0.345

We can see that the hclust function under this case of non-stationary

and non-homogeneity did not give the correct tree topology or heights

we used to find the joint distribution array.
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Figure 15. Additive tree

Using the the merge matrix (5.9) and the vector of heights we get

from the hclust function (after dividing it by the maximum length)

give an ultrametric phylogenetic tree as we can see in Figure 16.
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Figure 16. Ultrametric tree from the merge matrix (5.9)
and the vector of heights after dividing it by 2.39
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Remark: From the previous examples we can see that all the para-

linear distances were additive, and the hclust function gives the cor-

rect tree topology under homogeneous and stationary or non-stationary

models, where the non-stationarity came from πX = πY 6= f0.

Example 5.7. Consider the case of a non-stationary and non-homogeneous

processes for a five leaf tree described by the merge matrix in (5.10).

Let

πX = πY = (0.25, 0.25, 0.25, 0.25)T , f0 = (0.1, 0.1, 0.1, 0.7)T .

Define the S matrix as in equation (3.1) and the matrix of rates, which

was defined in Chapter 2 Section 2.6.2, as

rate =









.1 .2

.8 .4

.5 .6

.7 .3









merge =









−1 −2

−4 −5

−3 1

2 3









. (5.10)

Finding the distance matrix for the joint distribution function under

this case, gives Table 5.9.

Seq 1 Seq 2 Seq 3 Seq 4

Seq 2 0.24

Seq 3 1.00 1.08

Seq 4 2.12 2.20 2.12

Seq 5 1.79 1.87 1.79 1.05

Table 5.9. Paralinear distance matrix for F (t) under
non-stationary and non-homogeneous assumptions
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Applying the hclust function on the distance matrix in Table 5.9

gives the merge matrix

merge =









−1 −2

−3 1

−4 −5

2 3









, (5.11)

and the height vector, heights = (0.24, 1.04, 1.05, 1.98). Note that

this height vector and the distance matrix in Table 5.9 with respect to

the merge matrix (5.11), gives different edge lengths. We can see that

the merge matrix (5.11) gives the same topology as the merge matrix

in 5.10 (from which the joint distribution array was generated) except

for the order of connection between the nodes as we can see in Figure

17.
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Figure 17. Phylogenetic tree

A. Using the merge in (5.10) B. Using merge (5.11)

Using the distance matrix in Table 5.9 and the merge matrix (5.11)

we can draw a rooted tree for these additive distances (Figure 18).

Also, using the height vector after we divide it by the maximum height

and the merge matrix (5.11) from the hclust function we can draw an

ultrametric tree (Figure 19). Note that the trees in Figure 18 and 19

have the same unrooted topology.
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Figure 19. Ultrametric tree

In summary, these experiments show that it is necessary for the as-

sumptions of stationary, reversibility and homogeneity to be met if the

hierarchical clustering method is to be used.

95



5.5. Analysis Based on Real Nucleotide Sequences

In this section, we will apply the paralinear distance to two data

sets of real nucleotide sequences.

Example 5.8. Consider the bacterial data described in Example 4.7,

finding the distance matrix for this data gives the result in Table 5.10.

A B D Ts

B 0.972

D 1.222 0.846

Ts 0.867 0.889 0.767

Ta 0.721 0.815 0.983 0.672

Table 5.10. Paralinear distance matrix for bacterial
data -A: Aquifex, B: Bacillus, D: Deinococcus, Ts: Ther-
mus, Ta: Thermotoga

Applying the hclust function on the distance matrix, gives the

following merge matrix

merge =









−4 −5

−1 1

−2 −3

2 3









(5.12)

and a vector of heights,

heights = (0.67, 0.79, 0.85, 0.94),

where node −1 represents Aquifex, −2 represents Bacillus, −3 rep-

resents Deinococcus, −4 represents Thermus and node −5 represents

Thermotoga.

In Chapter 4 Example 4.7, we showed that the statistical test sug-

gested that the set of Aquifex, Thermus, and Thermotoga are very close

together and have the same stationary distribution, as does the set of
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Bacillus and Deinococcus. So the tree topology results from the hier-

archical clustering method is in agreement with the test result, as we

can see from the merge matrix 5.12, which puts the set Aquifex, Ther-

mus, and Thermotoga in on side of the tree and the set of Bacillus and

Deinococcus in the other side of the tree, see Figure 20.
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Figure 20. Bacterial data A: Aquifex, B: Bacillus,
D: Deinococcus, Ts: Thermus, Ta: Thermotoga

Example 5.9. Consider the hominoid data described in Example 4.9.

Finding the distance matrix for this data gives the result in Table 5.11.

Hu Bo Ch Go Or Gi

Bo 0.22

Ch 0.24 0.14

Go 0.33 0.26 0.27

Or 0.45 0.44 0.43 0.50

Gi 0.46 0.43 0.44 0.47 0.50

Ma 0.70 0.67 0.68 0.72 0.72 0.59

Table 5.11. Paralinear distance matrix for hominoid
data - Hu: Human, Bo: Bonobo, Ch: Chimpanzee, Go:
Gorilla, Or: Orangutan, Gi: Gibbon, Ma: Macaque
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Applying the hclust function on this distance matrix, gives the

merge matrix

merge =














−2 −3

−1 1

−4 2

−6 3

−5 4

−7 5














, (5.13)

and a vector of heights,

heights = (0.14, 0.23, 0.29, 0.45, 0.46, 0.68),

where node −1 represents Human, −2 represents Chimpanzee, −3 rep-

resents Bonobo, −4 represents gorilla, node −5 represents Orangutan,

node −6 represents Gibbon and node −7 represents Macaque.

In Chapter 4 Example 4.9, we showed that none of the three sta-

tistical tests indicate a lack of symmetry between the genes of Human,

Chimpanzee, Bonobo, Gorilla, Orangutan, Gibbon and Macaque, which

indicate that this data is consistent with stationarity and homogene-

ity assumptions. However, inspection of the distance matrix in Table

5.11 shows that the three-point condition equation (5.1) is not met,

which implies that the distances are not ultrametric. It is therefore

possible that the tree inferred using the hclust algorithm (Figure 21)

may be misleading. Use of the Neighbor-joining method from PHYLIP

(Felsenstein, 2004b), which does not assume ultrametric distances, in-

deed changed the position of the Gibbon and the Orangutan (Figure

22). The models we are considering are on rooted trees and we have

used the UPGMA or hierarchical clustering (using hclust) which is

really appropriate only for homogeneous models. It may be better to

use the Neighbor-joining method more widely when models are not ho-

mogeneous.
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Figure 21. Hominoid data tree topology H: Human, Gh:
Chimpanzee, B: Bonobo, Go: Gorilla, O: Orangutan, Gi:
Gibbon M: Macaque
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Figure 22. Hominoid data tree topology H: Human, Gh:
Chimpanzee, B: Bonobo, Go: Gorilla, O: Orangutan, Gi:
Gibbon M: Macaque
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Chapter 6

Estimation of Evolutionary Parameters

6.1. Introduction

Models of nucleotide substitution were constructed for combined

analysis of heterogeneous sequence data from a set of species. The

models account for different aspects of heterogeneity in the evolutionary

process of different genes, such as differences in nucleotide frequencies,

in substitution rate bias and in the extent of rate variation across sites.

Consider a Markov process X(t) on any edge of a phylogenetic

tree. It is a stationary process on that edge if P (X(t) = i) = πi, for

any t, t ≥ 0, i = 1, · · · , 4. It is a homogeneous process on an edge

if P (X(t) = j|X(0) = i) = Pij(t) satisfies P (t) = (Pij(t)) = eRt. A

process is homogeneous over a tree if it is homogeneous on each edge

of the tree and R is constant on all the edges. A stationary process

is reversible if ΠP (t) = P (t)T Π or πiPij(t) = πjPji(t); this is also

equivalent to πiRij = πjRji for a homogeneous process or R = SΠ,

where S is a symmetric matrix.

We will start with processes that are stationary, homogeneous and

reversible on the tree. Then we generalize to non-stationary processes

and allow heterogeneity over the tree. We restrict attention to ho-

mogeneous processes on edges allowing π to differ on some edges,

P (X(0) = i) = f0i 6= π, but only permitting S to vary by a single

scalar multiplier (so on each edge R = ρSΠ, where ρ can vary from

edge to edge). We also keep S symmetric.

In this chapter, we will discuss estimation using maximum likeli-

hood. First we will discuss the estimation method for a two leaf tree

under stationary, homogeneous and reversible conditions, then we will
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extend to K matched sequences and allow for non-stationary and non-

homogeneous processes. We describe a general optimizer method for

the log likelihood ratio using the statistical package R. We point out

how the topology of the phylogenetic tree is chosen using the methods

from Chapters 4 and 5. Then we describe the method of estimation un-

der the general Markov model using the gn program, describe in Section

2.6.2 and show how to use the gn program to estimate under simpler

models like the Jukes-Cantor model and the general time-reversible

Markov model.

We proceed by giving different examples examining the accuracy of

the method by generating joint distribution functions F (t) with known

parameters and from these joint distributions simulating data sets. We

obtain estimates from these data sets to examine the properties of

the method of estimation. Some of these examples will illustrate the

conditions under which the estimation is possible and we examine some

cases where we cannot get estimates.

Then we apply the method of estimation to two real data sets dis-

cussed previously in Chapter 4. Next we consider non-parametric and

parametric bootstrap methods to obtain bias and standard deviations

for the estimates. We apply these bootstrap methods to the simulated

data sets, for which we consider estimation to examine the properties

under conditions where the models hold. Then we use these bootstrap

methods to give information about the estimates of the parameters for

the real data sets. Finally, we summarize the results of this chapter.

6.2. Maximum Likelihood Estimation

Suppose that X1, X2, · · · , Xn have a joint frequency distribution

f(x1, · · · , xn; θ), where θ is a vector of unknown parameters that is

to be estimated. Now given the observed values x1, x2, · · · , xn, the

likelihood as a function of θ for given x1, · · · , xn, is defined as

L(θ) = f(x1, · · · , xn; θ).
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The maximum likelihood estimate of θ is the value of θ that maximizes

the likelihood. Assuming X1, · · · , Xn are independent and identically

distributed random variables, the likelihood will be

L(θ) =
n∏

i=1

f(xi; θ).

Rather than maximizing the likelihood, it is easier to maximize the

natural logarithm of the likelihood

l(θ) = log(L(θ)) =
n∑

i=1

log(f(xi; θ)).

Now for any phylogenetic tree with K tips, let N1, · · · , Nm follow

a multinomial distribution with a total count of n and cell probabil-

ities f1, · · · , fm, where n =
∑m

i=1 Ni, m = 4K and f = fi(xi; θ). We

replace the likelihood L(θ) by the likelihood of the sufficient statistic

N1, · · · , Nm. The joint frequency function of N1, · · · , Nm is

P (N = n; f(θ)) =
n!

n1! · · ·nm!
fn1

1 · · · fnm

m ,

where n = (n1, · · · , nm) and N = (N1, · · · , Nm).

The log likelihood in this case is

l(f1, · · · , fm) = log[P (N = n; f1, · · · , fm)]

=
m∑

i=1

nilog(fi) −
m∑

i=1

log(ni!) + log(n!).

If we do not restrict f1, · · · , fm to be functions of θ, then the maximum

likelihood is

l(f̂1, · · · , f̂m) = max(
m∑

i=1

nilog(fi) −
m∑

i=1

log(ni!) + log(n!))

= (
m∑

i=1

nilog(f̂i) −
m∑

i=1

log(ni!) + log(n!)),
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where f̂i = ni/n. If the model gives fi = fi(θ), then the log likelihood

would be

l(θ̂) = maxθl(θ)

= maxθ(
m∑

i=1

nilog(fi(θ)) −
m∑

i=1

log(ni!) + log(n!)).

The log likelihood ratio is then

<(θ̂) = l(θ̂) − l(f̂1, · · · , f̂m)

= maxθ

m∑

i=1

nilog(
fi(θ)

f̂i

). (6.1)

When we estimate under the exact joint distribution array F (t), we are

actually maximizing the limit of <(θ)/n, that is

maxθ( lim
n→∞

(
m∑

i=1

f̂ilog(
fi(θ)

f̂i

))).

6.3. Estimating the Evolutionary Parameters for a Two Leaf

Tree

For a two leaf tree, we will use the maximum likelihood method to

estimate the parameters under the case where we assume stationary,

homogeneous and reversible processes for an arbitrary value of t.

Knowing that
∑4

j

∑4
i fij(t) = 1 and F (t) is symmetric since it

is reversible, let the log likelihood function of the joint distribution

function fij(t) be denoted by l(fij(t)). Using Lagrange multipliers, γ,

the log likelihood for F (t) is

l(fij(t)) =
4∑

i

4∑

j

Nij + Nji

2
log(fij(t)) + γ(

4∑

i

4∑

j

fij(t) − 1).

Now in order to estimate the parameters we find the derivatives of the

log likelihood l(fij(t)) with respect to γ and fij(t) and set them equal
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to zero. Solving the two derivative equations gives

f̂ij(t) =
Nij + Nji

2N
. (6.2)

Now if F (t) is a one-to-one function with the parameter θ, this implies

that θ̂ = θ(f̂), where θ is a function of the symmetric matrix S and Π,

that is θ = (S, Π). Here we mean that θ contains the six off-diagonal

elements of S and the first three elements of π, the other elements being

obtained from Π1 = 1 and SΠ = 0. Now in order to find an estimate

for S and Π, let

F (t)1 = P T (t)F (0)P (t)1

= P T (t)F (0)1.

Let F (0) = Π, this implies that

F (t)1 = (P (t))T Π1

= π,

so

π̂ = F̂ (t)1

= (
Nij + Nji

2N
)1

= (
Ni. + N.i

2N
).

In Chapter 2, equation (2.26) we showed that

Π−1/2F (t)Π−1/2 =
4∑

l=1

e2λitUlU
T
l

= Π1/211T Π1/2 +
4∑

l=2

e2λltUlU
T
l ,

where λl are the eigenvalues of Π1/2SΠ1/2 and Ul are the eigenvectors

of Π1/2SΠ1/2, l = 1, · · · , 4. Solving for λ and U we get

λlt =
1

2
log(eigenvaluel(Π

−1/2F (t)Π−1/2))

Ul = eigenvectorl(Π
−1/2F (t)Π−1/2),
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We know the estimate of F (t), so we can find the estimate of S, such

that

Ŝ = Π̂−1/2(
4∑

l=1

λ̂lÛlÛ
T
l )Π̂−1/2,

where

λ̂l =
1

2
log(eigenvaluel(Π̂

−1/2F̂ (t)Π̂−1/2))

Ûl = eigenvectorl(Π̂
−1/2F̂ (t)Π̂−1/2).

Example 6.1. Consider the case of stationary, homogeneous and re-

versible processes for a two leaf tree. Let π = f0 = (.25, .25, .25, .25)T ,

the s-vector = (0.2, 0.35, 0.79, 0.01, 0.93, 0.47) and the two leaves

have the same length, that is t1 = t2 = 1. In this case the joint dis-

tribution function F (t) will depend on nine free parameters. Finding

the estimates for the nine parameters under this model gives exact

estimates, that is

π̂ = (.25, .25, .25, .25)

and

ŝ-vector = (0.2, 0.35, 0.79, 0.01, 0.93, 0.47).

Now using a simulated data set of size 1000, finding the estimates for

the nine parameters gives

π̂ = (.230, .256, .249, .266)

and

ŝ-vector = (0.234, 0.315, 0.922, 0.018, 0.934, 0.482).

Increasing the simulated data set size to 10000, and finding the esti-

mates gives us more accurate estimates, that is

π̂ = (.249, .252, .251, .250)

and

ŝ-vector = (0.207, 0.370, 0.760, 0.012, 0.94, 0.472).
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6.4. Optimization using the R Package

In this section we will discuss the optimization function we will use

in order to find the estimates for our model parameters. In the sta-

tistical package R, we will use the general-purpose optimization optim

function, in order to maximize the log likelihood ratio. This function

is given by

optim( par, fn, gr = NULL, method = “BFGS”, ...)

The description given for this function in the statistical package R is a

“ ... general-purpose optimization based on Nelder-Mead, quasi-Newton

and conjugate-gradient algorithms. It includes an option for box-

constrained optimization and simulated annealing where

par : Initial values for the parameters to be optimized over.

fn : A function to be minimized, with first argument the vector of

parameters over which minimization is to take place. It should return

a scalar result.

gr: A function to return the gradient for the “BFGS”. If it is ’NULL’,

a finite-difference approximation will be used.

Method “BFGS” is a quasi-Newton method (also known as a variable

metric algorithm). This uses function values and gradients to build up

a picture of the surface to be optimized.” For more details, see the R

package help file.

The function to be minimized, fn, in our case is −<(θ)/n, which

is equivalent to maximizing <(θ)/n, but since the optim function per-

forms minimization by default, we will minimize the function −<(θ)/n.

In the case of the exact joint distribution function F (t), we are actually

minimizing the limit of −<(θ)/n, that is

minθ( lim
n→∞

(
m∑

i=1

f̂i log(fi(θ)/f̂i))).

Remark: For the remainder of this chapter, the log likelihood ratio

value means −<(θ̂)/n.
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6.5. Choosing the Phylogenetic Tree Topology

In order to find the parameter estimates for K matched sequences

we need to know the topology of the tree associated with these se-

quences together. In order to determine the phylogenetic tree topology

for K matched sequences we will use two methods: the testing method

described in Chapter 4 and the paralinear distance method described

in Chapter 5. In Chapter 4 we demonstrated that the testing method

did not give any significant differences in the case of stationary pro-

cesses whether we have homogeneous processes or not except for the

case when the internal symmetry was significant. However, the tests

of symmetry, marginal symmetry and internal symmetry give signif-

icant results in the case of non-stationary processes. In Chapter 5

we showed that the paralinear distance method gives an ultrametric

tree with correct topology for the cases of stationary and homogeneous

processes. However, the paralinear distance gives the correct unrooted

tree topology in the case of non-homogeneous processes. Throughout

the remainder of this chapter we will discuss in more detail the way in

which we choose the tree topology.

6.6. Estimating the General Model Parameters using the gn

Program

In Chapter 2, we discussed different models, most of which assumed

stationarity and homogeneity, as in, for example, Jukes and Cantor

(1969), Kimura (1980) and Felsenstein (1981). The gn program is

based on a model that can be non-stationary and non-homogeneous.

