Variation and Breeding of Kikuyu Grass
(Pennisetum clandestinum)

Brett Morris M.Agr

Amenity Horticulture Research Unit
Plant Breeding Institute
Camden Campus, University of Sydney

A thesis submitted to the University of Sydney
in fulfillment of the requirements for the degree of
Doctor of Philosophy

Faculty of Agriculture, Food and Natural Resources
March 2009
Declaration of Originality

The contents of this thesis are, to the best of my knowledge, entirely my own work except where otherwise attributed. This material has not been submitted previously to this University or any other higher education institution for any degree or diploma.

Brett W. Morris
10th December, 2009
Dedication

To Kellie and Charlotte

For your love, support, understanding and encouragement,

For without you I would not be where I am today.
Acknowledgements

I wish to start by sincerely thanking my supervisor, Dr Peter Martin, who oversaw this research project and who provided assistance whenever it was asked at any stage. It was indeed a great pleasure learning from you.

I also wish to pass on my sincere thanks to the consortium who made this research project possible, led by Mr. Geoff Hatton. Geoff’s enthusiasm in furthering turf research and development in Australia is unrivalled, and his support throughout this project was very much appreciated.

Special thanks to the staff at the Plant Breeding Institute of The University of Sydney who assisted throughout this project, in particular Mr. James Bell who always had time to discuss any aspect of the work and always made himself available to assist in organising any equipment or research space when required.

I wish to also thank the fellow students of the Plant Breeding Institute for their support throughout the period of this project, as well as all of the support staff at the Camden Library for their sourcing of literature materials. Also thanks to all of the past and present researchers and family members who made their time available to discuss personally certain aspects of this study.

Finally, a special thanks to Dr. Jodie Harris for her invaluable assistance, and criticism when needed, with the genetic study, and for her great efforts in the printing and collation of this thesis. It is very much appreciated.
Abstract

This study examined the variation existing in naturalised populations of kikuyu grass (*Pennisetum clandestinum* Hochst. ex. Chiov) in Australia, as well as initiating a breeding programme aimed at producing new hybrid lines for the Australian turfgrass and agricultural market. The first part of the study examines the phenotypic variation which exists within kikuyu grass populations; the genotypic variation of those populations via DNA marking; and, the basis of male sterility within those populations. The second part examines kikuyu grass within a breeding perspective through pollen viability and storage; the potential presence of an endophyte within the seed; classical hybridisation of ecotypes through to field planting; and, whether the oomycete *Verrucalvus flavofaciens* can be controlled via a modern day fungicide programme. It also rewrites the history of kikuyu introduction, first seeding occurrence, and previously unrecorded importations into Australia. General observations record the first photographic images of kikuyu grass chromosomes.

Significant phenotypic variation exists within naturalised kikuyu grass populations across Australia. From a collection of about 200 ecotypes 16 were selected for detailed study. Analysis of the ecotypes identified two lines from several which show great potential within the Australian turfgrass and agricultural market; the first selected at Grafton, NSW, which in the leaf width analysis displayed a leaf width over 18% finer than the mean; with the second selected at Morphettville, SA, which in the stolon width analysis displayed a stolon width over 15% thicker than the mean. Both selections, as well as others, displayed positive traits which would appeal to a wide range of end users.

Genetic investigations using RAPD marker techniques are undertaken on kikuyu for the first time. A total of thirteen decamer primers produced 195 markers of which 93.85% were polymorphic. Genotypic variation amongst the Australian selections was found to range from 28.8% - 82.4%. Relatedness between the cluster accessions used in the phenotypic analysis and the dendogram produced in the genetic analysis was not found.
Male sterility within Australian kikuyu grass was determined to exist as a recessive condition. From the F₁ population, 100% transformation from male sterile to fully fertile was observed; with the F₂ population segregating into a 52.5% fully fertile, 47.5% male sterile. Negative interactions between parental lines were observed.

Kikuyu grass pollen is most viable in the first few hours after shedding, and deteriorates significantly within 24 hours, even at low temperatures, if it is stored. Pollen viability varies amongst genotypes. Prior additions of dry colloidal material does not assist in storage capabilities.

Investigations into seedling mortality of kikuyu identified the possible presence of an endophyte within the seed. Surface sterilisation techniques provided no control, with an addition of 0.1% PPM to the base agar mixture the most effective form of control. Intercellular hyphae were identified and photographed after staining with Rose Bengal.

