Lab Report 2

Carl Edser
Student # - 430488700

DESC9115 — Digital Audio Systems
William Martens
Assessment Task 3

Due Tuesday Week 12, Semester 1, 2013

Carl Edser — 430488700 DESC9115 — Lab Report 2 Bill Martens

2 of 8
Table Of Contents
A B S T R A C T . e 3
INTRODUCGCTION. . oottt 3
EX P E RIM EN T A L. .., 4
RE S UL T S . o e e e e 5
CON C LU SION . .t e e e e e i 5
AP PEN DI L., 6

REFEREN CE S . . e 8

Carl Edser — 430488700 DESC9115 — Lab Report 2 Bill Martens
30f8

ABSTRACT

For the second lab report in digital signal processing, I have chosen to discover, develop and implement a
sample-based limiter. The DAFX textbook, Chapter 5 — Nonlinear Processing, written by P. Dutilleux
and U. Zolzer, will be referred to in this report and has provided guidance for the development of limiter

function (limiter.m) and script (call limiter.m) in MatLab.

1. INTRODUCTION

A limiter is a type of dynamics processor that can automatically control the amplitude of the input signal
based on its detected input gain (Dutilleux & Zolzer 2002, p.95). This device can be used to limit audio
peaks, whilst also maximising the amplitude of the input signal without resulting in the distortion of the
output. A limiter can be used in all production phases of audio, but is most commonly called upon in the
post-production, mastering process (applied for multichannel processing) and live sound applications. Not
only should audio engineers use this device to aid the dynamic qualities of the input signal, but also
implement the device to protect a systems output equipment from overload and from causing damage to
the listener’s ears. Other devices that are considered to be dynamic processors are compressors, expanders
and noise gates.

A block diagram explaining the signal flow of the limiter has been provided below, along with a

description of its components.

x{n) x(n-D4) y{n)
o—q DEL 1 X

a(n)

Xpeak(n) LT LS f(n)
PEAK ; ;
AT/RT Linflog f—(% — —‘4 X Log/lin AT/RT

Figure 1: Block diagram of a limiter (Z6lzer, 2002, p.99)

x(n) = input signal x(n-Dy) = delayed input signal
xpeak(n) = peak detector of the input signal -LT = limiting threshold
-LS = limiting slope f(n) = output factor

g(n) = limiter output y(n) = output

Carl Edser — 430488700 DESC9115 — Lab Report 2 Bill Martens
4 0f 8

2. EXPERIMENTAL
In order to process the audio through the limiter function, the syntax, along with several control variables

of the limiter must first be defined. The following syntax was used;

function dataout = limiter(datain, fs, att, rel, compfac, compthresh, limthresh)

where;
% datain = input signal
% fs = sampling frequency in Hz
% att = attack time of the limiter
2 rel = release time of the limiter
% compfac = compression factor
% compthresh = compression threshold
% limthresh = limiter threshold
% dataout = output where limiter has been applied to the input

signal

The limiter must make use of peak level measurement and should react very quickly to the extensions of
the limiter threshold (Dutilleux & Zdlzer 2002, p.99). This means that it is a requirement of the limiter to
detect the peaks of the input signal before it reaches the output, so that the peaks aren’t further amplified
by the limiter, potentially resulting in distortion of the output signal. However this must be imposed when
the DSP detects a certain variation in the difference between peak and RMS values. This has been

accounted for in the function 1imit react using the formula;

limit react = (limthresh - compthresh) * compfac + compthresh;

It is a requirement of the limiter to respond to the input signal in a matter of microseconds/samples. This
is due to the inability of a DSP to ‘look ahead’ of time, particularly when referring to live sound or other
input applications. The attack time (att) parameter provided in my code allows the limiter’s response to
the input to trigger within 1x10™ and 2 seconds. The sample calculation of the attack parameter is carried
out in MatLab by;

att = l-exp(-2.2* Fs/att);

This is the same for the release parameter, however rel replaces att. The release time parameter (rel)
determines the time it takes for the limiter to release the compression hold on the input signal. If this is set
to a short time, the affect of the limiter may almost go unnoticed, provided the threshold amounts are not

set too low. This could be considered ideal by capturing only the peaks and imposing minimal affect on
the input RMS.

A range of parameters in the function has been devised to constrain the use of the limiter so that it can be

used appropriately. These are under the title ‘Potential error messages from invalid input values in script’

Carl Edser — 430488700 DESC9115 — Lab Report 2 Bill Martens
50f8

seen in Appendix 1. If the parameters in the script are exceeded by the user, then an error message will

confirm what value in the script has been exceeded.

3. RESULTS

Original Wavefonn
T T T

An unprocessed audio signal (top, ‘Time To

08+ Peak removed by limiter -

Relax.wav’) was inserted into the script and g
04

processed using the limiter function and script ol

Amplitude

parameters written in MatLab (bottom, see
-0.2

figure I). The input and limited output were 24l

then plotted in figure 2. The bottom image % \ E i2
Samples x10°

demonstrates that the limiter function has /RMS level increased by limiter

: Limniter Appliedtolnput

T T T
08 I ‘ -
0.6 -

04
0.2

0
02
-04 |-

The bottom example was achieved by using A6 F
-0.3 -

increased the RMS gain of the input signal,

whilst also removing the peak that initially

occurs in the top image (at approx. 2x10*

Amplitude

samples).