As in Chapter 2, the model of the gn program divides any tree of

K matched sequences into two parts depending on the first bifurcation

from the root. Knowing that the last row of the merge matrix gives

the two nodes bifurcating from the root, we used transitions based on

PX(t) = eSΠX t for all edges associated with the node given by the

first element in the last row of the merge matrix, and P Y (t) = eρSΠY t

was used for the edges on the other side of the tree; we also used
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the initial distribution, f0, for the root. This implies that for the K

matched sequences we will have a set of parameters, θ, where θ consists

of πX , πY , f0, the s-vector, ρ, and a vector of heights containing K−2

lengths. For the parameters πX , πY and f0 we will have three free

parameters for each one of them, since the sum of each of them should

equal one. In total, for K matched sequences we will have 16+(K−2)

free parameters to estimate.

Throughout this section we will estimate under the general Markov

model, which we described in Section 2.7.6, except Section 6.6.2, where

we will discuss simpler models.

During the optimization process, the general optimizer function

optim searches for a set of parameters that minimize the log likelihood

ratio. However, several parameters are required to satisfy the con-

straints. We need
∑n

i=1 πXi
=
∑n

i=1 πYi
=
∑n

i=1 f0i
= 1, i = 1, · · · , 4

and all parameter values must be positive. To accomplish this within

the gn program we return zero whenever
∑n

i=1 |πXi
| > 1,

∑n
i=1 |πYi

| >

1,
∑n

i=1 |f0i
| > 1, ρ < 0, any Sij < 0 and any ti lies outside (0,1],

i = 1, 2, · · · , (K − 2). So the minimum is forced to occur subject to

these constraints.

Remark: We will use Section 6.3 to get initial values for the parame-

ters πX = πY = f0 and the s-vector by taking any two edges from the

tree and estimating these parameters using the method for a two leaf

tree. We take the height vector results from the hierarchical cluster

function hclust after dividing it by the highest value of this height

vector as initial values for the height vector.
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6.6.1. Estimation under the Case of Stationary and Ho-

mogeneous Processes. We will give here different examples to show

how the estimation process works for different cases. In the case of sta-

tionary and homogeneous processes, we showed in Chapter 4 that the

statistical tests did not give any information about the tree topology.

In addition, we showed in Chapter 5 that the paralinear distance for

the joint distribution array F (t) is an ultrametric distance under these

assumptions, and the hierarchical clustering using hclust function on

the paralinear distance matrix gives the exact tree topology.

Example 6.2. Consider the case of stationary and homogeneous pro-

cesses for a tree with five matched sequences, described by the merge

matrix (4.2). The tree is given in Figure 23. Let

πX = πY = f0 = (0.25, 0.25, 0.25, 0.25)T ,

s-vector = (0.2, 0.2, 0.2, 0.2, 0.2, 0.2).

Take the height vector to be (0.1, 0.5, 0.8, 1.0). Under the general

Markov model we have 19 free parameters to estimate. Using the joint

distribution function array F (t) and the merge matrix (4.2), the esti-

mates for the parameters, using the optim function are given in Table

6.1.
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Figure 23. Rooted five tipped tree
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The value of the log likelihood ratio in this case is 8.6e − 12. The

estimated parameters in Table 6.1 and the exact parameters we used

to calculate the joint distribution function array satisfy the following

equations,

ŝi × ρ̂ × t̂j = si × ρ × tj (6.3)

for the edges in the right side of the root and

ŝi × t̂j = si × tj (6.4)

for the edges in the left side of the root, where ŝi, ρ̂, and t̂j are

the estimated values for the parameters si, ρ and t, respectively, i =

1, · · · , 6, j = 1, 2, 3. Note that these parameters are not estimable.

Two sets of parameters satisfying the Equations (6.3) and (6.4), give

the same joint distribution at the end nodes. We can see that we have

exact estimates for the parameters πX , πY and f0 but for the param-

eters, ρ, s-vector and the length vector, the exact and the estimated

parameters should satisfy Equations (6.3) and (6.4), such that

t1 = (ŝi × ρ̂ × t̂1)/(si × ρ)

= (0.239 × 0.677 × 0.124)/(0.2 × 1)

= 0.1,

where ŝi is any value from the ŝ-vector. In the same way we can find

t2 = 0.5, t3 = 0.8 and si = 0.2, i = 1, · · · , 6.

Repeating the estimation process for the same joint distribution

function F (t) and using the same merge matrix, but in this case chang-

ing the values of the starting parameters in the optim function, gave

the estimates in Table 6.2, with log likelihood ratio value equal to

2.7e − 11. In the same way see that the exact parameters and there

estimates satisfy the Equations (6.3) and (6.4).
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Parameters Estimates

π̂X 0.250, 0.250, 0.250

π̂Y 0.250, 0.250, 0.250

f̂0 0.250, 0.250, 0.250

ŝ-vector 0.239, 0.239, 0.239, 0.239, 0.239, 0.239

ρ̂ 0.677

height 0.124, 0.419, 0.991

Table 6.1. Estimates of parameters of the exact joint
distribution for five matched sequences evolved under
stationary and homogeneous processes. The estimates
were obtained assuming the general Markov model

Parameters Estimates

π̂X 0.250, 0.250, 0.250

π̂Y 0.250, 0.250, 0.250

f̂0 0.250, 0.250, 0.250

ŝ-vector 0.172, 0.172, 0.172, 0.172, 0.172, 0.172

ρ̂ 1.325

height 0.088, 0.581, 0.702

Table 6.2. Estimates of parameters of the exact joint
distribution for five matched sequences evolved under
stationary and homogeneous processes. The estimates
were obtained assuming the general Markov model

Example 6.3. Consider the same tree topology, assumptions and the

same parameters as in Example 6.2, but in this case take the s-vector

to be

s-vector = (0.2, 0.35, 0.79, 0.01, 0.93, 0.47).

Estimation under the general Markov model depending on the joint

distribution array F (t) and the merge matrix (4.2), gives the parameter

estimates shown in Table 6.3, with log likelihood ratio equal to 3.1e−11.
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Knowing the estimated values and using Equations (6.3) and (6.4)

we can find the exact values of the parameters.

Changing the starting values for the optimization function, optim,

will give different estimates for the parameters as we can see in Table

6.4 with log likelihood ratio equal to 8.2e−8. As before, the exact and

the estimated values satisfy the Equations (6.3) and (6.4).

Parameters Estimates

π̂X 0.250, 0.250, 0.250

π̂Y 0.250, 0.250, 0.250

f̂0 0.250, 0.250, 0.250

ŝ-vector 0.191, 0.334, 0.753, 0.010, 0.887, 0.448

ρ̂ 1.098

height 0.096, 0.524, 0.764

Table 6.3. Estimates of parameters of the exact joint
distribution for five matched sequences evolved under
stationary and homogeneous processes. The estimates
were obtained assuming the general Markov model

Parameters Estimates

π̂X 0.250, 0.250, 0.250

π̂Y 0.250, 0.250, 0.250

f̂0 0.250, 0.250, 0.250

ŝ-vector 0.229, 0.402, 0.906, 0.012, 1.066, 0.534

ρ̂ 0.744

height 0.087, 0.586, 0.698

Table 6.4. Estimates of parameters of the exact joint
distribution for five matched sequences evolved under
stationary and homogeneous processes. The estimates
were obtained assuming the general Markov model
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Example 6.4. Using the joint distribution array F (t) calculated in

Example 6.3 and using one of the simulation methods described in

Chapter 3, we simulated a data set of size n = 1000 and found the

observed divergence array N . Applying the statistical tests described

in Chapter 4 on this data gives no significant differences and applying

the hclust function from the distance method gives the merge matrix

(4.2). Using the merge matrix (4.2) and the observed divergence array,

N , we estimated the parameters under the general Markov model using

the optim function, which gives the results shown in Table 6.5, with

log likelihood ratio value equal to 0.203.

Parameters Estimates

π̂X 0.282, 0.241, 0.245

π̂Y 0.225, 0.281, 0.270

f̂0 0.256, 0.247, 0.249

ŝ-vector 0.157, 0.296, 0.998, 0.001, 0.2986, 0.451

ρ̂ 1.000

height 0.095, 0.501, 0.803

Table 6.5. Estimates of parameters from data compris-
ing five matched sequences of length n = 1000 evolved
under stationary and homogeneous processes. The esti-
mates were obtained assuming the general Markov model

Simulating a larger data set with n = 10000 from the same joint

distribution and estimate as before gives the result in Table 6.6, with

log likelihood ratio value equal to 0.039.

When we estimate parameters using the exact joint distribution

function F (t) for the case of stationary and homogeneous processes,

we obtain the exact stationary distribution for each side of the tree,

πX and πY , and the exact initial distribution f0, but for the other

parameters, ρ, the s-vector and the length vector, we get different esti-

mates satisfying Equations (6.3) and (6.4), as we saw in Examples 6.2
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Parameters Estimates

π̂X 0.226, 0.270, 0.250

π̂Y 0.244, 0.251, 0.250

f̂0 0.255, 0.256, 0.252

ŝ-vector 0.197, 0.363, 0.799, 0.015, 0.953, 0.473

ρ̂ 1.019

height 0.095, 0.500, 0.807

Table 6.6. Estimates of parameters from data compris-
ing five matched sequences of length n = 10000 evolved
under stationary and homogeneous processes. The esti-
mates were obtained assuming the general Markov model

and 6.3. This means that not all the parameters are estimable (that is

we cannot estimate both ρ and the length vector under stationary and

homogeneous processes). This means that in Figure 23 we can move

the root of the tree around to any point between node 3 and 2. This

is in agreement with the ideas of Felsenstein (1981).

In practice, this means that we cannot estimate both rate and time,

which explains why most trees published in the literature are drawn

with edge lengths as a product of time and rate.

6.6.2. Estimation under Simpler Evolutionary Models. As

discussed in Chapter 2, the gn program allows different rate matrices

for each side of the root. This means that we can estimate under models

having more constraints. In this section, we will give two cases where

we reduce the gn program to simpler models.

6.6.2.1. Estimation under the General Time-Reversible Markov Model.

The general time-reversible Markov model assumes that the processes

are stationary, so πX = πY = f0, and homogeneous, so ρ = 1; thus,

in this case, we have (9 + (K − 2)) free parameters for K matched

sequences. In order to make the gn program suitable to fit the param-

eters of the general time-reversible Markov model, we need to restrict
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some parameters. We wrote a small program to do this that takes as

input a vector of parameters, θ1, and a merge matrix describing the tree

topology. For a tree of K matched sequences the vector of parameters,

θ1, contains the following elements: the first three values of π, six val-

ues for the s-vector and K − 2 values for the edges lengths. Inside the

program, we increase the number of parameters in θ1 to be exactly the

same as θ (the input for the gn program) by taking πX = πY = f0 = π

and ρ = 1. The new program can then use the gn program to calculate

the joint distribution array F (t) for any tree of K matched sequences.

Example 6.5. Consider the case of stationary and homogeneous pro-

cesses for a tree with five matched sequences, described by the merge

matrix

merge =









−1 −2

−4 −5

−3 1

2 3









. (6.5)

Let

π = (0.1, 0.1, 0.1, 0.7)T ,

s-vector = (0.2, 0.35, 0.79, 0.01, 0.93, 0.47).

and the height vector to be (0.1, 0.5, 0.8, 1.0). Using the joint distribu-

tion array F (t) generated under the general time-reversible Markov

model and the merge matrix (6.5), we simulate a data set of size

n = 1000. Depending on the observed divergence array N , the es-

timation under the general time-reversible Markov model gives the pa-

rameter estimates shown in Table 6.7, with log likelihood ratio value

equal to 0.1394.

Estimating the same observed divergence array N under the general

Markov model gives the parameter estimates shown in Table 6.8, with

log likelihood ratio value equal to 0.1384.

Comparing Table 6.7 and Table 6.8, we can see that the estimates

inferred in Table 6.7 are closer to those used to generate the data.
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Parameters Estimates

π̂ 0.096, 0.095, 0.101

ŝ-vector 0.017, 0.309, 0.805, 0.0007, 1.023, 0.452

height 0.096, 0.516, 0.762

Table 6.7. Estimates of parameters from data compris-
ing five matched sequences of length n = 1000. The
data were generated by simulation under a general time-
reversible Markov model. The estimates were obtained
assuming the general time-reversible Markov model

Parameters Estimates

π̂X 0.066, 0.098, 0.124

π̂Y 0.074, 0.100, 0.123

f̂0 0.126, 0.093, 0.090

ŝ-vector 0.057, 0.309, 0.808, 0.0001, 0.842, 0.329

ρ̂ 1.377

height 0.081, 0.614, 0.646

Table 6.8. Estimates of parameters from data compris-
ing five matched sequences of length n = 1000. The
data were generated by simulation under a general time-
reversible Markov model. The estimates were obtained
assuming the general Markov model

This implies that if we invoke parameters that did not exist during

the generation of the data (as in Table 6.8), then we get imprecise

estimates, and may be led to believe that there are differences between

parameter estimates where there are in fact none.

6.6.2.2. Estimation under the Jukes-Cantor Model. The Jukes-Cantor

(1969) model assumes stationarity and homogeneity with πi = 0.25,

i = 1, · · · , 4 and one free parameter α for the case of two matched se-

quences. For the case of K matched sequences the Jukes-Cantor model

has (1+(K −2)) free parameters to estimate, α and (K −2) values for
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the edge lengths. In order to make the gn program suitable to fit the

parameters of the Jukes-Cantor model we wrote a small program tak-

ing as input, a vector of parameters θ2 and a merge matrix describing

the tree topology.

For a tree of K matched sequences the vector of parameters θ2

contains the following elements: the evolutionary rate α and K − 2

values for the edge lengths. Inside the program we increase the number

of parameters in θ2 to be exactly the same as θ (the input for the gn

program) by taking πX = πY = f0 = (0.25, 0.25, 0.25, 0.25), ρ = 1

and the s-vector = (α, α, α, α, α, α). The new program can use the gn

program to calculate the joint distribution array F (t) for any tree of

K matched sequences.

Example 6.6. Consider the case of stationary and homogeneous pro-

cesses for a tree with five matched sequences, described by the merge

matrix (6.6). Let π = (0.25, 0.25, 0.25, 0.25)T , α = 0.2 and the height

vector to be (0.1, 0.5, 0.8, 1.0). Using the joint distribution array F (t)

generated under the Jukes-Cantor model and the merge matrix (6.5),

we simulated a data set of size n = 1000. Depending on the observed

divergence array N , the estimation under the Jukes-Cantor model gives

the parameter estimates shown in Table 6.9, with log likelihood ratio

value equal to 0.1471. Estimating the same observed divergence ar-

ray, N , under the general Markov model gives the parameter estimates

shown in Table 6.10, with log likelihood ratio value equal to 0.1394.

Comparing Table 6.9 and Table 6.10, we can see, in the same way

as in Example 6.5, that the estimates inferred in Table 6.9, adjusted

using Equations (6.3) and (6.4) are closer to those used to generate the

data.

6.6.3. Estimation under the Case of Stationary and Non-

Homogeneous Processes. We showed earlier in Chapter 4 that the

statistical tests did not give any information about the tree topology

if we have stationary processes. Also, we showed in Chapter 5, that
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Parameters Estimates

α̂ 0.207

height 0.121, 0.462, 0.917

Table 6.9. Estimates of parameters from data compris-
ing five matched sequences of length n = 1000. The data
were generated by simulation under the Jukes-Cantor
model. The estimates were obtained assuming the Jukes-
Cantor model

Parameters Estimates

π̂X 0.151, 0.266, 0.270

π̂Y 0.227, 0.242, 0.225

f̂0 0.253, 0.249, 0.241

ŝ-vector 0.173, 0.146, 0.161, 0.157, 0.101, 0.119

ρ̂ 1.941

height 0.094, 0.684, 0.692

Table 6.10. Estimates of parameters from data com-
prising five matched sequences of length n = 1000. The
data were generated by simulation under the Jukes-
Cantor model. The estimates were obtained assuming
the general Markov model

under the case of stationary and non-homogeneous processes the par-

alinear distance for the exact joint distribution function F (t) is not

an ultrametric distance and applying the hierarchical clustering using

hclust function from R on the paralinear distance matrix did not give

the correct rooted tree topology, but it gave the correct unrooted tree

topology. Throughout this section in order to determine the correct

tree topology, we will use different combinations of the merge matrix,

which we get from the hclust function, where we will change the lo-

cation of the root while keeping the unrooted tree topology.

Example 6.7. Consider the case of stationary and non-homogeneous

processes for a tree with five matched sequences, described in Example
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6.2 with a height vector equal to (0.1, 0.5, 0.8, 1.0). Let

πX = πY = f0 = (0.25, 0.25, 0.25, 0.25)T ,

RX = SXΠX and RY = ρSY ΠY , where the six free parameters in SX

and SY matrices are given by the

s-vector = (0.2, 0.35, 0.79, 0.01, 0.93, 0.47)

and ρ = 3. As we showed in Example 5.3, applying the hclust function

on the paralinear distance matrix of this model gives the merge matrix

(5.5), which describes the topology of the tree shown in Figure 24,

Finding the parameter estimates using the merge matrix (5.5), which

we get from the hclust function, gives the result in Table 6.11, with

log likelihood ratio equal to 0.022.
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Figure 24. Rooted Five Tipped Tree

We can see from Table 6.11 that estimation using the merge matrix

(5.5) did not give the correct estimate for the parameters. Taking the

root to be at any position between node 2 and 3 in Figure 24, gives the

correct tree topology described by the merge matrix given in Equation

(5.6), which we used to calculate the joint distribution array.

Applying the optimization function, optim, on the joint distribution

array with respect to the original tree topology we generate the data

119



Parameters Estimates

π̂X 0.247, 0.246, 0.247

π̂Y 0.262, 0.238, 0.264

f̂0 0.246, 0.224, 0.227

ŝ-vector 0.159, 0.290, 0.750, 0.001, 0.886, 0.416

ρ̂ 2.970

height 0.111, 0.135, 0.801

Table 6.11. Estimates of parameters of the exact joint
distribution for five matched sequences evolved under
stationary and non-homogeneous processes. The esti-
mates were obtained assuming the general Markov model

from, gives the parameter estimates shown in Table 6.12, with log

likelihood ratio value equal to 1.22e − 10.

Parameters Estimates

π̂X 0.250, 0.250, 0.250
π̂Y 0.250, 0.250, 0.250

f̂0 0.250, 0.250, 0.250
ŝ-vector 0.298, 0.521, 1.176, 0.015, 1.385, 0.700
ρ̂ 1.686
height 0.119, 0.336, 0.956

Table 6.12. Estimates of parameters of the exact joint
distribution for five matched sequences evolved under
stationary and non-homogeneous processes. The esti-
mates were obtained assuming the general Markov model

Repeating the estimation process as before, with respect to the

same merge matrix (4.2), but with different starting values for the

optim function, gives the result in Table 6.13, with log likelihood ratio

value equal to 1.4e − 10.