Hybridisation studies of kikuyu grass resulted in several potential lines worthy of continued analysis. Selections from varying growing environments around Australia were hybridised with three pollen parents derived from chemical mutagenesis producing a total of 349 hybrid F₂ seeds. Germination and screening in the glasshouse resulted in 14 hybrid lines being field planted alongside cv. ‘Whittet’ for comparison. The opportunity exists within the turfgrass market for elite lines of kikuyu, which will cover a wide range of uses from golf course tees and fairways, sporting grounds and race tracks, to pasture and commercial use.

Efficacy with modern day fungicides in vitro was found not successful in controlling Kikuyu Yellows (Verrucalvus flavofaciens). Resistance of kikuyu grass to the oomycete will have to come in the form of genetically resistant cultivars; production of a specific fungicide; or both.
Table of Contents

Declaration ii
Dedication iii
Acknowledgements iv
Abstract v
Table of Contents vii
List of Tables xvi
List of Figures xvii
Abbreviations xx

1. CHAPTER 1: General Introduction 1

2. CHAPTER 2: Review of Literature 4
 2.1 Origins 4
 2.2 Identification and Naming 6
 2.3 Morphology 7
 2.4 Initial Spread from Kenya 8
 2.5 Initial Trial Work 9
 2.5.1 Initial Publications and Reports 9
 2.6 The Edwards Ecotypes 11
 2.6.1 ‘Kabete’ 12
 2.6.2 ‘Molo’ 12
 2.6.3 ‘Rongai’ 12
 2.7 Current Registered Australian Kikuyu Lines 13
 2.7.1 ‘Whittet’ 13
 2.7.2 ‘Breakwell’ 14
 2.7.3 ‘Crofts’ 14
 2.7.4 ‘Noonan’ 14
 2.8 Reproductive System 15
 2.8.1 Male Sterile Kikuyu 15
 2.8.2 Fully Fertile Kikuyu 17
 2.9 Flowering Incidences 19
2. Factors Affecting Kikuyu Distribution and Growth in Australia

- **2.10** Climactic Factors Affecting Kikuyu Distribution and Growth in Australia 20
- **2.11** Pasture Usage 24
- **2.12** Kikuyu Pests and Diseases 29
- **2.13** Kikuyu Breeding 30
- **2.14** Ecotype Populations 31
 - **2.14.1** Gene Flow 33
- **2.15** Genetic Studies 33
- **2.16** Summary 34

3. CHAPTER 3: Kikuyu Grass: A History of its Introduction and Spread throughout Australia 35

- **3.1** Introduction 35
- **3.2** The interception of the seed used by Breakwell 36
- **3.3** Breakwell’s second introduction 39
- **3.4** The originating source in east Africa 39
 - **3.4.1** The Congo Botanic Gardens 40
- **3.5** Spread around Australia 42
- **3.6** Australian demand and expansion at HAC 43
- **3.7** Australian trial work 44
- **3.8** Further importations 45
- **3.9** Conclusions 46

- **4.1** Introduction 47
- **4.2** The first published recording of seeding of kikuyu grass 47
- **4.3** Rewriting the first observed setting of kikuyu seed in Australia 49
- **4.4** Seeding kikuyu trial work in Australia 53
- **4.5** Flowering observations 54
 - **4.5.1** Practical observations 54
 - **4.5.2** Observations 55
 - **4.5.3** Why was seeding not observed until the 1930s in pastures established on the 1918 and 1920 introductions? 56
4.5.4 Observed flowering in longer stands of kikuyu 57
4.6 Conclusions 58

5. CHAPTER 5: Phenotypic Variation amongst Populations of *Pennisetum clandestinum* 59

5.1 Introduction 59
5.2 Materials and Methods 59
5.2.1 Selection of kikuyu lines 59
5.2.2 Germplasm Establishment 62
5.2.3 Plot Establishment and Layout 62
5.2.4 Plug Establishment 64
5.2.5 Trial Period 64
5.2.6 Field Measurements 64
5.2.7 Environmental Data 65
5.2.8 Calculation of Relative Growth Rate 65
5.2.9 Statistical Analysis of Data 66
5.3 Results 66
5.3.1 Environmental Data 66
5.3.2 Stolon Width 68
5.3.3 Foliage Height 69
5.3.3.1 Relative Foliage Height Growth Rate 70
5.3.4 Node Width 71
5.3.5 Internode Length 72
5.3.6 Leaf Width 73
5.3.6.1 Relative Leaf Width Growth Rate 74
5.3.7 Longest Runner 75
5.3.7.1 Relative Runner Extension Rate 76
5.3.8 Coverage 77
5.3.8.1 Relative Coverage Rate 78
5.4 Discussion of Results 79
5.4.1 Stolon Width Increase 79
5.4.1.1 Finest stolon diameter 79
5.4.1.2 Thickest stolon diameter 80
5.4.1.3 Fine turf environments 81
5.4.1.4 Stolon width summary 81
5.4.2 Foliage Height
5.4.2.1 Highest top growth
5.4.2.2 Effects of average temperature on foliage height
5.4.2.3 Lowest foliage height
5.4.2.4 Foliage height summary