L L 1 1 1

the variables defined in the high order script. o 3 3 5 3 m 2

a

Samples x10

These were lmplemented as fOHOWS; Figure 2: Original input (top) and processed output using limiter function

att = 0.0001; (bottom)
rel = 0.5;

compfac = 1;

compthresh = -17;

limthresh = -17;

4. CONCLUSION

Although I have designed a limiter that is capable of compressing the peaks and expanding the input
RMS level, I feel as though there are several parameters that may still need refining. Firstly, the attack
and release parameters defined in the function do not perform as I expected, so there is potentially a
function missing here. Also, when adjusting the compressor and limiting thresholds greater than -15,
some of the peaks are still able to clip. Again, I feel that this is due to an error in the attack and release
components of my function. With this being amended, I am sure the limiter function will work

appropriately, however with the time constraints of the assignment, [am unable to complete this.

Carl Edser — 430488700 DESC9115 — Lab Report 2 Bill Martens
6 of 8

APPENDIX 1
$% LIMITER FUNCTION

function dataout = limiter(datain, Fs, att, rel, compfac, compthresh, limthresh)

% datain = input signal

% Fs = sampling frequency in Hz

% att = attack time of the limiter

% rel = release time of the limiter

% compfac = compression factor

% compthresh = compression threshold

% limthresh = limiter threshold

% dataout = output where limiter has been applied to the input signal

% Conversion from decibels (dB)

compthresh = 10" (compthresh/20);

limthresh = 10" (limthresh/20);

% Calculate the amplitude at which the limiter is activated

limit_react = (limthresh - compthresh) * compfac + compthresh;

% Attack and release times converted into samples

att = l-exp(-2.2* Fs/att);
rel = l-exp(-2.2* Fs/rel);

if size (datain, 2) > size (datain,l)
datain = datain';
end;
% Initialize peak detector vector and gain factor vector
d = zeros (length(datain),l);

X
f = zeros (length(datain),l);

% Analyses the sound vector and compares the signal values with the
% threshold values. Set gain factor vector and multiply

for n = 2:length(datain);

a = abs (datain(n,1l)) - xd (n - 1);

if a< 0
a = 0;
end;
xd(n) = xd(n - 1) * (l-rel)+ att * a;

if compthresh < xd(n) && xd(n) < limthresh;
f(n) = 10" (-limiter * (loglO(xd(n))-loglO(compthresh)));

elseif xd(n) >= limthresh;
f(n) = 10" (-1*(logl0(xd(n))-logl0(limit react)));

else
f(n) = 1;
end;
end;

% Multiply with the gain factor vector

dataout (:,1) = datain(:,1l).* f;

¢ Maximize

dataout(:,1) = dataout(:,1l)/max(abs(dataout(:,1)));

% Potential error messages from invalid input values in script

if nargin < 7
error ('Not enough input arguments. Check function parameters')
end;

Carl Edser — 430488700 DESC9115 — Lab Report 2 Bill Martens
7 of 8

if 0.00001 > att || att > 2
error ('att value must be between 0.00001 and 2 (ten microseconds / two seconds');
end;

if 0.005 > rel || rel > 5
error ('rel value must be between 0.005 and 5 (five milliseconds / five seconds');

end;
if 0 > compfac || compfac > 1

error ('compression factor must be set between 0 and 1');
end;

if 20 < compthresh || compthresh < -100
error ('Compression threshold must be set between -100 and 20');

end;
if 20 < limthresh || limthresh < -100 || limthresh < compthresh

error ('To use as limiter, limthresh must be set the same as compthresh');
end;

% Plotting of the input signal against processed output signal
subplot(2,1,1);
plot (datain, 'b'), title('Original Waveform'), xlabel('Samples'), ylabel('Amplitude');

subplot(2,1,2);
plot(dataout, 'r'), title('Limiter Applied to Input'), xlabel('Samples'), ylabel('Amplitude');

%% LIMITER SCRIPT

[datain, Fs] = wavread('Time To Relax.wav');

att = 0.0001; % attack time (set between 0.00001 and 2)

rel = 0.5; % release time (set between 0.005 and 5)

compfac =1; % compression factor (set between 0 and 1)

compthresh = -17; % compression threshold (set between -100 and 20)

limthresh = -17; % limiter threshold (set equal to the compthresh
% and between -100 and 20)

dataout = limiter (datain, Fs, att, rel, compfac, compthresh, limthresh);

wavwrite(dataout, Fs, 'Time To Relax Limiter.wav');
% Writes output as WAV file

Carl Edser — 430488700 DESC9115 — Lab Report 2 Bill Martens
8 of 8

References

Dutilleux, P & Zolzer, U 2002, DAFX — Digital Audio Effects, John Wiley & Sons, Ltd, West Sussex,
England.

Lundkvist, A & Oman, P 2009, S76006F — Lab 4. Compressor/Limiter/Maximizer, Lulea University Of
Technology, Lulea, Sweden.