The exact values of ρ, the s-vector and the height vector and there

estimated values in both Tables 6.12 and 6.13, satisfy Equations (6.3)

and (6.4). Note that with the correct topology we estimate πX , πY
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Parameters Estimates

π̂X 0.250, 0.250, 0.250
π̂Y 0.250, 0.250, 0.250

f̂0 0.250, 0.250, 0.250
ŝ-vector 0.260, 0.455, 1.026, 0.013, 1.208, 0.610
ρ̂ 2.080
height 0.111, 0.385, 0.888

Table 6.13. Estimates of parameters of the exact joint
distribution for five matched sequences evolved under
stationary and non-homogeneous processes. The esti-
mates were obtained assuming the general Markov model

and f0 exactly but we are unable to estimate ρ, the height vector and

the s-vector since these are not estimable in this case, where we have

stationarity.

Example 6.8. In this example we simulated a data set of size n = 1000

from the joint distribution array F (t) in Example 6.7 and found the

observed divergence array, N . Using the observed divergence array, N ,

and the merge matrix used to calculate the joint distribution array,

we applied our method of estimation which, gave the result shown in

Table 6.14, with log likelihood ratio value equal to 0.318.

Now assume that we do not know the tree topology, then applying

the statistical tests on N shows no differences, and applying the hclust

function from the distance method gives the incorrect tree topology

described by the merge matrix (5.5). Using this merge matrix and the

observed divergence array N , we can estimate the parameters under

the general model using the optim function, which gives the results

shown in Table 6.15, with log likelihood ratio value equal to 0.587.
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Parameters Estimates

π̂X 0.231, 0.233, 0.228

π̂Y 0.274, 0.230, 0.237

f̂0 0.260, 0.262, 0.269

ŝ-vector 0.172, 0.323, 0.593, 0.014, 0.651, 0.392

ρ̂ 4.089

height 0.097, 0.692, 0.706

Table 6.14. Estimates of parameters from data com-
prising five matched sequences of length n = 1000 evolved
under stationary and non-homogeneous processes. The
estimates were obtained assuming the general Markov
model with the correct tree topology

Parameters Estimates

π̂X 0.259, 0.261, 0.256

π̂Y 0.266, 0.242, 0.241

f̂0 0.255, 0.279, 0.294

ŝ-vector 0.346, 0.519, 1.377, 0.001, 2.473, 1.536

ρ̂ 6.045

height 0.020, 0.036, 0.777

Table 6.15. Estimates of parameters from data com-
prising five matched sequences of length n = 1000 evolved
under stationary and non-homogeneous processes. The
estimates were obtained assuming the general Markov
model withe the incorrect tree topology from hclust

Notice that estimation using the correct topology gives small log

likelihood ratio value compared to the estimation using the other topol-

ogy. Also, using the correct tree topology gives good estimates for

πX , πY and f0 but ρ, the height vector and s-vector are not estimable,

however, they satisfy Equations (6.3) and (6.4) approximately.
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We can see that when we estimate using the exact joint distribu-

tion function F (t) and the correct tree topology we used to calculate

F (t), the estimation under the case of stationary and non-homogeneous

processes is similar to the estimation under the case of stationary and

homogeneous processes, since in both cases we can estimate the exact

stationary distribution for each side of the tree, πX and πY , and the ex-

act initial distribution f0, but for the other parameters, ρ, the s-vector

and the length vector, we can estimate different combination between

them, given that Equations (6.3) and (6.4) should satisfied.

6.6.4. Estimation under the Case of Non-Stationary and

Homogeneous Processes. In Chapter 5, we showed that in the case

of homogeneous processes the paralinear distance matrix for the exact

joint distribution array F (t) is ultrametric and performing hierarchical

clustering on the paralinear distance matrix using the hclust function

gives the exact tree topology; also, performing hierarchical clustering

on the distance matrix from observed divergence matrix N gives the

correct tree topology.

Knowing that, for the case of homogeneous processes, hierarchical

clustering gives the correct tree topology for the exact and observed

joint distribution functions, for the purpose of estimation we will use

the correct merge matrix we used to calculate the joint distribution

array.

Example 6.9. Consider the case of non-stationary and homogeneous

processes for a tree with five matched sequences, described in Example

6.2 with a height vector equal to (0.1, 0.5, 0.8, 1.0). Let

πX = πY = π = (0.25, 0.25, 0.25, 0.25)T , f0 = (0.1, 0.1, 0.1 , 0.7)T

RX = RY = SΠ, where the six free parameters in the S matrix are

given by the

s-vector = (0.2, 0.35, 0.79, 0.01, 0.93, 0.47).
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We showed in Example 5.5, that the hclust function for the paralinear

distance matrix of the joint distribution array for this model gives the

same merge matrix that we used to calculate the joint distribution array

F (t). Now applying the optim function on the joint distribution array

with respect to the correct merge matrix, the merge matrix we used to

generate the data, gives the parameter estimates shown in Table 6.16

with log likelihood ratio value equal to 2.54e − 10.

Parameters Estimates

π̂X 0.250, 0.250, 0.250

π̂Y 0.250, 0.250, 0.250

f̂0 0.100, 0.100, 0.100

ŝ-vector 0.200, 0.350, 0.790, 0.010, 0.930, 0.470

ρ̂ 1.000

height 0.100, 0.500, 0.800

Table 6.16. Estimates of parameters of the exact joint
distribution for five matched sequences evolved under
non-stationary and homogeneous processes. The esti-
mates were obtained assuming the general Markov model

Example 6.10. Using the joint distribution array F (t) calculated in

the previous example we simulated a data set of size n = 1000 and

found the observed divergence array N . Applying the statistical tests

described in Chapter 4 on this data gives no significant difference, and

applying the hclust function from the distance method gives the exact

merge matrix we used to calculate the joint distribution array F (t).

Using this merge matrix and the observed divergence array, N , we

calculated the parameter estimates under this model using the optim

function, see Table 6.17, with log likelihood ratio equal to 0.197.
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Parameters Estimates

π̂X 0.233, 0.304, 0.238

π̂Y 0.228, 0.294, 0.222

f̂0 0.095, 0.090, 0.090

ŝ-vector 0.138, 0.346, 0.945, 0.001, 0.628, 0.504

ρ̂ 1.078

height 0.094, 0.548, 0.803

Table 6.17. Estimates of parameters from data com-
prising five matched sequences of length n = 1000 evolved
under non-stationary and homogeneous processes. The
estimates were obtained assuming the general Markov
model

In the case of non-stationary and homogeneous processes, we can

see that we estimate the exact value for the parameters using the exact

joint distribution function F (t) and very good estimate using simulated

data with sample size n = 1000.

6.6.5. Estimation under the Case of Non-Stationary and

Non-Homogeneous Processes. In Chapter 4, we showed that in the

case of non-stationary processes the statistical tests may give significant

differences when we apply them to an observed divergence array, N .

Also we showed in Chapter 5 that the hierarchical clustering for the

paralinear distance, using the the hclust function gives the correct

rooted tree topology in the case of homogeneous processes.

For the case of non-stationary and non-homogeneous processes, the

paralinear distances for the exact joint distribution function are not

ultrametric, so the hierarchical clustering using the hclust function

can lead to a wrong topology. However, in this case we calculate the

marginal distributions and find which group of sequences having the

same marginal distributions, so we can connect them together in one

side of the root.
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Throughout this section to determine the exact tree topology of the

exact joint distribution function F (t), we will use both the marginal

distributions and the hierarchical clustering for the paralinear distance.

However, to determine the exact tree topology for the observed diver-

gence array, N , we will use the statistical tests and the hierarchical

clustering for the paralinear distance using the hclust function.

Example 6.11. Consider the case of non-stationary and non-homogeneous

processes for a tree with five matched sequences, as described in Ex-

ample 6.2 with a vector of heights equal to (0.1, 0.5, 0.8, 1.0). Let

πX = πY = (0.25, 0.25, 0.25, 0.25)T , f0 = (0.1, 0.1, 0.1 , 0.7)

RX = SΠX and RY = ρSΠY , where ρ = 3 and the six free parameters

in the S matrix are given by the

s-vector = (0.2, 0.35, 0.79, 0.01, 0.93, 0.47).

Assume that we do not know the correct tree topology. Applying the

hclust function on the paralinear distance matrix of the joint distri-

bution array for this model gives the incorrect rooted tree topology

described by the merge matrix (5.5) and Figure 24. Finding the mar-

ginal distribution for the five nodes suggests that the nodes −1,−2

and −3 should be on one side of the root and the nodes −4 and −5 on

the other side of the root. Using the results from the hclust function

and the marginal distributions we can conclude that the tree topology

should be in the form

merge =









−1 −2

−4 −5

−3 1

2 3









, (6.6)

which is the same merge matrix we used to calculate the joint distri-

bution array.

Applying the optim function on the joint distribution array with

respect to the correct tree topology described by merge matrix (6.6),
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gives us the parameter estimates shown in Table 6.18, with log likeli-

hood ratio value equal to 3.30e − 15.

Parameters Estimates

π̂X 0.250, 0.250, 0.250

π̂Y 0.250, 0.250, 0.250

f̂0 0.100, 0.100, 0.100

ŝ-vector 0.200, 0.350, 0.790, 0.010, 0.930, 0.470

ρ̂ 3.00

height 0.1, 0.5, 0.8

Table 6.18. Estimates of parameters of the exact joint
distribution for five matched sequences evolved under
non-stationary and non-homogeneous processes, where
πX = πY . The estimates were obtained assuming the
general Markov model

Now finding the parameter estimates using the merge matrix (5.5),

which we got from the paralinear distance method, gives the result in

Table 6.19, with log likelihood ratio value equal to 0.045.

Parameters Estimates

π̂X 0.0002, 0.002, 0.001

π̂Y 0.268, 0.239, 0.251

f̂0 0.090, 0.113, 0.110

ŝ-vector 0.152, 0.273, 0.616, 0.001, 0.793, 0.404

ρ̂ 2.926

height 0.117, 0.228, 0.711

Table 6.19. Estimates of parameters of the exact joint
distribution for five matched sequences evolved under
non-stationary and non-homogeneous processes, where
πX = πY . The estimates were obtained assuming the
general Markov model
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We can see that estimation using the merge matrix (5.5) did not

give the correct estimates for our parameters.

Example 6.12. Using the joint distribution array F (t) calculated in

the previous example we simulated a data set of size n = 1000 and

found the observed divergence array N . Applying the statistical tests

described in Chapter 4 on this data suggested that the nodes −1,−2

and −3 should be on one side of the root and the nodes −4 and −5

on the other side of the root. Applying the hclust function from the

distance method gives the correct unrooted tree topology, so using both

results we conclude that we should use the merge matrix (6.6), which is

the same as the merge matrix we used to calculate the joint distribution

array. Using the observed divergence array N and the merge matrix

(6.6), we calculated the parameter estimates under this model using the

optim function, which gives the result in Table 6.20, with log likelihood

ratio value equal to 0.302.

Parameters Estimates

π̂X 0.224, 0.151, 0.264

π̂Y 0.213, 0.223, 0.302

f̂0 0.149, 0.156, 0.095

ŝ-vector 0.325, 0.363, 0.717, 0.009, 1.123, 0.380

ρ̂ 3.074

height 0.095, 0.536, 0.822

Table 6.20. Estimates of parameters from data com-
prising five matched sequences of length n = 1000 evolved
under non-stationary and non-homogeneous processes,
where πX = πY . The estimates were obtained assum-
ing the general Markov model

Simulating a larger data set with n = 10000 from the same joint

distribution and estimated as before gives the result in Table 6.21, with

log likelihood ratio value equal to 0.050.
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Parameters Estimates

π̂X 0.240, 0.267, 0.246

π̂Y 0.247, 0.249, 0.252

f̂0 0.113, 0.095, 0.094

ŝ-vector 0.214, 0.339, 0.746, 0.012, 0.863, 0.442

ρ̂ 3.112

height 0.097, 0.524, 0.792

Table 6.21. Estimates of parameters from data com-
prising five matched sequences of length n = 10000
evolved under non-stationary and non-homogeneous pro-
cesses, where πX = πY . The estimates were obtained
assuming the general Markov model

Example 6.13. Consider the case of non-stationary and non-homogeneous

processes for five matched sequences as in Example 6.11, but for this

case take πX = (0.1, 0.1, 0.1, 0.7)T , πY = (0.3, 0.3, 0.3 , 0.1) and

f0 = (0.2, 0.2, 0.2 , 0.4). Let RX = SXΠX and RY = ρSY ΠY , where

ρ = 1 and the s-vector is given by

s-vector = (0.2, 0.35, 0.79, 0.01, 0.93, 0.47).

Applying the hclust function on the paralinear distance matrix of

the joint distribution array for this model, gives the correct rooted

tree topology described by the merge matrix (6.6). Finding the mar-

ginal distribution for the five nodes suggests that nodes −1,−2 and

−3 should be on one side of the root and the nodes −4 and −5 in

the other side of the root, this result is in agreement with the result

from the distance method. Applying the optim function on the joint

distribution array with respect to the correct tree topology described

by merge matrix (6.6), gives the exact parameter estimates shown in

Table 6.22, with log likelihood ratio value equal to 3.19e − 15.

Example 6.14. Using the joint distribution array F (t) calculated in

the previous example, we simulated a data set of size n = 1000 and
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Parameters Estimates

π̂X 0.100, 0.100, 0.100

π̂Y 0.300, 0.300, 0.300

f̂0 0.200, 0.200, 0.200

ŝ-vector 0.200, 0.350, 0.790, 0.010, 0.930, 0.470

ρ̂ 1.00

height 0.1, 0.5, 0.8

Table 6.22. Estimates of parameters of the exact joint
distribution for five matched sequences evolved under
non-stationary and non-homogeneous processes, where
πX 6= πY and ρ = 1. The estimates were obtained as-
suming the general Markov model

found the observed divergence array, N . Applying the statistical tests

and the hclust function from the paralinear distance method gives the

correct tree topology described by the merge matrix (6.6), which is the

same merge matrix we used to calculate the joint distribution array.

Using the observed divergence array, N , and this merge matrix, we

calculated the parameter estimates under this model using the optim

function, which gives the result in Table 6.23, with log likelihood ratio

value equal to 0.302.

Simulating a larger data set with n = 10000 from the same joint

distribution and estimate as before gives the result in Table 6.24, with

log likelihood ratio value equal to 0.034.

Example 6.15. Consider the same tree topology, assumptions, and

the same set of parameters as in Example 6.13, but in this case take

ρ = 3, so the non-homogeneity will come from two reasons, having

different stationary distributions for each side of the tree and also hav-

ing ρ not equal to one on one side of the tree. Applying the hclust

function on the paralinear distance matrix of the joint distribution ar-

ray for this model, gives incorrect rooted tree topology described by

the merge matrix (5.5). Finding the marginal distribution for the five
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Parameters Estimates

π̂X 0.096, 0.072, 0.110

π̂Y 0.363, 0.261, 0.267

f̂0 0.160, 0.231, 0.198

ŝ-vector 0.170, 0.223, 0.662, 0.0117, 0.915, 0.408

ρ̂ 1.288

height 0.092, 0.570, 0.695

Table 6.23. Estimates of parameters from data com-
prising five matched sequences of length n = 1000 evolved
under non-stationary and non-homogeneous processes,
where πX 6= πY and ρ = 1. The estimates were obtained
assuming the general Markov model

Parameters Estimates

π̂X 0.104, 0.103, 0.095

π̂Y 0.298, 0.317, 0.290

f̂0 0.201, 0.204, 0.197

ŝ-vector 0.186, 0.360, 0.795, 0.007, 0.938, 0.482

ρ̂ 0.957

height 0.103, 0.480, 0.833

Table 6.24. Estimates of parameters from data com-
prising five matched sequences of length n = 10000
evolved under non-stationary and non-homogeneous pro-
cesses, where πX 6= πY and ρ = 1. The estimates were
obtained assuming the general Markov model

nodes suggests that nodes −1,−2 and −3 should be on one side of the

root and the nodes −4 and −5 on the other side of the root. Using the

results from the hclust function and the statistical tests, we can con-

clude that the tree topology described by the merge matrix (6.6) is the

correct tree topology. Now, applying the optim function on the joint

distribution array with respect to the correct tree topology described
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by merge matrix (6.6), gives the exact parameter estimates shown in

Table 6.25, with log likelihood ratio value equal to 2.98e − 15.

Parameters Estimates

π̂X 0.100, 0.100, 0.100

π̂Y 0.300, 0.300, 0.300

f̂0 0.200, 0.200, 0.200

ŝ-vector 0.200, 0.350, 0.790, 0.010, 0.930, 0.470

ρ̂ 3.00

height 0.1, 0.5, 0.8

Table 6.25. Estimates of parameters of the exact joint
distribution for five matched sequences evolved under
non-stationary and non-homogeneous processes, where
πX 6= πY and ρ = 3. The estimates were obtained as-
suming the general Markov model

Finding the parameter estimates using the merge matrix (5.5),

which we get from the paralinear distance method, gives the result

in Table 6.26, with log likelihood ratio value equal to 0.380.

Parameters Estimates

π̂X 0.001, 0.0001, 0.008

π̂Y 0.271, 0.219, 0.260

f̂0 0.198, 0.273, 0.231

ŝ-vector 0.141, 0.276, 0.694, 0.001, 0.820, 0.417

ρ̂ 2.893

height 0.101, 0.150, 0.698

Table 6.26. Estimates of parameters of the exact joint
distribution for five matched sequences evolved under
non-stationary and non-homogeneous processes, where
πX 6= πY and ρ = 3. The estimates were obtained as-
suming the general Markov model
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We can see that estimation using the merge matrix from the hclust

function did not give the correct estimate for our parameters.

Example 6.16. Using the joint distribution array F (t) calculated in

the previous example, we simulated a data set of size n = 1000 and

found the observed divergence array, N . Applying the statistical tests

on the joint distribution array suggested that nodes −1,−2 and −3

should be on one side of the root and the nodes −4 and −5 on the

other side of the root. Applying the hclust function on the paralinear

distance matrix of the joint distribution array for this model, gives the

incorrect rooted tree topology described by the merge matrix (5.5).