5.4.3 Node Width
5.4.3.1 Average gain after 15 weeks
5.4.3.2 Thickest node width
5.4.3.3 Narrowest node width
5.4.3.4 Node width summary

5.4.4 Internode length
5.4.4.1 Internode length gains
5.4.4.2 Longest internode length
5.4.4.3 Shortest internode length
5.4.4.4 Other factors influencing internode length
5.4.4.5 Internode length summary

5.4.5 Leaf Width
5.4.5.1 Average leaf width increase
5.4.5.2 Finest leaf width
5.4.5.3 Coarsest leaf width
5.4.5.4 Leaf width summary

5.4.6 Longest Runner
5.4.6.1 Fastest runner extension
5.4.6.2 Slowest runner extension
5.4.6.3 Longest runner summary

5.4.7 Coverage
5.4.7.1 General coverage
5.4.7.2 Greatest coverage
5.4.7.3 Lowest coverage
5.4.7.4 Coverage summary

5.5 Relationship between some of the parameters (R^2 values)

5.6 General Summary

6. CHAPTER 6: Genotypic Variation of *Pennisetum clandestinum* Utilising RAPD Marking Techniques
6.1 Introduction 101
6.2 Background 102
6.2.1 Polymerase Chain Reaction (PCR) 102
6.2.2 Visualisation 104
6.3 Aims and Hypothesis 104
6.4 Material and Methods 105
6.4.1 Plant material 105
6.4.2 Template DNA isolation 106
6.4.3 PCR amplification 108
6.4.4 Primer selection 109
6.4.5 Visualisation 109
6.4.6 Statistical analysis 110
6.5 Results and Discussion 110
6.5.1 DNA purity and quantity 110
6.5.2 DNA amplification banding patterns 110
6.5.3 Primer banding pattern images 112
6.5.3.1 Primer OPM20 113
6.5.3.2 Primer OPAE 113
6.5.3.3 Primer K07 114
6.5.3.4 Primer K17 114
6.5.3.5 Primer M01 115
6.5.3.6 Primer OPAA 115
6.5.3.7 Primer OPK20 116
6.5.3.8 Primer P19 116
6.5.3.9 Primer OPB15 117
6.5.3.10 Primer OPB17 117
6.5.3.11 Primer OPO06 118
6.5.3.12 Primer OPA11 118
6.5.3.13 Primer A17 119
6.5.4 Genetic variation of kikuyu grass 119
6.5.5 Cluster analysis 120
6.5.6 Geographic distribution in relation to clusters and similarity percentages. 124
6.5.7 Genetic distances revealed by similarity matrix. 125
6.5.8 Specific markers 128
6.6 Conclusions 129
<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>CHAPTER 7: Male Sterility within Populations of Pennisetum clandestinum</td>
<td>130</td>
</tr>
<tr>
<td>7.1</td>
<td>Introduction</td>
<td>130</td>
</tr>
<tr>
<td>7.2</td>
<td>Aims</td>
<td>131</td>
</tr>
<tr>
<td>7.3</td>
<td>Material and Methods</td>
<td>132</td>
</tr>
<tr>
<td>7.3.1</td>
<td>Ecotype Selection</td>
<td>132</td>
</tr>
<tr>
<td>7.3.2</td>
<td>Fertilisation</td>
<td>132</td>
</tr>
<tr>
<td>7.3.3</td>
<td>Post fertilisation management</td>
<td>133</td>
</tr>
<tr>
<td>7.4</td>
<td>Results and Discussion</td>
<td>134</td>
</tr>
<tr>
<td>7.4.1</td>
<td>Seed set</td>
<td>134</td>
</tr>
<tr>
<td>7.4.2</td>
<td>Germination results</td>
<td>135</td>
</tr>
<tr>
<td>7.4.3</td>
<td>F1 progeny</td>
<td>135</td>
</tr>
<tr>
<td>7.4.4</td>
<td>Selfing</td>
<td>138</td>
</tr>
<tr>
<td>7.4.5</td>
<td>F2 progeny</td>
<td>138</td>
</tr>
<tr>
<td>7.5</td>
<td>Concluding Discussion</td>
<td>140</td>