Parameters Estimates

π̂X 0.083, 0.128, 0.074

π̂Y 0.292, 0.305, 0.292

f̂0 0.227, 0.209, 0.206

ŝ-vector 0.194, 0.392, 0.788, 0.001, 0.968, 0.473

ρ̂ 3.010

height 0.094, 0.526, 0.776

Table 6.27. Estimates of parameters from data com-
prising five matched sequences of length n = 1000 evolved
under non-stationary and non-homogeneous processes,
where πX 6= πY and ρ = 3. The estimates were obtained
assuming the general Markov model

Using the results from the hclust function and the statistical tests,

we can conclude that the tree topology described by the merge matrix

(6.6) is the correct tree topology. Applying the optim function on the

observed divergence array N with respect to the correct tree topology

described by merge matrix (6.6), gives the parameter estimates shown

in Table 6.27, with log likelihood ratio value equal to 0.244.
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6.7. Estimation Based on Real Nucleotides Sequences

In this section we find the parameter estimates for two real nu-

cleotide sequences using the log likelihood ratio method.

Example 6.17. Consider the case of the bacterial data described in

Example 4.7. We showed in this example that applying the statistical

test to this bacterial data, suggested that the divergence matrices for

the set Aquifex, Thermus, and Thermotoga show symmetry, as does

the divergence matrix for Bacillus and Deinococcus, but all divergence

matrices for pairs between these sets are highly asymmetric. So we

can conclude from the tests that the most parsimonious model must

satisfy a lack of stationary, all terminal edges to Aquifex, Thermus and

Thermotoga have the same rate matrix R1 whereas the terminal edges

to Bacillus and Deinococcus have the same rate matrix R2 and R1 6=
R2. Now, since the gn program allows us to have different stationary

distribution for the two sides of the root, we will put the set Aquifex,

Thermus, and Thermotoga on one side of the root and the set Bacillus

and Deinococcus on the other side.

In Example 5.8, we showed that the hclust function for the para-

linear distance matrix of this bacterial data gives a tree topology de-

scribed by the merge matrix which as we can see suggested that the

nodes −1,−4,−5 are on side of the root and the nodes −2,−3 are on

the other side, where node −1 represents Aquifex, −2 represents Bacil-

lus, −3 represents Deinococcus, −4 represents Thermus and node −5

represents Thermotoga.

merge =









−4 −5

−1 1

−2 −3

2 3









, (6.7)

We can see that both the statistical tests and the distance method

suggested the same tree topology described by the merge matrix (6.7),

see Figure 25.
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Figure 25. Bacterial data A: Aquifex, B: Bacillus,
D: Deinococcus, Ts: Thermus, Ta: Thermotoga

Maximizing the log likelihood ratio using the optim function, using

the observed divergence array, N , for this bacterial data and with re-

spect the merge matrix (6.7), gives the parameter estimates shown in

Table 6.28, with log likelihood ratio value equal to 0.332.

Parameters Estimates

π̂X 0.200, 0.293, 0.328

π̂Y 0.413, 0.097, 0.149

f̂0 0.216, 0.279, 0.358

ŝ-vector 0.067, 0.135, 0.056, 0.221, 0.235, 0.087

ρ̂ 1.710

height 0.872, 0.999, 0.681

Table 6.28. Estimates of the bacterial data parame-
ters. The estimates were obtained assuming the general
Markov model

Discussion of the accuracy for this data will be given in a later

section, when we discuss bootstrap methods.
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Example 6.18. Consider the hominoid data described in Chapter 4

Example 4.9. We showed earlier in Chapter 4 that none of the three

statistical tests indicate a lack of symmetry between the genes of Hu-

man, Chimpanzee, Bonobo, Gorilla, Orangutan, Gibbon and Macaque,

which indicates that the model for this data satisfy the assumptions

of stationarity and homogeneity. Finding the marginal distribution di-

vided by the sequence length (1206) gives the following results:

Chimpanzee: (0.284, 0.277, 0.136, 0.303), Bonobo: (0.279, 0.281, 0.141,

0.299), Human: (0.278, 0.287, 0.142, 0.294), Gorilla: (0.273, 0.281,

0.144, 0.302), Gibbon: (0.288, 0.288, 0.136, 0.289), Orangutan: (0.278,

0.299, 0.138, 0.285) and Macaque: (0.290, 0.280, 0.139, 0.290). From

these marginal distributions we can see that all of them have approxi-

mately the same stationary distribution, which supports the idea that

this data satisfies stationarity and homogeneity assumptions. In Ex-

ample 5.9 the hclust function for the paralinear distance matrix of

this hominoid data gave a tree topology described by the merge ma-

trix (6.8), where node −1 represents Human, −2 represents Chim-

panzee, −3 represents Bonobo, −4 represents gorilla, node −5 repre-

sents Orangutan, node −6 represents Gibbon and node −7 represents

Macaque.

merge =














−2 −3

−1 1

−4 2

−6 3

−5 4

−7 5














, (6.8)

We can see that both the marginal distributions and the distance

method suggested the same tree topology described by merge matrix

(6.8), see Figure 26.
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Figure 26. Hominoid data tree topology H: Human, Gh:
Chimpanzee, B: Bonobo, Go: Gorilla, O: Orangutan, Gi:
Gibbon M: Macaque

Maximizing the log likelihood ratio under the general Markov model

and using the optim function using the observed divergence array N

for this hominoid data and with respect the merge matrix (6.8), gave

the parameter estimates shown in Table 6.29, with log likelihood ratio

value equal to 0.2586.

Parameters Estimates

π̂X 0.198, 0.285, 0.081

π̂Y 0.166, 0.161, 0.301

f̂0 0.298, 0.299, 0.129

ŝ-vector 0.099, 0.246, 0.042, 0.029, 0.285, 0.004

ρ̂ 1.016

height 0.181, 0.326, 0.421, 0.650, 0.660

Table 6.29. Estimates of the hominoid data parame-
ters. The estimates were obtained assuming the general
Markov model
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Under the stationary and homogeneous model, we have 14 free pa-

rameters. Maximizing the log likelihood ratio using the optim function

depending on the observed divergence array N for this hominoid data

and with respect the merge matrix (6.8), gave the parameter estimates

shown in Table 6.30, with log likelihood ratio value equal to 0.278.

Parameters Estimates

π̂ 0.274, 0.275, 0.150

ŝ-vector 0.063, 0.327, 0.041, 0.038, 0.274, 0.012

height 0.179, 0.312, 0.419, 0.660, 0.679

Table 6.30. Estimates of the hominoid data parame-
ters. The estimates were obtained assuming the general
time-reversible Markov model

In this case we would have expected, on the basis of the statistical

tests of symmetry, that πX , πY and f0 would have similar estimates

but this is not the case. In addition the difference between the two log

likelihood ratios, 0.2586 and 0.278, is larger than would be expected

if the general time-reversible Markov model fitted the data. We con-

jecture that although the marginal probabilities at all the leaves are

homogeneous the model assuming stationarity and homogeneity does

not fit the data.

6.8. Bootstrap

The bootstrap, developed by Efron (1979), is a computer-based

method frequently used to assess the accuracy of many statistical esti-

mates.

6.8.1. Non-Parametric Bootstrap. Felsenstein (1985) describes

the method of the bootstrap as the following. Start with data points

x1, · · · , xn, which are assumed to be drawn independently from the

same distribution. From these values, we can apply our method of

statistical estimation to obtain an estimate for the parameter of in-

terest. If the exact distribution of the data was known and if our
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function were tractable, an estimate of the standard deviation could

be obtained. Otherwise, the bootstrap is a useful alternative. The

bootstrap procedure suggests that the data be resampled to construct

several pseudo data sets. Each of the bootstrap data sets is constructed

by resampling n points from the original data with replacement. For

each bootstrap data sets, we compute the estimates of interest. The

standard deviation of the estimates of interest can be calculated from

the bootstrapped estimates. A non-parametric bootstrap sample is cre-

ated from the original alignment by sampling the columns of the align-

ment with replacement. Thus, the new alignment may have several

repeated columns and several missing columns from the original align-

ment. The main advantage of the non-parametric bootstrap is that it

does not base its replicates on any assumptions about the model but

only that the sites are independent and identically distributed.

Example 6.19. Consider the case of non-stationary and homogeneous

processes for a tree with five matched sequences, as described in Ex-

ample 6.2. Let the vector of heights equal to (0.1, 0.5, 0.8, 1.0) and

take

πX = πY = (0.25, 0.25, 0.25, 0.25)T , f0 = (0.1, 0.1, 0.1 , 0.7)T

RX = RY = SΠ, where the six free parameters in the S matrix are

given by the

s-vector = (0.2, 0.35, 0.79, 0.01, 0.93, 0.47).

Simulating a data set of size n = 1000 from the joint distribution F (t)

of this model and finding the parameter estimates for the observed

divergence array N gives the result shown in Table 6.31, with log like-

lihood ratio equal to 0.201

From the observed divergence array N , we sample with replacement

20 data sets each of size n = 1000. For each data set we estimate the

parameters under the general Markov model using the optim function.
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Parameters Estimates

π̂X 0.220, 0.240, 0.240

π̂Y 0.252, 0.269, 0.256

f̂0 0.076, 0.110, 0.081

ŝ-vector 0.198, 0.348, 0.787, 0.0003, 0.927, 0.470

ρ̂ 0.989

height 0.087, 0.520, 0.782

Table 6.31. Estimates of parameters from simulated
data of length n = 1000 evolved under non-stationary
and homogeneous processes. The estimates were ob-
tained assuming the general Markov model

The mean and the standard deviation of these estimates are given in

Table 6.32. The mean of the log likelihood ratio is 0.311 with a standard

deviation 0.025.

Simulating a larger data set with n = 10000 from the same joint

distribution function F (t) and finding the parameter estimates for the

observed divergence array N gives the result shown in Table 6.33, with

log likelihood ratio equal to 0.038.

From the observed divergence array, N , we sampled with replace-

ment 20 data sets each of size n = 10000. The mean and the standard

deviation for the parameter estimates of these data sets is given in Ta-

ble 6.34. The log likelihood ratio mean is equal to 0.0637 with standard

deviation 0.0024.

We note that in the case of n = 1000 the parameter estimates are

reasonable and are very accurate when the sample size n = 10000.

Also, we can see that n times the log likelihood ratio is smaller for the

case when n = 1000 than the case when n = 10000. Further, the log

likelihood ratio for the bootstrap data sets is 50% greater than that for

the simulated data.
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Parameters Average estimates and standard deviation

mean of π̂X 0.195, 0.328, 0.216

sd of π̂X 0.053, 0.131, 0.074

mean of π̂Y 0.185, 0.322, 0.214

sd of π̂Y 0.053, 0.124, 0.061

mean of f̂0 0.095, 0.086, 0.087

sd of f̂0 0.022, 0.020, 0.014

mean of ŝ-vector 0.124, 0.379, 1.068, 0.003, 0.599, 0.561

sd ŝ-vector 0.056, 0.127, 0.358, 0.006, 0.183, 0.230

mean of ρ̂ 1.150

sd of ρ̂ 0.174

mean of height 0.091, 0.564, 0.788

sd of height 0.011, 0.053, 0.047

Table 6.32. Non-parametric estimates of parameters
from simulated data of length n=1000 evolved under
non-stationary and non-homogeneous processes. The es-
timates were obtained assuming the general Markov
model

Parameters Estimates

π̂X 0.258, 0.222, 0.274

π̂Y 0.265, 0.219, 0.292

f̂0 0.092, 0.109, 0.096

ŝ-vector 0.222, 0.332, 0.755, 0.0006, 1.046, 0.442

ρ̂ 0.921

height 0.108, 0.489, 0.832

Table 6.33. Estimates of parameters from simulated
data of length n = 10000 evolved under non-stationary
and homogeneous processes. The estimates were ob-
tained assuming the general Markov model

141



Parameters Average estimates and standard deviation

mean of π̂X 0.254, 0.244, 0.264

sd of π̂X 0.017, 0.016, 0.014

mean of π̂Y 0.253, 0.235, 0.275

sd of π̂Y 0.014, 0.011, 0.013

mean of f̂0 0.092, 0.105, 0.098

sd of f̂0 0.005, 0.006, 0.004

mean of ŝ-vector 0.206, 0.346, 0.759, 0.001, 0.956, 0.456

sd ŝ-vector 0.016, 0.024, 0.040, 0.002, 0.061, 0.020

mean of ρ̂ 0.973

sd of ρ̂ 0.054

mean of height 0.107, 0.497, 0.817

sd of height 0.005, 0.011, 0.023

Table 6.34. Non-parametric estimates of parameters
from simulated data of length n=10000 evolved under
non-stationary and non-homogeneous processes. The es-
timates were obtained assuming the general Markov
model

Example 6.20. Consider the case of non-stationary and non-homogeneous

processes for five matched sequences as in the previous example. Take

the height vector equal to (0.1, 0.5, 0.8, 1.0) and let

πX = πY = (0.25, 0.25, 0.25, 0.25)T , f0 = (0.1, 0.1, 0.1 , 0.7)T .

Let RX = SΠX and RY = ρSΠY , where the six free parameters in the

S matrix are given by the

s-vector = (0.2, 0.35, 0.79, 0.01, 0.93, 0.47),

and ρ = 3. Simulating a data set of size n = 1000 from the joint

distribution F (t) and finding the parameter estimates for the observed

divergence array N gives the result shown in Table 6.35, with log like-

lihood ratio equal to 0.302.
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Parameters Estimates

π̂X 0.224, 0.151, 0.264

π̂Y 0.212, 0.223, 0.303

f̂0 0.149, 0.192, 0.087

ŝ-vector 0.325, 0.363, 0.717, 0.009, 1.124, 0.375

ρ̂ 3.075

height 0.095, 0.536, 0.822

Table 6.35. Estimates of parameters from simu-
lated data of length n = 1000 evolved under non-
stationary and non-homogeneous processes, where πX =
πY and ρ = 3. The estimates were obtained assuming
the general Markov model.

Sample with replacement 20 data sets each of size n = 1000 from

the observed divergence array N . Estimate the parameters under the

general Markov model using the optim function for each data set. The

mean and the standard deviation of these estimates are given in Table

6.36. The mean of the log likelihood ratio is 0.458 with a standard

deviation 0.017.

Simulating a larger data set with n = 10000 from the same joint

distribution function F (t) and finding the parameter estimates for the

observed divergence array N gives the result shown in Table 6.37, with

log likelihood ratio equal to 0.050.

From the observed divergence array N , we sample with replacement

20 data sets each of size n = 10000. The mean and the standard

deviation for the parameter estimates of these data sets is given in Table

6.38. The log likelihood ratio mean is equal to 0.084 with standard

deviation 0.0031.
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Parameters Average estimates and standard deviation

mean of π̂X 0.246, 0.157, 0.275

sd of π̂X 0.102, 0.082, 0.064

mean of π̂Y 0.217, 0.213, 0.323

sd of π̂Y 0.034, 0.046, 0.069

mean of f̂0 0.140, 0.209, 0.080

sd of f̂0 0.074, 0.112, 0.018

mean of ŝ-vector 0.385, 0.367, 0.801, 0.018, 1.320, 0.416

sd ŝ-vector 0.206, 0.094, 0.260, 0.029, 0.551, 0.105

mean of ρ̂ 2.893

sd of ρ̂ 1.028

mean of height 0.098, 0.516, 0.827

sd of height 0.014, 0.129, 0.080

Table 6.36. Non-parametric estimates of parameters
from simulated data of length n = 1000 evolved under
non-stationary and non-homogeneous processes, where
πX = πY and ρ = 3. The estimates were obtained as-
suming the general Markov model

Parameters Estimates

π̂X 0.241, 0.269, 0.246

π̂Y 0.247, 0.249, 0.252

f̂0 0.131, 0.095, 0.094

ŝ-vector 0.214, 0.339, 0.746, 0.017, 0.862, 0.441

ρ̂ 3.154

height 0.097, 0.525, 0.756

Table 6.37. Estimates of parameters from simu-
lated data of length n = 10000 evolved under non-
stationary and non-homogeneous processes, where πX =
πY and ρ = 3. The estimates were obtained assuming
the general Markov model
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Parameters Average estimates and standard deviation

mean of π̂X 0.244, 0.274, 0.241

sd of π̂X 0.013, 0.017, 0.017

mean of π̂Y 0.248, 0.250, 0.248

sd of π̂Y 0.006, 0.010, 0.008

mean of f̂0 0.111, 0.094, 0.095

sd of f̂0 0.009, 0.014, 0.006

mean of ŝ-vector 0.208, 0.339, 0.735, 0.014, 0.854, 0.453

sd ŝ-vector 0.0257, 0.043, 0.069, 0.010, 0.070, 0.054

mean of ρ̂ 3.202

sd of ρ̂ 0.472

mean of height 0.097, 0.531, 0.762

sd of height 0.007, 0.043, 0.037

Table 6.38. Non-parametric estimates of parameters
from simulated data of length n = 10000 evolved under
non-stationary and non-homogeneous processes, where
πX = πY and ρ = 3. The estimates were obtained as-
suming the general Markov model

We can see the accuracy of the parameter estimates is increased

when we increase the sample size from n = 1000 to n = 10000. Again,

as in the previous example, we can can see that n times the log likeli-

hood ratio is smaller for the case when n = 1000 than the case when

n = 10000 and the log likelihood ratio for the bootstrap data sets is

50% greater than that for the simulated data.

Example 6.21. Consider the same case of non-stationarity and non-

homogeneity for five matched sequences as in the previous example,

but in this case let the non-homogeneity come from having different

stationary distribution for each side of the tree root by taking

πX = (0.1, 0.1, 0.1, 0.7)T , πY = (0.3, 0.3, 0.3 , 0.1)T ,

f0 = (0.2, 0.2, 0.2, 0.4)T ,
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RX = SXΠX and RY = SY ΠY . From the joint distribution F (t), we

simulate a data set of size n = 1000. Using the optim optimizer, we

find the parameter estimates for the observed divergence array N as

we can see in Table 6.39, with log likelihood ratio equal to 0.178.

Now, we sample with replacement 20 data sets each of size n =

1000 from the observed divergence array N . For each data set we

estimate the parameters under the general Markov model using the

optimizer function optim. The mean and the standard deviation of

these estimates are given in Table 6.40. The mean of the log likelihood

ratio is 0.256 with a standard deviation 0.019.

For a larger simulated data set with n = 10000, the parameter esti-

mates for the observed divergence array N are given in Table 6.41, with

log likelihood ratio equal to 0.034. From the observed divergence array

N , we sampled with replacement 20 data sets each of size n = 10000.

The mean and the standard deviation for the parameters estimates of

these data sets is given in Table 6.42. The log likelihood ratio mean is

equal to 0.055 with standard deviation 0.0025.

Comparing the results in Tables 6.40 and 6.42, we can see that we

get more accurate estimates for the case of n = 10000. Also, we can

see that we had relatively small errors in the case of n = 1000 and very

small errors for the case when n = 10000. The relation between the

log likelihood ratios commented in Examples 6.19 and 6.20 holds here

also.
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Parameters Estimates

π̂X 0.096, 0.072, 0.110

π̂Y 0.363, 0.261, 0.267

f̂0 0.160, 0.232, 0.198

ŝ-vector 0.172, 0.223, 0.662, 0.012, 0.915, 0.408

ρ̂ 1.288

height 0.091, 0.570, 0.694

Table 6.39. Estimates of parameters from simu-
lated data of length n = 1000 evolved under non-
stationary and non-homogeneous processes, where πX 6=
πY and ρ = 1. The estimates were obtained assuming
the general Markov model

Parameters Average estimates and standard deviation

mean of π̂X 0.101, 0.071, 0.106

sd of π̂X 0.031, 0.025, 0.023

mean of π̂Y 0.364, 0.253, 0.174

sd of π̂Y 0.057, 0.047, 0.042

mean of f̂0 0.168, 0.238, 0.196

sd of f̂0 0.027, 0.022, 0.020

mean of ŝ-vector 0.202, 0.238, 0.687, 0.014, 0.426, 0.561

sd ŝ-vector 0.051, 0.066, 0.142, 0.015, 0.157, 0.067

mean of ρ̂ 1.204

sd of ρ̂ 0.449

mean of height 0.097, 0.544, 0.756

sd of height 0.020, 0.120, 0.112

Table 6.40. Non-parametric estimates of parameters
from simulated data of length n = 1000 evolved under
non-stationary and non-homogeneous processes, where
πX 6= πY and ρ = 1. The estimates were obtained as-
suming the general Markov model
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Parameters Estimates

π̂X 0.104, 0.103, 0.095

π̂Y 0.298, 0.317, 0.290

f̂0 0.202, 0.204, 0.197

ŝ-vector 0.186, 0.360, 0.795, 0.007, 0.938, 0.482

ρ̂ 0.957

height 0.103, 0.480, 0.833

Table 6.41. Estimates of parameters from simu-
lated data of length n = 10000 evolved under non-
stationary and non-homogeneous processes, where πX 6=
πY and ρ = 1. The estimates were obtained assuming
the general Markov model

Parameters Average estimates and standard deviation

mean of π̂X 0.104, 0.103, 0.093

sd of π̂X 0.006, 0.005, 0.006

mean of π̂Y 0.297, 0.314, 0.292

sd of π̂Y 0.013, 0.019, 0.015

mean of f̂0 0.201, 0.205, 0.197

sd of f̂0 0.007, 0.008, 0.005

mean of ŝ-vector 0.192, 0.360, 0.790, 0.007, 0.931, 0.476

sd ŝ-vector 0.016, 0.031, 0.039, 0.004, 0.066, 0.031

mean of ρ̂ 0.978

sd of ρ̂ 0.107

mean of height 0.102, 0.483, 0.830

sd of height 0.008, 0.024, 0.048

Table 6.42. Non-parametric estimates of parameters
from simulated data of length n = 10000 evolved under
non-stationary and non-homogeneous processes, where
πX 6= πY and ρ = 1. The estimates were obtained as-
suming the general Markov model
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Example 6.22. Consider the parameter estimates for the bacterial

data in Example 6.17. In this example we found the parameter esti-

mates under the general Markov model, as we can see in Table 6.43

with a log likelihood ratio value equal to to 0.332. In order to see if

the general Markov model fits this data we applied the non-parametric

bootstrap technique on this data, by sampling from the original bac-

terial data with replacement 20 data sets each of the same size as the

original data set, that is n = 1238. For each data set we estimated the

parameters under the general Markov model using the optimizer func-

tion optim. The mean and the standard deviation of these estimates

are given in Table 6.44, with log likelihood ratio mean equal to 0.420

and a standard deviation 0.028.

In this case the log likelihood ratio for the bootstrap data sets is

larger than that for the original data by 25% (0.420, 0.332). This is

less than the 50% noted for simulated data of similar sizes.

Parameters Estimates

π̂X 0.200, 0.293, 0.328

π̂Y 0.413, 0.097, 0.149

f̂0 0.216, 0.279, 0.358

ŝ-vector 0.067, 0.135, 0.056, 0.221, 0.235, 0.087

ρ̂ 1.710

height 0.872, 0.999, 0.681

Table 6.43. Estimates of the bacterial data parame-
ters. The estimates were obtained assuming the general
Markov model
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Parameters Average estimates and standard deviation

mean of π̂X 0.227, 0.263, 0.334

sd of π̂X 0.074, 0.035, 0.048

mean of π̂Y 0.437, 0.085, 0.142

sd of π̂Y 0.102, 0.015, 0.027

mean of f̂0 0.217, 0.274, 0.359

sd of f̂0 0.010, 0.011, 0.013

mean of ŝ-vector 0.066, 0.130, 0.056, 0.234, 0.252, 0.092

sd ŝ-vector 0.021, 0.038, 0.011, 0.029, 0.070, 0.026

mean of ρ̂ 1.781

sd of ρ̂ 0.135

mean of height 0.845, 0.999, 0.682

sd of height 0.034, 0.0003, 0.032

Table 6.44. Non-parametric estimates of the bacterial
data parameters. The estimates were obtained assuming
the general Markov model

Example 6.23. Consider the parameter estimates for the hominoid

data in Example 6.18. In this example we found the parameter esti-

mates under the general time-reversible Markov model as we can see

in Table 6.45 with a log likelihood ratio value equal to to 0.278. In

order to see if general time-reversible Markov model fits this data we

applied the non-parametric bootstrap technique on this data, by sam-

pling from the original hominoid data with replacement 20 data sets

each of the same size as the original data set, that is n = 1206. For each

data set we estimated the parameters under the general time-reversible

Markov model using the optimizer function optim. The mean and the

standard deviation of these estimates are calculated and given in Ta-

ble 6.46, with log likelihood ratio mean equal to 0.332 and a standard

deviation 0.035.
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Parameters Estimates

π̂ 0.274, 0.275, 0.150

ŝ-vector 0.063, 0.327, 0.041, 0.038, 0.274, 0.012

height 0.179, 0.312, 0.419, 0.660, 0.679

Table 6.45. Estimates of the hominoid data parame-
ters. The estimates were obtained assuming the general
time-reversible Markov model

Parameters Average estimates and standard deviation

mean of π̂ 0.271, 0.276, 0.153

sd of π̂ 0.012, 0.011, 0.012

mean of ŝ-vector 0.060, 0.330, 0.043, 0.037, 0.274, 0.010

sd ŝ-vector 0.007, 0.045, 0.008, 0.012, 0.026, 0.007

mean of height 0.168, 0.312, 0.425, 0.666, 0.700

sd of height 0.022, 0.039, 0.034, 0.053, 0.073

Table 6.46. Non-parametric estimates of the hominoid
data parameters. The estimates were obtained assuming
the general time-reversible Markov model

Here, the bootstrap log likelihood ratio is approximately 20% larger

than that for the hominoid data set (0.332, 0.278). Again this is not

as great as the 50% noted for simulated data. The bootstrap indicates

that the estimates are unbiased and have relatively small errors.

6.8.2. Parametric Bootstrap. Unlike the non-parametric boot-

strap, the parametric bootstrap creates new samples (replicates) by

simulation involving maximum likelihood estimates. First, a model of

evolution is assumed. Then the parameters of the model are estimated

from the data. Then we use these parameter estimates to generate a

joint distribution array. Using this joint distribution array we generate

several bootstrap data sets. Each of the bootstrap data sets is con-

structed by sampling n points from the joint distribution array. For
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each bootstrap data sets we compute the estimates of interest. The

mean and standard deviation of the estimates of interest can be calcu-

lated from the bootstrapped estimates.

Note: To make it easy to compare between the parameter estimates

and the parametric bootstrap estimates, we will repeat the tables of

the parameter estimates for the observed divergence arrays.

Example 6.24. Consider the case of the observed divergence array N

of size n = 1000 given in Example 6.19. Depending on the parameter

estimates of this observed divergence array N , shown below in Table

6.47 with log likelihood ratio equal to 0.201.

We calculate the joint distribution array F (t), then from this joint

distribution array, we simulate 20 data sets, each of size n = 1000. The

mean and the standard deviation for the parameter estimates of the 20

data sets are calculated and the result are given in Table 6.48. The log

likelihood ratio mean is equal to 0.215 with standard deviation 0.013.

Now consider the observed divergence array N of size n = 10000

given in Example 6.19 and the parameter estimates shown in Table

6.49, with log likelihood ratio equal to 0.038. Using these parameter

estimates we calculate the joint distribution array F (t). From this joint

distribution array we simulate 20 data sets each of size n = 10000 and

we find the parameter estimates for each of these data sets using the

optimizer function optim. The mean and the standard deviation of

these parameter estimates are given in Table 6.50 with log likelihood

ratio mean equal to 0.039 and standard deviation 0.002.

We note that in the case of n = 1000 the parameter estimates are

reasonable and are very accurate when the sample size n = 10000.

Also, we can see that, as may be expected, the log likelihood ratio

for the parametric bootstrap is very close to that obtained from the

simulated data. Further, the log likelihood ratio for the bootstrap data

sets is 70% greater than that for the simulated data.
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Parameters Estimates

π̂X 0.220, 0.240, 0.240

π̂Y 0.252, 0.269, 0.256

f̂0 0.076, 0.110, 0.081

ŝ-vector 0.198, 0.348, 0.787, 0.0003, 0.927, 0.470

ρ̂ 0.989

height 0.087, 0.520, 0.782

Table 6.47. Estimates of parameters from simulated
data of length n = 1000 evolved under non-stationary
and homogeneous processes. The estimates were ob-
tained assuming the general Markov model

Parameters Average estimates and standard deviation

mean of π̂X 0.239, 0.226, 0.242

sd of π̂X 0.055, 0.059, 0.050

mean of π̂Y 0.264, 0.253, 0.262

sd of π̂Y 0.051, 0.059, 0.050

mean of f̂0 0.073, 0.116, 0.081

sd of f̂0 0.022, 0.026, 0.013

mean of ŝ-vector 0.209, 0.380, 0.820, 0.008, 0.973, 0.485

sd ŝ-vector 0.071, 0.109, 0.240, 0.016, 0.220, 0.115

mean of ρ̂ 0.990

sd of ρ̂ 0.210

mean of height 0.095, 0.493, 0.818

sd of height 0.015, 0.056, 0.057

Table 6.48. Parametric estimates of parameters from
simulated data of length n = 1000 evolved under non-
stationary and homogeneous processes. The estimates
were obtained assuming the general Markov model
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Parameters Estimates

π̂X 0.258, 0.222, 0.274

π̂Y 0.265, 0.219, 0.292

f̂0 0.092, 0.109, 0.096

ŝ-vector 0.222, 0.332, 0.755, 0.0006, 1.046, 0.442

ρ̂ 0.921

height 0.108, 0.489, 0.832

Table 6.49. Estimates of parameters from simulated
data of length n = 10000 evolved under non-stationary
and homogeneous processes. The estimates were ob-
tained assuming the general Markov model

Parameters Average estimates and standard deviation

mean of π̂X 0.263, 0.233, 0.265

sd of π̂X 0.019, 0.023, 0.017

mean of π̂Y 0.264, 0.227, 0.280

sd of π̂Y 0.022, 0.019, 0.019

mean of f̂0 0.093, 0.106, 0.096

sd of f̂0 0.006, 0.007, 0.005

mean of ŝ-vector 0.210, 0.331, 0.746, 0.003, 1.002, 0.452

sd ŝ-vector 0.017, 0.020, 0.053, 0.005, 0.096, 0.023

mean of ρ̂ 0.951

sd of ρ̂ 0.050

mean of height 0.109, 0.496, 0.826

sd of height 0.005, 0.012, 0.020

Table 6.50. Parametric estimates of parameters from
simulated data of length n = 10000 evolved under non-
stationary and homogeneous processes. The estimates
were obtained assuming the general Markov model
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Example 6.25. Consider the case of non-stationary and non-homogeneous

sequences discussed in Example 6.20. Using the observed divergence

array N of size n = 1000 and the parameter estimates of this observed

divergence array N , shown in Table 6.51, with log likelihood ratio equal

to 0.302, we calculate the joint distribution array F (t). From this joint

distribution array, we simulate 20 data sets, each of size n = 1000. The

mean and the standard deviation for the parameter estimates of the 20

data sets are calculated and the result are shown in Table 6.52. The log

likelihood ratio mean is equal to 0.308 with standard deviation 0.016.

Consider the observed divergence array N of size n = 10000 given

in Example 6.20 and the parameter estimates shown in Table 6.53, with

log likelihood ratio equal to 0.050.

Using these parameter estimates we calculate the joint distribution

array F (t). From this joint distribution array we simulate 20 data sets

each of size n = 10000 and we find the parameter estimates for each of

these data sets using the optimizer function optim. The mean and the

standard deviation of these parameter estimates are given in Table 6.54

with log likelihood ratio mean equal to 0.047 and standard deviation

0.002.

Comparing Tables 6.52 and 6.54, we can see that when we increase

the sample size, from n = 1000 to n = 10000, we got more accurate

estimates. Also, the mean of n times the log likelihood ratio increases

when we increase the sample size.
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Parameters Estimates

π̂X 0.224, 0.151, 0.264

π̂Y 0.212, 0.223, 0.303

f̂0 0.149, 0.192, 0.087

ŝ-vector 0.325, 0.363, 0.717, 0.009, 1.124, 0.375

ρ̂ 3.075

height 0.095, 0.536, 0.822

Table 6.51. Estimates of parameters from simu-
lated data of length n = 1000 evolved under non-
stationary and non-homogeneous processes, where πX =
πY and ρ = 3. The estimates were obtained assuming
the general Markov model

Parameters Average estimates and standard deviation

mean of π̂X 0.223, 0.166, 0.265

sd of π̂X 0.055, 0.060, 0.063

mean of π̂Y 0.215, 0.226, 0.299

sd of π̂Y 0.029, 0.029, 0.038

mean of f̂0 0.147, 0.191, 0.092

sd of f̂0 0.040, 0.068, 0.017

mean of ŝ-vector 0.293, 0.335, 0.676, 0.013, 1.010, 0.372

sd ŝ-vector 0.112, 0.103, 0.195, 0.020, 0.352, 0.140

mean of ρ̂ 3.719

sd of ρ̂ 1.417

mean of height 0.097, 0.621, 0.793

sd of height 0.018, 0.195, 0.080

Table 6.52. Parametric estimates of parameters from
simulated data of length n = 1000 evolved under non-
stationary and non-homogeneous processes, where πX =
πY and ρ = 3. The estimates were obtained assuming
the general Markov model
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Parameters Estimates

π̂X 0.241, 0.269, 0.246

π̂Y 0.247, 0.249, 0.252

f̂0 0.131, 0.095, 0.094

ŝ-vector 0.214, 0.339, 0.746, 0.017, 0.862, 0.441

ρ̂ 3.154

height 0.097, 0.525, 0.756

Table 6.53. Estimates of parameters from simu-
lated data of length n = 10000 evolved under non-
stationary and non-homogeneous processes, where πX =
πY and ρ = 3. The estimates were obtained assuming
the general Markov model

Parameters Average estimates and standard deviation

mean of π̂X 0.252, 0.270, 0.250

sd of π̂X 0.022, 0.020, 0.018

mean of π̂Y 0.250, 0.248, 0.249

sd of π̂Y 0.007, 0.011, 0.008

mean of f̂0 0.110, 0.095, 0.093

sd of f̂0 0.012, 0.014, 0.006

mean of ŝ-vector 0.201, 0.318, 0.709, 0.014, 0.841, 0.435

sd ŝ-vector 0.024, 0.027, 0.073, 0.006, 0.067, 0.038

mean of ρ̂ 3.331

sd of ρ̂ 0.401

mean of height 0.096, 0.543, 0.751

sd of height 0.007, 0.038, 0.031

Table 6.54. Parametric estimates of parameters from
simulated data of length n = 10000 evolved under non-
stationary and non-homogeneous processes, where πX =
πY and ρ = 3. The estimates were obtained assuming
the general Markov model
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Example 6.26. For the case of non-stationary and non-homogeneous

sequences given in Example 6.21. Using the parameter estimates of

the observed divergence array, N , of size n = 1000, shown in Table

6.55, with log likelihood ratio equal to 0.178, we calculate the joint

distribution array F (t).

Parameters Estimates

π̂X 0.096, 0.072, 0.110

π̂Y 0.363, 0.261, 0.267

f̂0 0.160, 0.232, 0.198

ŝ-vector 0.172, 0.223, 0.662, 0.012, 0.915, 0.408

ρ̂ 1.288

height 0.091, 0.570, 0.694

Table 6.55. Estimates of parameters from simu-
lated data of length n = 1000 evolved under non-
stationary and non-homogeneous processes, where πX 6=
πY and ρ = 1. The estimates were obtained assuming
the general Markov model

From this joint distribution array we simulate 20 data sets, each of

size n = 1000. The mean and the standard deviation for the parameter

estimates of the 20 data sets are calculated and the result are shown

in Table 6.56. The log likelihood ratio mean is equal to 0.171 with

standard deviation 0.011.