</tr>
<tr>
<td>8</td>
<td>CHAPTER 8: Pollen Viability and Storage of Pennisetum clandestinum</td>
<td>141</td>
</tr>
<tr>
<td>8.1</td>
<td>Introduction</td>
<td>141</td>
</tr>
<tr>
<td>8.1.1</td>
<td>Pollen distribution and viability testing</td>
<td>141</td>
</tr>
<tr>
<td>8.1.2</td>
<td>The need for pollen storage</td>
<td>142</td>
</tr>
<tr>
<td>8.2</td>
<td>Materials and Methods</td>
<td>142</td>
</tr>
<tr>
<td>8.2.1</td>
<td>In vitro pollination – The floating cellophane method</td>
<td>142</td>
</tr>
<tr>
<td>8.2.2</td>
<td>Storage examinations</td>
<td>143</td>
</tr>
<tr>
<td>8.2.3</td>
<td>Counting</td>
<td>143</td>
</tr>
<tr>
<td>8.2.4</td>
<td>Pollen sources</td>
<td>144</td>
</tr>
<tr>
<td>8.2.5</td>
<td>Pollen collection</td>
<td>144</td>
</tr>
<tr>
<td>8.2.6</td>
<td>Heat shock</td>
<td>144</td>
</tr>
<tr>
<td>8.2.7</td>
<td>Experimental design and analysis</td>
<td>144</td>
</tr>
<tr>
<td>8.3</td>
<td>Results and Discussion</td>
<td>145</td>
</tr>
<tr>
<td>8.3.1</td>
<td>Pollen grain dehydration</td>
<td>145</td>
</tr>
<tr>
<td>8.3.2</td>
<td>Media composition and germination of fresh pollen</td>
<td>145</td>
</tr>
<tr>
<td>8.3.2.1</td>
<td>Boric acid additions</td>
<td>146</td>
</tr>
<tr>
<td>8.3.3</td>
<td>Storage at 4°C, -8°C and -180°C</td>
<td>149</td>
</tr>
<tr>
<td>8.3.4</td>
<td>Additions of polyvinylpolypyrrolidone</td>
<td>151</td>
</tr>
</tbody>
</table>
9. **CHAPTER 9: Investigations into Seedling Mortality of Pennisetum clandestinum**

9.1 Introduction
9.2 Seed and Base Agar Mixture
9.3 Germination
9.3.1 Agar and Seed Sterilisation Amendments
9.3.1.1 Hot water treatment
9.3.1.2 Mercuric Chloride
9.3.1.3 Plant Preservative Mixture
9.4 Endophyte presence as a cause of the seedling fungal infections
9.4.1 Leaf staining
9.5 Fungal identification
9.5.1 Possible role of kikuyu endophytes in ruminant toxicity
9.6 Conclusions

10. **CHAPTER 10: Hybridisation Studies of Pennisetum clandestinum**

10.1 Introduction
10.2 Aims
10.3 Materials and Methods
10.3.1 Selections
10.3.2 Pollen collection
10.3.3 Hybridisation
10.3.4 After-ripening
10.3.5 Agar germination base and seed sterilization
10.3.6 Growth data
10.4 Results and Discussion
10.4.1 Initial hybridisation and F₁ seed of the 2004/2005 crossing
10.4.2 Lack of initial heterosis
10.4.3 Hybridisation programme 2005/2006
10.4.3.1 Hybridisation results
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.4.3.2</td>
<td>Germination</td>
<td>174</td>
</tr>
<tr>
<td>10.4.3.3</td>
<td>Establishment</td>
<td>174</td>
</tr>
<tr>
<td>10.4.4</td>
<td>Selection of superior F<sub>1</sub> lines for field analysis</td>
<td>176</td>
</tr>
<tr>
<td>10.4.5</td>
<td>Field plot layout and establishment</td>
<td>177</td>
</tr>
<tr>
<td>10.4.5.1</td>
<td>Results of Selected F<sub>1</sub> Field Trial: General Overview</td>
<td>179</td>
</tr>
<tr>
<td>10.5</td>
<td>Conclusions</td>
<td>184</td>
</tr>
</tbody>
</table>