Referring to the observed divergence array N of size n = 10000

given in Example 6.21 and the parameter estimates shown in Table

6.57, with log likelihood ratio equal to 0.034, and using these parameter

estimates we calculate the joint distribution array F (t). From this joint

distribution array we simulate 20 data sets each of size n = 10000. The

mean and the standard deviation for the parameter estimates of these

20 data sets have been calculated, as we can see in Table 6.58 with log

likelihood ratio mean equal to 0.033 and standard deviation 0.002.
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Parameters Average estimates and standard deviation

mean of π̂X 0.093, 0.076, 0.119

sd of π̂X 0.025, 0.020, 0.032

mean of π̂Y 0.359, 0.269, 0.265

sd of π̂Y 0.056, 0.050, 0.041

mean of f̂0 0.164, 0.226, 0.197

sd of f̂0 0.024, 0.028, 0.017

mean of ŝ-vector 0.166, 0.237, 0.660, 0.011, 0.894, 0.390

sd ŝ-vector 0.059, 0.070, 0.167, 0.012, 0.228, 0.095

mean of ρ̂ 1.468

sd of ρ̂ 0.621

mean of height 0.091, 0.606, 0.701

sd of height 0.020, 0.168, 0.118

Table 6.56. Parametric estimates of parameters from
simulated data of length n = 1000 evolved under non-
stationary and non-homogeneous processes, where πX 6=
πY and ρ = 1. The estimates were obtained assuming
the general Markov model

Parameters Estimates

π̂X 0.104, 0.103, 0.095

π̂Y 0.298, 0.317, 0.290

f̂0 0.202, 0.204, 0.197

ŝ-vector 0.186, 0.360, 0.795, 0.007, 0.938, 0.482

ρ̂ 0.957

height 0.103, 0.480, 0.833

Table 6.57. Estimates of parameters from simu-
lated data of length n = 10000 evolved under non-
stationary and non-homogeneous processes, where πX 6=
πY and ρ = 1. The estimates were obtained assuming
the general Markov model
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Parameters Average estimates and standard deviation

mean of π̂X 0.104, 0.102, 0.095

sd of π̂X 0.006, 0.005, 0.007

mean of π̂Y 0.299, 0.316, 0.290

sd of π̂Y 0.008, 0.014, 0.009

mean of f̂0 0.204, 0.207, 0.198

sd of f̂0 0.006, 0.008, 0.006

mean of ŝ-vector 0.190, 0.369, 0.801, 0.006, 0.943, 0.484

sd ŝ-vector 0.015, 0.035, 0.047, 0.005, 0.062, 0.038

mean of ρ̂ 0.944

sd of ρ̂ 0.125

mean of height 0.102, 0.478, 0.841

sd of height 0.008, 0.032, 0.063

Table 6.58. Parametric estimates of parameters from
simulated data of length n = 10000 evolved under non-
stationary and non-homogeneous processes, where πX 6=
πY and ρ = 1. The estimates were obtained assuming
the general Markov model

We can notice, as in the previous two examples, that in the case of

n = 1000 the parameter estimates are reasonable and are very accurate

when the sample size n = 1000. Also, the log likelihood ratio for the

parametric bootstrap is very close to that obtained from the simulated

data. However, increasing the sample size causes an increase in n times

the log likelihood ratios from 171 to 330.

Example 6.27. In this example we applied the parametric bootstrap

technique on the bacterial data. Using the parameter estimates of the

bacterial data, given in Table 6.59, with log likelihood ratio value equal

to 0.332, we calculate the joint distribution array F (t). From this joint

distribution array, we simulate 20 data sets each of size n = 1238 and

find the parameter estimates for each one of these data sets under the
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general model. The mean and standard deviation of these estimates

are given in Table 6.60, with log likelihood ratio mean equal to 0.158

and standard deviation 0.012.

Parameters Estimates

π̂X 0.200, 0.293, 0.328

π̂Y 0.413, 0.097, 0.149

f̂0 0.216, 0.279, 0.358

ŝ-vector 0.067, 0.135, 0.056, 0.221, 0.235, 0.087

ρ̂ 1.710

height 0.872, 0.999, 0.681

Table 6.59. Estimates of the bacterial data parame-
ters. The estimates were obtained assuming the general
Markov model

Parameters Average estimates and standard deviation

mean of π̂X 0.201, 0.294, 0.317

sd of π̂X 0.029, 0.029, 0.022

mean of π̂Y 0.419, 0.087, 0.140

sd of π̂Y 0.043, 0.015, 0.025

mean of f̂0 0.218, 0.276, 0.361

sd of f̂0 0.010, 0.014, 0.015

mean of ŝ-vector 0.074, 0.142, 0.055, 0.238, 0.242, 0.091

sd ŝ-vector 0.011, 0.018, 0.010, 0.024, 0.025, 0.017

mean of ρ̂ 1.657

sd of ρ̂ 0.189

mean of height 0.842, 0.957, 0.702

sd of height 0.051, 0.050, 0.054

Table 6.60. Parametric estimates of the bacterial data
parameters. The estimates were obtained assuming the
general Markov model
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Note that the log likelihood ratio for the parametric bootstrap,

0.158, is smaller than the log likelihood ratio for the original bacte-

rial data estimate, 0.332, this may indicate that the the model is not

sufficiently complex for this data.

Example 6.28. In this example we applied the parametric bootstrap

technique on the hominoid data under the general time-reversible Markov

model. Using the parameter estimates of the hominoid data, given in

Table 6.61, with log likelihood ratio value equal to 0.278, we calculate

the joint distribution array F (t). From this joint distribution array, we

simulate 20 data sets each of size n = 1206 and find the parameter esti-

mates for each one of these data sets under the general time-reversible

Markov model. The mean and standard deviation of these estimates

are given in Table 6.62, with log likelihood ratio mean equal to 0.151

and standard deviation 0.016.

Note that the log likelihood ratio for the general time-reversible

Markov model, 0.278, is larger than the mean of the log likelihood

ratios, 0.151, which indicates that we need more complex model to fit

this data.

Parameters Estimates

π̂ 0.274, 0.275, 0.150

ŝ-vector 0.063, 0.327, 0.041, 0.038, 0.274, 0.012

height 0.179, 0.312, 0.419, 0.660, 0.679

Table 6.61. Estimates of the hominoid data parame-
ters. The estimates were obtained assuming the general
time-reversible Markov model
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Parameters Average estimates and standard deviation

mean of π̂ 0.270, 0.277, 0.153

sd of π̂ 0.014, 0.009, 0.009

mean of ŝ-vector 0.062, 0.328, 0.043, 0.037, 0.280, 0.010

sd ŝ-vector 0.007, 0.026, 0.007, 0.015, 0.020, 0.006

mean of height 0.177, 0.313, 0.420, 0.671, 0.687

sd of height 0.022, 0.032, 0.046, 0.043, 0.042

Table 6.62. Parametric estimates of the hominoid data
parameters. The estimates were obtained assuming the
general time-reversible Markov model

6.9. Discussion

In the general case, when we have stationary models, we cannot

estimate all the parameters under the general Markov model since the

same joint distribution can be generated by a family of parameter val-

ues satisfying Equations (6.3) and (6.4) (see Examples 6.2-6.4). In the

case when stationarity and homogeneity do not hold the estimation of

simulated data sets with sample size n = 1000 seems to be quite good

and very accurate when the sample size n = 10000 (see Examples 6.12,

6.14, 6.15 and 6.17).

We obtain estimates for the real data under these models. Both the

tests of homogeneity in Chapter 4 and the distance method in Chap-

ter 5 suggested using the general Markov model for the bacterial data,

so we fit the general model to the bacterial data, which gives reason-

able estimates (see Example 6.17). For the hominoid data, the tests

of homogeneity in Chapter 4 suggest that the data is stationary and

homogeneous (see Example 6.18). The general Markov model com-

pared to the general time-reversible Markov model showed that the

general time-reversible Markov model is not sufficient to fit this data.

We showed that the likelihood in the case of the general Markov model

is smaller than in the case of the general time-reversible Markov model
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which indicates that the general time-reversible Markov model is not

sufficient to fit the data. Further we note that the hominoid data has

quite few cells where any change occurs (exactly 137 out of 47 = 16384)

and this may give poor estimation.

We note that the log likelihood ratio for sample size n = 10000

is larger than 0.1 of the log likelihood ratio for the sample size n =

1000 (see Examples 6.12, 6.14, 6.15 and 6.17). In this case there are

many cells of the observed divergence array N which are zero and so

contribute zero to the log likelihood ratio, the number of such cells is

smaller when the total sample size is n = 10000. So the log likelihood

ratio increases as we increase n by less than expected by the usual, but

inapplicable, asymptotic theory.

Both the non-parametric and parametric bootstrap showed that the

estimation method was unbiased and had relatively small errors in the

case of n = 1000 and very small error for the case when n = 10000.

However, there are real differences between these two methods, when

examining simulated data sets generated under known models. The

parametric bootstrap, as may be expected, gave log likelihood ratio

close to that obtained from the simulated data. However, the non-

parametric bootstrap gave log likelihood ratio values in general 50%

larger. In this case we conjecture that sampling from the observed

divergence array increases the number of cells which have zero obser-

vation and so the model is not as well fitted as for the original sim-

ulated data set (see Examples 6.19-6.26). For, any cell that had zero

occurrences for the data, will necessarily have zero occurrences in the

non-parametric bootstrap sample and other cells with few occurrences

will also correspond to zero occurrences in the non-parametric boot-

strap sample. Thus the number of cells in the non-parametric bootstrap

sample with zero occurrences will be larger than in the original sample.

However, for the parametric bootstrap no such bias will exist and cells

with zero occurrences in the original sample can have non-zero occur-

rences in the parametric bootstrap sample. If the model does describe
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the data then the parametric bootstrap samples will be similar to the

original sample and so estimates will be approximately unbiased.

We did not apply the bootstrap methods to the cases where we have

stationary processes, since not all the parameters are estimable as we

showed in Sections 6.6.1 and 6.6.3.

For the bacterial data the log likelihood ratio for the general model

is 0.332, for the non-parametric bootstrap the average of 20 log like-

lihood ratios is 0.420 and for the parametric bootstrap the average

of 20 log likelihood ratios is 0.158. The fact that the log likelihood

ratio for the parametric bootstrap is much smaller than for the real

data indicates that the model is not sufficiently complex for this data.

We note that for simulated data these two log likelihood ratios are

approximately the same. The inflation of the log likelihood for the

non-parametric bootstrap, which occurs for the simulated data, occurs

here also for the real data.

For the hominoid data the log likelihood ratio for the general time-

reversible Markov model is 0.278, for the non-parametric bootstrap the

average of 20 log likelihood ratios is 0.332 and for the parametric boot-

strap the average of 20 log likelihood ratios is 0.151. The fact that the

log likelihood ratio for the parametric bootstrap is much smaller than

for the real data indicates that the model is not sufficiently complex

for this data.

The methods proposed here represent a step toward more realistic

models than those in common use, where stationarity, homogeneity

and reversibility are assumed. These method are successful for data

generated from known models and hence they provide a method of

testing such models. This is clear by looking at the bacterial data where

we get improved fit, but clearly the model proposed is not sufficient to

fit this data. A number of generalizations of these methods is possible

but this will involve more parameters than for those involved here. The

method could be extended to cases where each edge had different rate

matrix and different stationary distribution and to the case where the
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rate matrices did not have the property of reversible processes. Each

of these generalizations, however, involves an increase in the number

of parameters, thus increasing numerical difficulties. In addition other

techniques need to be developed to deal with rate heterogeneity over

sites.
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Appendix (A)

The Symmetric Matrix S

Description:

This function calculates the symmetric matrix S.

Usage:

Smatrix(s, pix)

Arguments:

s: a vector of variables containing the six free parameters in the S

matrix.

pix: a vector giving the stationary probabilities for the four nucleotides

A, C, G and T.

Details:

This function calculates the matrix S, which we used to calculate the

rate matrix R.

See Chapter 2 Section 2.1.1 for more details.

Value:

A 4 × 4 symmetric matrix.

See Also:

Pt, Fmatrix, gn ,gn2.
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Example:

s=c(.1,.2,.3,.4,.5,.6)

pi=c(.1,.1,.1,.7)

Smatrix(s, pi)

[,1] [,2] [,3] [,4]

[1,] -2.4 0.1 0.2 0.3

[2,] 0.1 -4.0 0.4 0.5

[3,] 0.2 0.4 -4.8 0.6

[4,] 0.3 0.5 0.6 -0.2

173



The Transition Probability Function

Description:

This function calculates the transition probability function for a pro-

cess during a period of time.

Usage:

Pt(S, Pi, t)

Arguments:

S: a 4 × 4 symmetric matrix.

Pi: a diagonal matrix containing the stationary distribution for the

process.

t: a period of time describing the length of the process.

Details:

This function needs the 4 × 4 symmetric matrix S, Π and the process

length t in order to find the transition probability over that process,

where Pij(t) is the probability that the ith nucleotide changes to the

jth nucleotide during the period of t.

See Chapter 2 Section 2.1 for more details.

Value:

A 4 × 4 matrix containing the transition probabilities for a process.

See Also:

Smatrix.

Example:

Pi=diag(c(.1,.1,.1,.7)), S=Smatrix(c(.3,.3,.3,.3,.3,.3),diag(Pi)), t=1

Pt(S, Pi, t)

[,1] [,2] [,3] [,4]

[1,] 0.76673640 0.02591818 0.02591818 0.1814272

[2,] 0.02591818 0.76673640 0.02591818 0.1814272

[3,] 0.02591818 0.02591818 0.76673640 0.1814272

[4,] 0.02591818 0.02591818 0.02591818 0.9222455
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Joint Distribution for Two Matched Sequences

Description:

This function calculates the joint distribution function for two edge

tree.

Usage:

Fmatrix(t1, t2, f0, Sx, Sy, Pix, Piy)

Arguments:

t1: represents the length from the tree root to the first node.

t2: represents the length from the tree root to the second node.

f0: the initial distribution for the four nucleotides.

Sx: a 4 × 4 symmetric matrix related to the first edge.

Sy: a 4 × 4 symmetric matrix related to the second edge.

Pix: a diagonal matrix for the stationary distribution of the first edge.

Piy: a diagonal matrix for the stationary distribution of the second

edge.

Details:

This function calculates the joint distribution function for a two edge

tree with different edge lengths, stationary distributions and different

S matrices.

See Chapter 2 Example 2.1 for more details.

Value:

A 4 × 4 matrix containing the joint edges.

See Also:

gn, Smatrix.
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Example:

f0=c(.25,.25,.25,.25)

Pi1=diag(c(.2,.2,.2,.4))

Pi2=diag(c(.1,.1,.1,.7))

S1=Smatrix(c(.2,.2,.2,.2,.2,.2),diag(Pi1))

S2=Smatrix(c(.3,.3,.3,.3,.3,.3),diag(Pi2))

Fmatrix(1, .5, f0, S1, S2, Pi1, Pi2)

[,1] [,2] [,3] [,4]

[1,] 0.18732907 0.01115705 0.01115705 0.03129337

[2,] 0.01115705 0.18732907 0.01115705 0.03129337

[3,] 0.01115705 0.01115705 0.18732907 0.03129337

[4,] 0.01946303 0.01946303 0.01946303 0.21880130
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Joint Distribution for K Matched Sequences

Description:

This function calculates the joint distribution array for K matched

sequences.

Usage:

gn(theta, merge2)

Arguments:

theta: a vector of variables containing the following parameters in this

order:

1. the first three parameters from πX vector,

2. the first three parameters from πY vector,

3. the first three parameters from f0 vector,

4. the six off-diagonal free parameters in the S matrix,

5. a scalar ρ,

6. a vector of lengths containing K − 2 values.

merge2: a (K − 1) × 2 matrix describing the tree topology.

Details:

This function calculates the joint distribution array for a tree with K

matched sequences. it uses the following functions: Pt, Fmatrix and

Smatrix.

See Chapter 2 Section 2.6.2 for more details.

Value:

A 4K array containing the joint distribution for the K edges.

See Also:

Fmatrix, Pt, Smatrix.
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Example:

merge2=matrix(c(-1,-4,-3,2,-2,-5,1,3), 4, 2)

theta=c(rep(.25,3), rep(.25,3),rep(.25,3), c(.2,.35,.79,.01,.93,.47),

3,.1,.5,.8)

gn(theta, merge2)

Note: This will give 45 array.
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Joint Distribution for K Matched Sequences (2)

Description:

This function calculates the joint distribution array for K matched

sequences.

Usage:

gn2(theta, merge2)

Arguments:

theta: is a vector of variables containing the following parameters in

this order:

1. the first three parameters from πX vector,

2. the first three parameters from πY vector,

3. the first three parameters from f0 vector,

4. the six off-diagonal free parameters in the S matrix,

5. a (K−1)×2 matrix contains the rate at each edge of the K matched

sequences.

merge2: a (K − 1) × 2 matrix describing the tree topology.

Details:

This function calculates the joint distribution array for a tree with K

matched sequences. it uses the following functions: Pt, Fmatrix and

Smatrix.

See Chapter 2 Section 2.6.3 for more details.

Value:

A 4K array containing the joint distribution for the K edges.

See Also:

Fmatrix, Pt, Smatrix.
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Example:

merge2=matrix(c(-1,-4,-3,2,-2,-5,1,3), 4, 2)

rho2=matrix(c(.3,.5,.3,.2,.3,.5,.8,2.7),4,2)

theta=c(rep(.25,3), rep(.25,3),rep(.25,3), c(.2,.35,.79,.01,.93,.47),rho2)

gn2(theta, merge2)

Note: This will give 45 array.
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Generating Samples from a Multinomial
Distribution

Description:

Generating random DNA samples from a multinomial distribution.

Usage:

Ntml(n, Ft)

Arguments:

n: sample size

Ft: a 4K array, containing the joint distribution probabilities for K

matched sequences.

Details:

This function generates a 4K DNA array from a multinomial distribu-

tion. It depends on the sample size we need to generate and the 4K

joint distribution array of K matched sequences.

See Chapter 3 Section 3.2 for more details.

Value:

A 4K observed divergence array.

See Also:

simemb, simapp, gn3sim, gn, gn2, Fmatrix.

Example:

merge2=matrix(c(-1,-4,-3,2,-2,-5,1,3), 4, 2)

theta=c(rep(.25,3), rep(.25,3), rep(.25,3), c(.2,.35,.79,.01,.93,.47),

3,.1,.5,.8)

F1=gn(theta,merge2)

Ntml(1000, F1)

Note: This will give a 45 observed divergence array.
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Generating Random DNA Samples using an
Embedded Markov Chain

Description:

This function generates random DNA samples using embedded chain.

Usage:

simemb(theta, seq Length, merge2)

Arguments:

theta: is a vector of variables containing the following parameters in

this order:

1. the first three parameters from πX vector,

2. the first three parameters from πY vector,

3. the first three parameters from f0 vector,

4. the six off-diagonal free parameters in the S matrix,

5. a scalar ρ,

6. a vector of lengths containing K − 2 values.

merge2: a (K − 1) × 2 matrix describing the tree topology.

seqlength: the length of sequences we need to generate.

Details:

This function generates 4K DNA array using embedded Markov chain.

It depends on a set of variables theta, the sequence length and a merge

matrix describing the tree topology.

See Chapter 3 Section 3.3 for more details.

Value:

A n × K observed divergence matrix.

See Also:

Ntml, simapp, gn3sim, gn, gn2, Fmatrix.
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Example:

theta=(c(rep(.25,3), rep(.25,3), rep(.25,3), c(.2,.35,.79,.01,.93,.47),

3,.1,.5,.8))

n=1000

merge2=matrix(c(-1,-4,-3,2,-2,-5,1,3), 4, 2)

simemb(theta, n, merge2)

Note: This will give 45 observed divergence array.
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Generating Random DNA Samples using the
Rambaut and Grassly Method

Description:

This function generates random DNA samples using Rambaut and

Grassly method.