11. **CHAPTER 11: Performance of Commercially Available Fungicides on Kikuyu Yellows (Verrucalvus flavofaciens)**

 In Vitro 185

 11.1 Introduction 185

 11.2 Disease cycle of *Verrucalvus flavofaciens* 186

 11.3 Background 187

 11.4 Aims 188

 11.5 Materials and Methods 189

 11.5.1 Culturing of *Verrucalvus flavofaciens* 189

 11.5.2 Fungicides 191

 11.5.3 Media and fungicide preparation 191

 11.5.4 Addition of pure cultures 191

 11.6 Results and Discussion 192

 11.7 Summary 193

12. **CHAPTER 12: General Discussion** 194

13. **References** 197

14. **APPENDICES**

Appendix 1: General Observations 213

 1.1 Chromosome observations of Pennisetum clandestinum 213

 1.1.1 Introduction 213

 1.1.2 Methodology for staining chromosomes in kikuyu grass 214

 1.1.3 Chromosomes of *Pennisetum clandestinum* cv. ‘Whittet’ 215
Appendix 2: Agar Compositions, Sterilants and Cytology Stains 216

2.1 Agar Compositions 216
2.1.1 Germination Base for Kikuyu Seed 216
2.1.2 Quarter PDA 216
2.1.3 Quarter PDA with Novobiocin 216
2.1.4 Plain Agar 217
2.1.5 Soil Extract Solution 217

2.2 Surface Sterilants 217
2.2.1 Pathology Surface Sterilant for Leaf Tissue 217
2.2.2 95% EtOH 218
2.2.3 70% EtOH 218

2.3 Cytology Stains 218
2.3.1 2% Aceto-Carmine 218
2.3.2 2% Aceto-Orcein 219
2.3.3 Leuco-basic Fuchsins 219
2.3.4 Fixative for plant rootlets 219

Attached CD:
Appendix 3: Vegetative Planting Register
Appendix 4: Phenotypic Recordings
Appendix 5: Pollen Germination Tables
Appendix 6: Growth Data F₁ Hybrids
Appendix 7: F₂ Seeding Register
List of Tables

Table 2.1:	Prescott Model showing rainfall and evaporation figures	21
Table 5.1:	Descriptions of the 16 ecotypes used in the study	61
Table 5.2:	Environmental data for the duration of the 16 week trial	67
Table 5.3:	Solar radiation data at Sydney Airport	67
Table 5.4:	R^2 values for the kikuyu grass lines at observation 16	98
Table 6.1:	Kikuyu grass selections used in the RAPD analysis	106
Table 6.2:	Extraction protocol for the ABI PRISM 6100 Nucleic Acid Preparation Station	107
Table 6.3:	PCR reaction mixture for the RAPD analysis	108
Table 6.4:	PCR cycling time and temperatures	109
Table 6.5:	Final primer selection for RAPD analysis	111
Table 6.6:	Primers and marker results	112
Table 6.7:	Similarity matrix for kikuyu grass selections	127
Table 7.1:	Seed set in Line 924 following hybridisation in Oct. 2005	134
Table 7.2:	Germination of F_1 progeny of ecotype 924	135
Table 7.3:	F_1 sexual ratio for progeny of ecotype 924	136
Table 7.4:	F_2 seed collection after selfing	138
Table 7.5:	F_2 plant establishment flowering behavior	139
Table 8.1:	Percentage germination of KC902 after storage at -8°C for 24h in differing *in vitro* cultures	150
Table 10.1:	Accessions selected for initial hybridisation exercise	167
Table 10.2:	Hybrid seed register for crossing programme of 2004/2005	168
Table 10.3:	Hybrid seed register for crossing programme of 2005/2006	172
Table 10.4:	Hybrid lines selected for field trial	177
Table 11.1:	Fungicides used for *in vitro* analysis of *Verrucalvus flavofaciens*	191
Table 11.2:	Mean radial growth of *Verrucalvus flavofaciens*	192
List of Figures

Figure 2.1: Plant succession stages in Kenyan highlands 5
Figure 2.2: Photographic image of the Edwards ecotype ‘Kabete’ 12
Figure 2.3: Photographic image of the Edwards ecotype ‘Molo’ 12
Figure 2.4: Photographic image of the Edwards ecotype ‘Rongai’ 12
Figure 2.5: Image of a male sterile floret of Pennisetum clandestinum with the outer sheath removed 15
Figure 2.6: Image of a male sterile stamen showing lack of pollen 16
Figure 2.7: Image of male sterile stamen in 1925 showing lack of pollen 16
Figure 2.8: Observations of a gynodioecious sward of Pennisetum clandestinum over a 4 year period 17
Figures 2.9: Images showing the rapid extension of the filaments in fully fertile Pennisetum clandestinum 18
Figure 2.10: Reduction of nitrate in the rumen 28
Figure 3.1: Letter from Ernest Breakwell to the principal of HAC 37
Figure 3.2: Plot layout grass gardens C1 & C2 at HAC 38
Figure 3.3: Growth regions for kikuyu grass in Africa with locations of the Belgian Congo botanic gardens 41
Figure 4.1: 1934 article from The Daily Telegraph announcing the first seed setting of Pennisetum clandestinum 48
Figure 4.2: Letter from Cyril Hungerford to the principal of HAC 50
Figure 4.3: The Hungerford lawn where kikuyu set seed for the first time in Australia 52
Figure 4.4: Kikuyu representative of the original form of from Kenya at the Hungerford property 53
Figure 4.5: Flowering incidence observational trial 55
Figure 4.6: Flowering in undefoliated kikuyu 57
Figure 5.1: Plot layout of ecotypes used in the phenotypic analysis 63
Figure 5.2: Stolon width graph 68
Figure 5.3: Foliage height graph 69
Figure 5.4: Relative foliage height growth rate (log_2 scale) for several kikuyu grass accessions. 70
Figure 5.5: Node width graph 71
Figure 5.6: Internode length graph 72
Figure 5.7: Leaf width graph 73
Figure 5.8: Relative leaf width growth rate (log₂ scale) for several kikuyu grass accessions.

Figure 5.9: Longest runner graph

Figure 5.10: Relative runner extension growth rate (log₂ scale) for several kikuyu grass accessions

Figure 5.11: Coverage graph

Figure 5.12: Relative coverage rate (log₂ scale) for several kikuyu grass accessions.

Figure 5.13: Stolon width differences between ecotypes 950 and 965

Figure 5.14: The original selection location for ecotype 941

Figure 5.15: Image showing natural dwarf tendencies of ecotype 965

Figure 5.16: Image showing consistent radial coverage of ecotype 965

Figure 5.17: Image showing inconsistent radial coverage of ecotype 903

Figure 5.18: Image showing some of the ecotypes used in the phenotypic analysis

Figure 6.1: Gel of Pennisetum clandestinum with primer OPM20

Figure 6.2: Gel of Pennisetum clandestinum with primer OPAE

Figure 6.3: Gel of Pennisetum clandestinum with primer K07

Figure 6.4: Gel of Pennisetum clandestinum with primer K17

Figure 6.5: Gel of Pennisetum clandestinum with primer M01

Figure 6.6: Gel of Pennisetum clandestinum with primer OPAA

Figure 6.7: Gel of Pennisetum clandestinum with primer OPK20

Figure 6.8: Gel of Pennisetum clandestinum with primer P19

Figure 6.9: Gel of Pennisetum clandestinum with primer OPB15

Figure 6.10: Gel of Pennisetum clandestinum with primer OPB17

Figure 6.11: Gel of Pennisetum clandestinum with primer OPO06

Figure 6.12: Gel of Pennisetum clandestinum with primer OPA11

Figure 6.13: Gel of Pennisetum clandestinum with primer A17

Figure 6.14: Phylogenic tree of Pennisetum clandestinum relationships

Figure 7.1: Example of a bagged stigma after fertilization

Figure 8.1: Pollen germination in genotype KC900 as affected by boric acid

Figure 8.2: Pollen germination in genotype KC901 as affected by boric acid

Figure 8.3: Pollen germination in genotype KC902 as affected by boric acid

Figure 8.4: Pollen germination across three genotypes at 40% sucrose and a range of boric acid concentrations

Figure 8.5: Pollen germination on genotype KC901 after storage at -8°C

Figures 9.1-9.2: Examples of fungi emerging from germinating seeds of
kikuyu grass

Figures 9.3-9.4: Examples of fungi emerging from germinating seeds of kikuyu grass