Usage:

gn3sim(theta, seq Length, merge2)

Arguments:

theta: a vector of variables containing the following parameters in this

order:

1. the first three parameters from πX vector,

2. the first three parameters from πY vector,

3. the first three parameters from f0 vector,

4. the six off-diagonal free parameters in the S matrix,

5. a scalar ρ,

6. a vector of lengths containing K − 2 values.

merge2: a (K − 1) × 2 matrix describing the tree topology.

seqlength: the length of sequences we need to generate.

Details:

This function generates a 4K DNA array using Rambaut and Grassly,

(1997) method. It depends on a set of variables theta, the sequence

length and a merge matrix describing the tree topology.

See Chapter 3 Section 3.3.1 for more details.

divergence array.

Value:

A n × K observed divergence matrix.

See Also:

Ntml, simapp, simemb, gn, gn2, Fmatrix.
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Example:

theta=(c(rep(.25,3), rep(.25,3), rep(.25,3), c(.2,.35,.79,.01,.93,.47),

3,.1,.5,.8))

n=1000

merge2=matrix(c(-1,-4,-3,2,-2,-5,1,3), 4, 2)

gn3sim(theta, n, merge2)

Note: This will give 45 observed divergence array.
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Generating Random DNA Samples using an
Approximation Method

Description:

This function generates random DNA samples using an approximation

method.

Usage:

simapp(theta, seq Length, merge2)

Arguments:

theta: a vector of variables containing the following parameters in this

order:

1. the first three parameters from πX vector,

2. the first three parameters from πY vector,

3. the first three parameters from f0 vector,

4. the six off-diagonal free parameters in the S matrix,

5. a scalar ρ,

6. a vector of lengths containing K − 2 values.

merge2: a (K − 1) × 2 matrix describing the tree topology.

seqlength: the length of sequences we need to generate.

Details:

This function generates a 4K DNA array using an approximation method.

It depends on a set of variables theta, the sequence length and a merge

matrix describing the tree topology.

See Chapter 3 Section 3.4 for more details.

Value:

A n × K observed divergence matrix.

See Also:

Ntml, simemb, gn3sim, gn, gn2, Fmatrix.
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Example:

theta=(c(rep(.25,3), rep(.25,3), rep(.25,3), c(.2,.2,.2,.2,.2,.2),

3,.1,.5,.8))

n=1000

merge2=matrix(c(-1,-4,-3,2,-2,-5,1,3), 4, 2)

simapp(theta, n, merge2)

Note: This will give 45 observed divergence array.
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Transforming 4K Array to m × K Matrix

Description:

This function transfers any array to a matrix.

Usage:

artomat(Ft)

Arguments:

Ft: a 4K array, containing the observed divergent frequencies for K

matched sequences.

Details:

This function transfers any 4K array containing the observed divergent

frequencies of K matched sequences to an m × K matrix, where m is

the sum of the frequencies in the 4K observed divergence array.

See Chapter 3, Example 3.1 for more details.

Value:

An m × K matrix, where m is the sum of the frequencies in the 4K

divergence

See Also:

gn2, gn, Fmatrix.

Example:

F1=gn(c(rep(.25,3), rep(.25,3), rep(.25,3), c(.2,.35,.79,.01,.93,.47),

3,.1,.5,.8))

N1=Ntml(1000,F1)

artomat(N1)

Note: This will give 1000 × 5 matrix.
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Paralinear Distances

Description:

This function calculates the paralinear distance between K matched

DNA sequences.

Usage:

Distance(F4)

Arguments:

F4: a 4K array containing the joint distribution array F (t) or the ob-

served array N .

Details:

This function calculates the paralinear distances between K matched

DNA sequences, depending on the joint distribution array for these K

sequences or on the observed divergence array N .

See Chapter 5 Section 5.2 for more details.

Value:

A K × K symmetric matrix distances between the K sequences.

See Also:

gn2, gn, Fmatrix, Ntml.

Example:

merge2=matrix(c(-1,-4,-3,2,-2,-5,1,3), 4, 2)

theta=c(rep(.25,3), rep(.25,3), rep(.25,3), c(.2,.35,.79,.01,.93,.47), 3,.1,.5,.8)

F1=gn(theta,merge2)

Distance(F1)
[,1] [,2] [,3] [,4] [,5]

[1,] 0.000 0.825 6.6 5.500 5.500

[2,] 0.825 0.000 6.6 5.500 5.500

[3,] 6.600 6.600 0.0 5.500 5.500

[4,] 5.500 5.500 5.5 0.000 1.375

[5,] 5.500 5.500 5.5 1.375 0.000
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Test for Symmetry of Matched DNA Sequences

Description:

This function tests for symmetry between all the pairs of K matched

DNA sequences.

Usage:

TEST2(Nt)

Arguments:

Nt: a 4K array containing the observed divergence array N .

Details:

This function calculates Bowker’s test for symmetry, Stuart’s test for

marginal symmetry and the test for internal symmetry. It depends on

the 4K observed divergence array N .

See Chapter 4 Sections 4.2, 4.3 and 4.4, for more details.

Value:

A list of three lower triangle matrices:

1. the lower triangle of the matrix contains (K − 1) × (K − 1) values

shows Bowker’s test between all the possible pairs of the K sequences.

2. the lower triangle of the matrix contains (K − 1) × (K − 1) values

shows Stuart’s test between all the possible pairs of the K sequences.

3. the lower triangle of the matrix contains (K − 1) × (K − 1) val-

ues shows the internal test between all the possible pairs of the K

sequences.

See Also:

Ntml, simapp, simemb, TEST3.
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Example:

merge2=matrix(c(-1,-4,-3,2,-2,-5,1,3), 4, 2)

theta=c(rep(.25,3), rep(.25,3), rep(.25,3), c(.2,.35,.79,.01,.93,.47),

3,.1,.5,.8)

F1=gn(theta,merge2)

N1=Ntml(1000,F1)

TEST2(N1)

$Bowker.test

1 2 3 4

2 0.5757

3 0.1403 0.7638

4 0.3291 0.7729 0.7252

5 0.8371 0.9933 0.8939 0.4990

$Stuart.test

1 2 3 4

2 0.4860

3 0.3978 0.7549

4 0.2637 0.4012 0.7752

5 0.7695 0.9763 0.9110 0.2742

$Internal.test

1 2 3 4

2 0.5101

3 0.0825 0.5402

4 0.4022 0.9520 0.4694

5 0.6507 0.9088 0.6306 0.6888
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Overall Test for Marginal Symmetry

Description:

This function tests for symmetry between K matched DNA sequences.

Usage:

TEST3(Nt)

Arguments:

Nt: a 4K array containing the observed divergence array N .

Details:

This function calculates overall test for marginal symmetry. It depends

on the 4K observed divergence array N .

See Chapter 4 Sections 4.5, for more details.

Value:

A single value gives the overall test for marginal symmetry between K

matched sequences.

See Also:

Ntml, simapp, simemb, TEST2.

Example:

merge2=matrix(c(-1,-4,-3,2,-2,-5,1,3), 4, 2)

theta=c(rep(.25,3), rep(.25,3), rep(.25,3), c(.2,.35,.79,.01,.93,.47),

3,.1,.5,.8)

F1=gn(theta,merge2)

N1=Ntml(1000,F1)

TEST3(N1)
[1] 9.217612
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Negative Log Likelihood Ratio

Description:

This function calculates log likelihood ratio value.

Usage:

likelihood(thetast,fobs,merge2)

Arguments:

thetast: a starting values for the parameter we need to estimate.

fobs: the 4K joint distribution array for K edge tree.

merge2: a (K − 1) × 2 matrix describing the tree topology.

Details:

This function calculates the log likelihood ratio value for F (t). It needs

a vector of starting values for the parameters estimate, 4K observed

divergence array and merge matrix describing the tree topology.

See Chapter 6 Sections 6.2, for more details.

Value:

The value of the log likelihood ratio.

See Also:

gn, gn2.

Example:

merge2=matrix(c(-1,-4,-3,2,-2,-5,1,3), 4, 2)

theta=c(rep(.25,3), rep(.25,3), rep(.25,3), c(.2,.35,.79,.01,.93,.47),

3,.1,.5,.8)

F1=gn(theta,merge2)

likelihood(theta,F1,merge2)
[1] 0.00
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Appendix (B)

The Symmetric Matrix S - Program

Smatrix<-function(s, pix)

{

Pi <- diag(pix)

Sd <- matrix(0, 4, 4)

Sd[1, 2:4] <- s[1:3]

Sd[2, 3:4] <- s[4:5]

Sd[3, 4] <- s[6]

for(i in 1:4) {

Sd[, i] <- Sd[i, ]

Sd[i, i] <- ( - sum((Sd[i, - i]) %*% (diag(Pi)[

- i])))/diag(Pi)[i]

}

Sd

}
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The Transition Probability Function - Program

Pt<-function(S, Pi, t)

{

ax <- matrix(0, nrow = 4, ncol = 4)

fx <- matrix(0, nrow = 4, ncol = 4)

Rx <- S %*% Pi

a1 <- eigen((sqrt(Pi)) %*% Rx %*% (solve(sqrt(Pi))),

symmetric = T)$values

a2 <- eigen((sqrt(Pi)) %*% Rx %*% (solve(sqrt(Pi))),

symmetric = T)$vectors

for(j in 1:4) {

ax <- exp(a1[j] * (t)) * a2[, j] %*% t(a2[, j])

fx <- fx + ax

}

ptx <- (solve(sqrt(Pi))) %*% fx %*% (sqrt(Pi))

ptx

}
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Joint Distribution for Matched Sequences -
Program

Fmatrix<- function(t1, t2, f0, Sx2, Sy2, Pix, Piy)

{

F0 <- diag(f0)

F1 <- t(Pt(Sx2, Pix, t1)) %*% F0 %*% Pt(Sy2, Piy, t2)

F1

}

196



Joint Distribution for K Matched Sequences -
Program

gn<-function(theta, merge2)

{

pix1 <- theta[1:3]

piy1 <- theta[4:6]

f00 <- theta[7:9]

ss <- theta[10:15]

rho <- theta[16]

pix2 <- c(pix1, 1 - sum(pix1))

Pix2 <- diag(pix2)

piy2 <- c(piy1, 1 - sum(piy1))

Piy2 <- diag(piy2)

f0 <- c(f00, 1 - sum(f00))

height <- theta[17:length(theta)]

if(sum(abs(pix2)) > 1) {

return(0)

}

if(sum(abs(piy2)) > 1) {

return(0)

}

if(sum(abs(f0)) > 1) {

return(0)

}

if(rho <= 0) {

return(0)

}

if(any(theta <= 0)) {

return(0)

}

Sx1 <- Smatrix(ss, pix2)

Sy1 <- rho * Smatrix(ss, piy2)

k <- dim(merge2)[1]

if(k == 1) {

F1 <- Fmatrix(theta[17], theta[17], f0, Sx1, Sy1,

Pix2, Piy2)

return(F1)

}
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else {

h <- c(0, height, 1)

me <- merge2[k, ]

f1 <- f0

m <- me

t0 <- h[k + 1]

cc <- 0

if(merge2[, 1][k] > 0) {

cc <- merge2[, 1][k]

v <- matrix(0, k, 1)

v[1] <- merge2[k, 1]

cur <- 0

max <- 1

while(cur < max) {

cur <- cur + 1

for(i in c(1, 2)) {

if(merge2[(v[cur]), i] >

0) {

max <- max + 1

v[max] <- merge2[

(v[cur]),

i]

}

}

cc <- matrix(0, max, 1)

for(i in 1:max) {

cc[i] <- v[i]

}

}

}

for(i in 1:k) {

zzz <- 0

iii <- k - i + 1

if(iii == k) {

xx <- 0

if(any(merge2[k, 1] == cc)) {

pix <- pix2

Pix <- Pix2

piy <- piy2

Piy <- Piy2

Sx2 <- Sx1

Sy2 <- Sy1
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}

else {

piy <- pix2

Piy <- Pix2

pix <- piy2

Pix <- Piy2

Sy2 <- Sx1

Sx2 <- Sy1

}

}

else {

if(any(iii == cc)) {

pix <- pix2

Pix <- Pix2

piy <- pix2

Piy <- Pix2

Sx2 <- Sx1

Sy2 <- Sx1

}

else {

piy <- piy2

Piy <- Piy2

pix <- piy2

Pix <- Piy2

Sx2 <- Sy1

Sy2 <- Sy1

}

}

m <- rev(sort(me))

mm <- merge2[m[1], ]

if(me[1] > 0) {

t1 <- t0 - h[me[1] + 1]

}

else {

t1 <- t0

}

if(me[2] > 0) {

t2 <- t0 - h[me[2] + 1]

}

else {

t2 <- t0

}
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if(t1 < 0 || t1 > 1) {

return(0)

}

if(t2 < 0 || t2 > 1) {

return(0)

}

hp <- rev(order(me))

for(j in 1:(4^(i - 1))) {

if(j == 1) {

F1 <- Fmatrix(t1, t2, f1[

1:4], Sx2, Sy2,

Pix, Piy)

}

else {

F1 <- Fmatrix(t1, t2, f1[

(4 * (j - 1) + 1):

(4 * (j - 1) + 4)],

Sx2, Sy2, Pix, Piy)

}

if(j == 1) {

f <- c(as.vector(F1), f1[

-1:-4])

}

else {

f <- c(f[1:(4^2 * (j - 1))],

as.vector(F1), f1[

-1: - (4 * j)])

}

}

f12 <- array(f, c(rep(4, i + 1)))

f112 <- aperm(f12, c(hp))

f1 <- as.vector(f112)

if(m[1] > 0) {

t0 <- h[m[1] + 1]

}

else {

return(f112)

}

me <- c(mm, m[-1])

}

}

}
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Joint Distribution for K Matched Sequences (2) -
Program

gn2<-function(theta, merge2)

{

pix1 <- theta[1:3]

piy1 <- theta[4:6]

f00 <- theta[7:9]

ss <- theta[10:15]

rho1 <- matrix(theta[16:(15 + length(merge2))], , 2)

pix2 <- c(pix1, 1 - sum(pix1))

Pix2 <- diag(pix2)

piy2 <- c(piy1, 1 - sum(piy1))

Piy2 <- diag(piy2)

f0 <- c(f00, 1 - sum(f00))

if(sum(abs(pix2)) > 1) {

return(0)

}

if(sum(abs(piy2)) > 1) {

return(0)

}

if(sum(abs(f0)) > 1) {

return(0)

}

Sx1 <- Smatrix(ss, pix2)

Sy1 <- Smatrix(ss, piy2)

k <- dim(merge2)[1]

if(k == 1) {

F1 <- Fmatrix(theta[16], theta[17], f0, (rho1[1,

1] * Sx1), (rho1[1, 2] * Sy1), Pix2, Piy2)

return(F1)

}

else {

merge <- matrix(0, k, 2)

for(i in 1:k) {

merge[i, ] <- rev(sort(merge2[i, ]))

}

me <- merge[k, ]

f1 <- f0
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m <- me

cc <- 0

if(merge2[, 1][k] > 0) {

cc <- merge[, 1][k]

v <- matrix(0, k, 1)

v[1] <- merge2[k, 1]

cur <- 0

max <- 1

while(cur < max) {

cur <- cur + 1

for(i in c(1, 2)) {

if(merge2[(v[cur]), i] >

0) {

max <- max + 1

v[max] <- merge2[

(v[cur]),

i]

}

}

cc <- matrix(0, max, 1)

for(i in 1:max) {

cc[i] <- v[i]

}

}

}

for(i in 1:k) {

iii <- k - i + 1

if(iii == k) {

if(any(merge2[k, 1] == cc)) {

pix <- pix2

Pix <- Pix2

piy <- piy2

Piy <- Piy2

Sx2 <- Sx1

Sy2 <- Sy1

}

else {

piy <- pix2

Piy <- Pix2

pix <- piy2

Pix <- Piy2

Sy2 <- Sx1
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Sx2 <- Sy1

}

}

else {

if(any(iii == cc)) {

pix <- pix2

Pix <- Pix2

piy <- pix2

Piy <- Pix2

Sx2 <- Sx1

Sy2 <- Sx1

}

else {

piy <- piy2

Piy <- Piy2

pix <- piy2

Pix <- Piy2

Sx2 <- Sy1

Sy2 <- Sy1

}

}

m <- rev(sort(me))

mm <- merge[m[1], ]

t1 <- rho1[iii, ][1]

t2 <- rho1[iii, ][2]

hp <- rev(order(me))

for(j in 1:(4^(i - 1))) {

if(j == 1) {

F1 <- Fmatrix(t1, t2, f1[

1:4], Sx2, Sy2,

Pix, Piy)

}

else {

F1 <- Fmatrix(t1, t2, f1[

(4 * (j - 1) + 1):

(4 * (j - 1) + 4)],

Sx2, Sy2, Pix, Piy)

}

if(j == 1) {

f <- c(as.vector(F1), f1[

-1:-4])

}
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else {

f <- c(f[1:(4^2 * (j - 1))],

as.vector(F1), f1[

-1: - (4 * j)])

}

}

f12 <- array(f, c(rep(4, i + 1)))

f112 <- aperm(f12, c(hp))

f1 <- as.vector(f112)

if(m[1] > 0)

t0 <- 9999

else {

return(f112)

}

me <- c(mm, m[-1])

}

}

}
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Generating Samples from a Multinomial
Distribution - Program

Ntml<-function(N, Ft) {

s1 <- length(dim(Ft))

s2 <- length(Ft)

x <- array(0, c(rep(4, s1)))

x1 <- 0

ft1 <- 0

x[1] <- rbinom(1, N, Ft[1])

for(i in 2:(s2 - 1)) {

x1 <- x1 + x[i - 1]

ft1 <- ft1 + Ft[i - 1]

x[i] <- rbinom(1, (N - x1), (Ft[i])/(1 - ft1))

}

x1 <- x1 + x[s2 - 1]

ft1 <- ft1 + Ft[s2 - 1]

x[s2] <- N - x1

x

}
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Generating Random DNA Samples Using an
Embedded Markov Chain - Program

simemb<-function(theta, seqLength, merge2)

{

pix1 <- theta[1:3]

piy1 <- theta[4:6]

f00 <- theta[7:9]

ss <- theta[10:15]

rho <- theta[16]

pix2 <- c(pix1, 1 - sum(pix1))

Pix2 <- diag(pix2)

piy2 <- c(piy1, 1 - sum(piy1))