Figure 9.5: Germination of kikuyu grass showing radicle, plumule and the emerging fungi from the scutellum

Figure 9.6: Control of fungal growth in germinating seeds of kikuyu using PPM

Figure 9.7: Hyphae observed in leaf of kikuyu grass ‘Whittet’

Figure 9.8: Hyphae observed in leaf of kikuyu grass ‘Whittet’

Figure 10.1: Lack of heterosis in F₁ lines of Pennisetum clandestinum from the 2004/2005 hybridisation programme

Figure 10.2: General lack of vigor in F₁ lines of Pennisetum clandestinum

Figure 10.3: Excavation of diseased F₁ of Pennisetum clandestinum

Figure 10.4: Surviving hybrid of the 2004/2005 hybridisation programme

Figure 10.5: Hybrid seeds of Pennisetum clandestinum grown on individual agar slopes in a controlled micro-climate

Figure 10.6: Variation in general heterosis of F₁ lines of Pennisetum clandestinum with the same parental lines

Figure 10.7: Establishment of the F₁ lines of Pennisetum clandestinum

Figure 10.8: F₁ field plot layout

Figure 11.1: Disease cycle of Verrucalvus flavofaciens

Figure 11.2: Kikuyu grass infected with Verrucalvus flavofaciens

Figure 11.3: Oospores and sporangia of Verrucalvus flavofaciens

Figure 11.4: Isolation of pure cultures of Verrucalvus flavofaciens using the Rapers Ring method

Appendices

Figure A1: Kikuyu grass chromosomes in several cells of cv. ‘Whittet’ (x1000)
List of Abbreviations

ASL: Above sea level
bp: Base pair
°C: Degrees Celsius
Ca: Calcium
CaNO₃: Calcium Nitrate
cal: Calorie
cm: Centimetre
CMS: Cytoplasmic Male Sterility
CP: Crude Protein
Cu: Copper
d: Day
DM: Dry matter
DNA: Deoxyribonucleic Acid
EC: Electrical Conductivity
Fe: Iron
ft: Feet
GDR: Great Dividing Range
g: Gram
g/L: Grams per litre
h: Hour
Ha: Hectare
HAC: Hawkesbury Agricultural College
H₃BO₃: Boric Acid
K: Potassium
KC: Kikuyu Collection
kg: Kilogram
KH: Kikuyu Hybrid
km: Kilometre
KNO₃: Potassium Nitrate
m: Metre
Mg: Magnesium
MgCl₂: Magnesium Chloride
MgSO₄: Magnesium Sulphate
mm: Millimetre
mM: Millimolar
Mn: Manganese
Mo: Molybdenum
N: Nitrogen
Na: Sodium
NaOCl: Sodium Hypochlorite
ng: Nanogram
NSW: New South Wales
P: Phosphorus
PBI: Plant Breeding Institute
PCR: Polymerase Chain Reaction
ppm: Parts per million
QLD: Queensland
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>RAPD</td>
<td>Random Amplified Polymorphic DNA</td>
</tr>
<tr>
<td>rpm</td>
<td>Revolutions per minute</td>
</tr>
<tr>
<td>rps</td>
<td>Revolutions per second</td>
</tr>
<tr>
<td>S</td>
<td>Sulphur</td>
</tr>
<tr>
<td>SA</td>
<td>South Australia</td>
</tr>
<tr>
<td>sec</td>
<td>Seconds</td>
</tr>
<tr>
<td>t</td>
<td>Tonne</td>
</tr>
<tr>
<td>TAS</td>
<td>Tasmania</td>
</tr>
<tr>
<td>U</td>
<td>Unit</td>
</tr>
<tr>
<td>UV</td>
<td>Ultraviolet</td>
</tr>
<tr>
<td>V</td>
<td>Volts</td>
</tr>
<tr>
<td>VIC</td>
<td>Victoria</td>
</tr>
<tr>
<td>WA</td>
<td>Western Australia</td>
</tr>
<tr>
<td>Zn</td>
<td>Zinc</td>
</tr>
<tr>
<td>%</td>
<td>Percent</td>
</tr>
<tr>
<td>-</td>
<td>Minus</td>
</tr>
<tr>
<td>£</td>
<td>Pound Currency</td>
</tr>
<tr>
<td>µL</td>
<td>Microlitre</td>
</tr>
<tr>
<td>µM</td>
<td>Micromolar</td>
</tr>
</tbody>
</table>