Piy2 <- diag(piy2)

f0 <- c(f00, 1 - sum(f00))

Sx1 <- Smatrix(ss, pix2)

Sy1 <- rho * Smatrix(ss, piy2)

merge <- merge2

k <- dim(merge)[1]

height2 <- c(theta[17:length(theta)], 1)

height <- height2

h <- c(0, height)

me <- merge[k, ]

m <- me

t0 <- h[k + 1]

cc <- 0

if(merge[, 1][k] > 0) {

cc <- merge[, 1][k]

v <- matrix(0, k, 1)

v[1] <- merge[k, 1]

cur <- 0

max <- 1

while(cur < max) {

cur <- cur + 1

for(i in c(1, 2)) {

if(merge[(v[cur]), i] > 0) {

max <- max + 1

v[max] <- merge[(v[cur]),

i]
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}

}

cc <- matrix(0, max, 1)

for(i in 1:max) {

cc[i] <- v[i]

}

}

}

seqr <- matrix(0, seqLength, k - 1)

fs <- matrix(0, seqLength, k + 1)

seq1 <- cbind(sample(1:4, seqLength, prob = f0, replace = T)

)

for(i in 1:k) {

iii <- k - i + 1

if(iii == k) {

xx <- 0

if(any(merge[k, 1] == cc)) {

pix <- pix2

Pix <- Pix2

piy <- piy2

Piy <- Piy2

Sx2 <- Sx1

Sy2 <- Sy1

}

else {

piy <- pix2

Piy <- Pix2

pix <- piy2

Pix <- Piy2

Sy2 <- Sx1

Sx2 <- Sy1

}

}

else {

if(any(iii == cc)) {

pix <- pix2

Pix <- Pix2

piy <- pix2

Piy <- Pix2

Sx2 <- Sx1

Sy2 <- Sx1

}
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else {

piy <- piy2

Piy <- Piy2

pix <- piy2

Pix <- Piy2

Sx2 <- Sy1

Sy2 <- Sy1

}

}

m <- rev(sort(me))

mm <- merge2[m[1], ]

if(me[1] > 0) {

t1 <- t0 - h[me[1] + 1]

}

else {

t1 <- t0

}

if(me[2] > 0) {

t2 <- t0 - h[me[2] + 1]

}

else {

t2 <- t0

}

if(t1 < 0 || t1 > 1) {

return(0)

}

if(t2 < 0 || t2 > 1) {

return(0)

}

hp <- rev(order(me))

if(i != 1) {

seq1 <- seqr[, (k - i + 1)]

}

seq2 <- genseq4(t1, t2, seq1, Sx2, Sy2, Pix, Piy)

if(me[1] < 0) {

fs[, (abs(me[1]))] <- seq2[, 1]

}

else {

seqr[, (abs(me[1]))] <- seq2[, 1]

}

if(me[2] < 0) {

fs[, (abs(me[2]))] <- seq2[, 2]
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}

else {

seqr[, (abs(me[2]))] <- seq2[, 2]

}

if(m[1] > 0)

t0 <- h[m[1] + 1]

else {

return(fs)

}

me <- c(mm, m[-1])

}

}

genseq4 <- function(t1, t2, seq, Sx2, Sy2, Pix, Piy) {

seqx <- matrix(0, nc = 1, nr = length(seq))

seqy <- matrix(0, nc = 1, nr = length(seq))

Rx <- Sx2 %*% Pix

Ry <- Sy2 %*% Piy

for(j in 1:(length(seq))) {

Tx <- matrix(0, 1, 10)

WTx <- matrix(0, 1, 10)

m <- matrix(0, 1, 10)

m[1] <- seq[j]

WTx[1] <- rexp(1, ( - Rx[m[1], m[1]]))

xx <- m[1]

for(i in 2:10) {

Tx[i] <- Tx[i - 1] + WTx[i - 1]

if(Tx[i] >= t1)

break

rrx <- Rx[m[i - 1], ]/( - Rx[m[i - 1], m[i - 1]])

rrx[m[i - 1]] <- 0

m[i] <- sample(1:4, 1, rrx, replace = T)

WTx[i] <- rexp(1, ( - Rx[m[i], m[i]]))

xx <- m[i]

}

seqx[j] <- xx

}

for(k in 1:(length(seq))) {

Ty <- matrix(0, 1, 10)

WTy <- matrix(0, 1, 10)

n <- matrix(0, 1, 10)

n[1] <- seq[k]
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WTy[1] <- rexp(1, ( - Rx[n[1], n[1]]))

yy <- n[1]

for(i in 2:10) {

Ty[i] <- Ty[i - 1] + WTy[i - 1]

if(Ty[i] >= t2)

break

rry <- Ry[n[i - 1], ]/( - Ry[n[i - 1], n[i - 1]])

rry[n[i - 1]] <- 0

n[i] <- sample(1:4, 1, rry, replace = T)

WTy[i] <- rexp(1, ( - Ry[n[i], n[i]]))

yy <- n[i]

}

seqy[k] <- yy

}

sequ <- cbind(seqx, seqy)

return(sequ)

}
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Generating Random DNA Samples using the
Rambaut and Grassly Method - Program

gn3sim<-function(theta, seqLength, merge2) {

pix1 <- theta[1:3]

piy1 <- theta[4:6]

f00 <- theta[7:9]

ss <- theta[10:15]

rho <- theta[16]

pix2 <- c(pix1, 1 - sum(pix1))

Pix2 <- diag(pix2)

piy2 <- c(piy1, 1 - sum(piy1))

Piy2 <- diag(piy2)

f0 <- c(f00, 1 - sum(f00))

Sx1 <- Smatrix(ss, pix2)

Sy1 <- rho * Smatrix(ss, piy2)

height <- c(theta[17:length(theta)], 1)

merge <- merge2

k <- dim(merge)[1]

h <- c(0, height)

me <- merge[k, ]

m <- me

t0 <- h[k + 1]

cc <- 0

if(merge[, 1][k] > 0) {

cc <- merge[, 1][k]

v <- matrix(0, k, 1)

v[1] <- merge[k, 1]

cur <- 0

max <- 1

while(cur < max) {

cur <- cur + 1

for(i in c(1, 2)) {

if(merge[(v[cur]), i] > 0) {

max <- max + 1

v[max] <- merge[(v[cur]), i]

}

}

cc <- matrix(0, max, 1)
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for(i in 1:max) {

cc[i] <- v[i]

}

}

}

seqr <- matrix(0, seqLength, k - 1)

fs <- matrix(0, seqLength, k + 1)

seq1 <- cbind(sample(1:4, seqLength, prob = f0, replace = T))

for(i in 1:k) {

iii <- k - i + 1

if(iii == k) {

xx <- 0

if(any(merge[k, 1] == cc)) {

pix <- pix2

Pix <- Pix2

piy <- piy2

Piy <- Piy2

Sx2 <- Sx1

Sy2 <- Sy1

}

else {

piy <- pix2

Piy <- Pix2

pix <- piy2

Pix <- Piy2

Sy2 <- Sx1

Sx2 <- Sy1

}

}

else {

if(any(iii == cc)) {

pix <- pix2

Pix <- Pix2

piy <- pix2

Piy <- Pix2

Sx2 <- Sx1

Sy2 <- Sx1

}

else {

piy <- piy2

Piy <- Piy2

pix <- piy2
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Pix <- Piy2

Sx2 <- Sy1

Sy2 <- Sy1

}

}

m <- rev(sort(me))

mm <- merge[m[1], ]

if(me[1] > 0) {

t1 <- t0 - h[me[1] + 1]

}

else {

t1 <- t0

}

if(me[2] > 0) {

t2 <- t0 - h[me[2] + 1]

}

else {

t2 <- t0

}

if(t1 < 0 || t1 > 1) {

return(0)

}

if(t2 < 0 || t2 > 1) {

return(0)

}

hp <- rev(order(me))

if(i != 1) {

seq1 <- seqr[, (k - i + 1)]

}

seq2 <- genseq2(t1, t2, seq1, Sx2, Sy2, Pix, Piy)

if(me[1] < 0) {

fs[, (abs(me[1]))] <- seq2[, 1]

}

else {

seqr[, (abs(me[1]))] <- seq2[, 1]

}

if(me[2] < 0) {

fs[, (abs(me[2]))] <- seq2[, 2]

}

else {

seqr[, (abs(me[2]))] <- seq2[, 2]

}
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if(m[1] > 0)

t0 <- h[m[1] + 1]

else {

return(fs)

}

me <- c(mm, m[-1])

}

}

genseq2 <- function(t1, t2, seq, Sx2, Sy2, Pix, Piy) {

sequ <- matrix(0, nc = 2, nr = length(seq))

p1 <- Pt(Sx2, Pix, t1)

p2 <- Pt(Sy2, Piy, t2)

for(i in 1:length(seq)) {

sequ[i, 1] <- sample(1:4, 1, prob = p1[seq[i], ])

sequ[i, 2] <- sample(1:4, 1, prob = p2[seq[i], ])

}

return(sequ)

}
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Generating Random DNA Samples using an
Approximation Method - Program

simapp<-function(theta, seqLength, merge1)

{

pix1 <- theta[1:3]

piy1 <- theta[4:6]

f00 <- theta[7:9]

ss <- theta[10:15]

rho <- theta[16]

pix2 <- c(pix1, 1 - sum(pix1))

Pix2 <- diag(pix2)

piy2 <- c(piy1, 1 - sum(piy1))

Piy2 <- diag(piy2)

f0 <- c(f00, 1 - sum(f00))

Sx1 <- Smatrix(ss, pix2)

Sy1 <- rho * Smatrix(ss, piy2)

merge2 <- merge1

k <- dim(merge2)[1]

height2 <- c(theta[17:length(theta)], 1)

height <- height2

h <- c(0, height)

me <- merge2[k, ]

m <- me

t0 <- h[k + 1]

cc <- 0

if(merge2[, 1][k] > 0) {

cc <- merge2[, 1][k]

v <- matrix(0, k, 1)

v[1] <- merge2[k, 1]

cur <- 0

max <- 1

while(cur < max) {

cur <- cur + 1

for(i in c(1, 2)) {

if(merge2[(v[cur]), i] > 0) {

max <- max + 1

v[max] <- merge2[(v[cur]),

i]
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}

}

cc <- matrix(0, max, 1)

for(i in 1:max) {

cc[i] <- v[i]

}

}

}

seqr <- matrix(0, seqLength, k - 1)

fs <- matrix(0, seqLength, k + 1)

seq1 <- cbind(sample(1:4, seqLength, prob = f0, replace = T)

)

for(i in 1:k) {

iii <- k - i + 1

if(iii == k) {

xx <- 0

if(any(merge2[k, 1] == cc)) {

pix <- pix2

Pix <- Pix2

piy <- piy2

Piy <- Piy2

Sx2 <- Sx1

Sy2 <- Sy1

}

else {

piy <- pix2

Piy <- Pix2

pix <- piy2

Pix <- Piy2

Sy2 <- Sx1

Sx2 <- Sy1

}

}

else {

if(any(iii == cc)) {

pix <- pix2

Pix <- Pix2

piy <- pix2

Piy <- Pix2

Sx2 <- Sx1

Sy2 <- Sx1

}
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else {

piy <- piy2

Piy <- Piy2

pix <- piy2

Pix <- Piy2

Sx2 <- Sy1

Sy2 <- Sy1

}

}

m <- rev(sort(me))

mm <- merge2[m[1], ]

if(me[1] > 0) {

t1 <- t0 - h[me[1] + 1]

}

else {

t1 <- t0

}

if(me[2] > 0) {

t2 <- t0 - h[me[2] + 1]

}

else {

t2 <- t0

}

if(t1 < 0 || t1 > 1) {

return(0)

}

if(t2 < 0 || t2 > 1) {

return(0)

}

hp <- rev(order(me))

if(i != 1) {

seq1 <- seqr[, (k - i + 1)]

}

seq2 <- genseq3(t1, t2, seq1, Sx2, Sy2, Pix, Piy)

if(me[1] < 0) {

fs[, (abs(me[1]))] <- seq2[, 1]

}

else {

seqr[, (abs(me[1]))] <- seq2[, 1]

}

if(me[2] < 0) {

fs[, (abs(me[2]))] <- seq2[, 2]
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}

else {

seqr[, (abs(me[2]))] <- seq2[, 2]

}

if(m[1] > 0)

t0 <- h[m[1] + 1]

else {

return(fs)

}

me <- c(mm, m[-1])

}

}

genseq3 <- function(t1, t2, seq, Sx2, Sy2, Pix, Piy) {

sequ <- matrix(0, nc = 2, nr = length(seq))

seqx<-seq

seqy<-seq

SS <- diag(c(1, 1, 1, 1))

p1 <- SS+Sx2%*%Pix

p2 <- SS+Sy2%*%Piy

print(p1)

for(i in 1:(length(seq) * t1)) {

km <- sample(1:length(seq), 1)

seqx <- replace(seqx, km, (sample(1:4, 1, prob = p1[seqx[km],

],replace=T)))

}

for(i in 1:(length(seq) * t2)) {

km <- sample(1:length(seq), 1)

seqy <- replace(seqy, km, (sample(1:4, 1, prob = p2[seqy[km],

],replace=T)))

}

sequ<-cbind(seqx,seqy)

return(sequ)

}
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Transforming 4K Array to m×K Matrix - Program

artomat<-function(fobs)

{ n1<-fobs nn=length(dim(fobs))

ee=NULL

for(i in 1:nn){ee[[i]]=1:4}

dimnames(n1)<-ee

w<-as.data.frame.table(n1)

w<-as.matrix(w)

w1<-w[,1:(dim(w)[2])-1]

w1<-matrix((as.numeric(w1)),dim(w)[1],dim(w)[2]-1)

w2<-cbind(as.numeric(w[,(dim(w)[2])]))

seq<-NULL

seq1<-NULL for(i in

1:dim(w)[1])

{ seq1<-rep(w1[i,],w2[i,]) seq<-c(seq,seq1) }

fseq<-(matrix(seq,nc=(dim(w1)[2]),byrow=T))

fseq }
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Paralinear Distances - Program

Distance<-function(F4)

{

L1 <- length(dim(F4))

Dis <- matrix(0, L1, L1)

for(i in 1:L1) {

for(j in 1:L1) {

if(i != j) {

fij <- apply(F4, c(i, j), sum)

fi <- apply(fij, 1, sum)

fj <- apply(fij, 2, sum)

Dis[i, j] <- - log(det(diag((fi)^

-0.5) %*% fij %*% diag(

(fj)^-0.5)))

}

else {

Dis[i, j] <- 0

}

}

}

Dis

}
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Test for Symmetry of Matched DNA Sequences -
Program

TEST2<-function(f)

{

n <- length(dim(f))

B1 <- NULL

S1 <- NULL

I1 <- NULL

for(i in 1:n) {

B <- matrix(0, n, 1)

S <- matrix(0, n, 1)

I <- matrix(0, n, 1)

for(j in 1:n) {

if(j != i) {

k <- apply(f, c(i, j), sum)

testr <- TEST(k)

}

else {

testr <- matrix(0, 3, 1)

}

B[j] <- testr[1]

S[j] <- testr[2]

I[j] <- testr[3]

}

B1 <- cbind(B1, B)

S1 <- cbind(S1, S)

I1 <- cbind(I1, I)

}

list(Bowker.test = as.dist(round(B1, 4)), Stuart.test =

as.dist(round(S1, 4)), Internal.test = as.dist(

round(I1, 4)))

}

TEST<-function(Nt)

{

QB <- 0

QS <- 0
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QR <- 0

PB <- 0

PR <- 0

PS <- 0

ZB <- 0

ZS <- 0

ZR <- 0

V <- matrix(0, 3, 3)

d <- matrix(0, 3, 1)

for(i in 1:4) {

for(j in 1:4) {

if((i < j))

if(Nt[i, j] + Nt[j, i] == 0) {

}

else {

QB <- QB + (((Nt[i, j] -

Nt[j, i])^2)/(Nt[

i, j] + Nt[j, i]))

}

}

}

for(i in 1:3) {

d[i] <- (sum(Nt[i, ]) - sum(Nt[, i]))

for(j in 1:3)

if(i == j) V[i, j] <- (sum(Nt[i, ]) + sum(

Nt[, i]) - 2 * sum(Nt[i,

i])) else V[i, j] <- -1 *

(Nt[i, j] + Nt[j, i])

}

QS <- t(d) %*% (solve(V)) %*% d

QR <- QB - QS

PB <- (1 - pchisq(QB, 6))

Z <- qnorm(PB)

PS <- (1 - pchisq(QS, 3))

ZS <- qnorm(PS)

PR <- (1 - pchisq(QR, 3))

ZR <- qnorm(PR)

r <- matrix(c(PB, PS, PR), 3, 1)

r

}
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Overall Test for Marginal Symmetry - Program

TEST3<-function(Farray)

{

s1 <- sum(Farray)

Farray <- Farray/s1

v <- NULL

m <- length(dim(Farray))

r <- dim(Farray)[1]

n <- NULL

one <- rep(1, r * (m - 1))

J <- matrix(0, 4 * (m - 1), 4 * (m - 1))

for(i in 1:(m - 1)) {

J[(r * (i - 1) + 1):(r * (i - 1) + r), (r * (i -

1) + 1):(r * (i - 1) + r)] <- 1

}

L1 <- t(matrix(t(rep(diag(c(1, 1, 1, 1)), (m - 1))), r,

(r * (m - 1))))

L <- cbind(L1, - (diag(one)))

for(i in 1:m) {

vc1 <- NULL

for(k in 1:m) {

vc <- NULL

if(i == k) {

fi <- apply(Farray, i, sum)

vc <- diag(fi)

n1 <- matrix(fi, r, 1)

n <- rbind(n, n1)

}

if(i < k) {

fij <- apply(Farray, c(i, k), sum)

fr <- apply(fij, 1, sum)

fc <- apply(fij, 2, sum)

vc <- fij

}

if(i > k) {

fij <- apply(Farray, c(i, k), sum)

fr <- apply(fij, 1, sum)

fc <- apply(fij, 2, sum)
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vc <- fij

}

vc1 <- cbind(vc1, vc)

}

v <- rbind(v, vc1)

}

Ts <- (t(L %*% n) %*% solve((L %*% v %*% t(L)) + J) %*% (

L %*% n)) * s1

Ts

}
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Log Likelihood Ratio - Program

likelihood<-function(thetast,fobs,merge2)

{

fobss=fobs; thetss=thetast; merge22=merge2

fst <- gn(thetass,merge22)

if(min(fst)<=0){return(lik<-4)}

lik <- sum(fobss * log(fobss/fst))

lik

}
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