TABLE OF CONTENTS

Dedication

Statement of authentication

Publications and abstracts

Acknowledgements

Abstract

List of Abbreviations

Table of contents

Appendix

List of Figures

List of Tables
CHAPTER 1
Literature Review

1 Literature Review--1
1.1 Introduction---2
 1.1.1 Introduction to endometriosis-------------------------2-4
1.2 The normal endometrium----------------------------------4
 1.2.1 The female uterus--------------------------------------4-5
 1.2.2 Endometrial changes during the menstrual cycle--------5-10
1.3 Human endometriosis-------------------------------------11
 1.3.1 Definition of endometriosis---------------------------11
 1.3.2 The origin of endometriosis---------------------------12-13
 1.3.3 The cause of endometriosis-----------------------------13-16
 1.3.4 Diagnosing endometriosis-----------------------------17-19
 1.3.5 Current therapies--------------------------------------19-22
 1.3.6 Surgical treatments of endometriosis------------------22-23
1.4 The baboon animal model (Papio anubis)--------------------23
 1.4.1 Endometriosis and the baboon--------------------------23-24
 1.4.2 Baboon histology---------------------------------------24-26
 1.4.3 Inducing endometriosis in the baboon-------------------26
1.5 Ubiquitin and the proteasome------------------------------26
 1.5.1 Ubiquitin structure and function-----------------------26-30
 1.5.2 Ubiquitin-proteasome pathway--------------------------30-31
 1.5.3 Proteasome structure and function----------------------31-34
1.6 The ubiquitin pathway and endometriosis-------------------34
 1.6.1 Why look at the ubiquitin system in endometriosis?-----34-35
1.7 Apoptosis---35
 1.7.1 History and detection----------------------------------35-36
 1.7.2 Apoptosis in the normal endometrium--------------------36-37
 1.7.3 Apoptosis in endometriosis-----------------------------37-38
CHAPTER 2
Materials and Methods

2 Immunohistochemistry----------------------------------- 54

2.1 Baboons--- 55
 2.1.1 Baboon tissues------------------------------------- 55-56
 2.1.2 Sectioning of baboon tissues----------------------- 56
 2.1.3 Immunohistochemistry of baboon tissues------------ 56-57
 2.1.4 Immunohistochemical grading of stained baboon tissues---- 57-58
 2.1.5 Statistical analysis of baboon tissues for immunohistochemistry--
 --- 58-59

2.2 Humans--- 59
 2.2.1 Human tissues------------------------------------- 59
 2.2.2 Sectioning of human tissues----------------------- 59
 2.2.3 Immunohistochemistry of human tissues------------ 59-60
 2.2.4 Immunohistochemical grading of stained human tissues---- 61
 2.2.5 Statistical analysis of human tissues for immunohistochemistry--
 --- 61

2.3 Quantitative real time polymerase chain reaction (qRT-PCR)--------- 62
 2.3.1 Baboon tissue collection for RT-PCR------------------62
 2.3.2 Human tissue collection for RT-PCR-------------------62-63
 2.3.3 Human tissue RNA extraction--------------------------63-65
 2.3.4 Measuring RNA quality and quantity in baboons and humans----
 --- 65-67
2.3.5 Amplification of cDNA sequencing for baboons and humans-----
---67-68
2.3.6 Designing primers and their validation for baboons and humans--
---68-69
2.3.7 Real-time PCR for baboons and humans-----------------------------69-70
2.3.8 Statistics for qRT-PCR for baboons and humans------------------70

CHAPTER 3

Molecular studies of human endometrial tissues

3 Quantitative real time polymerase chain reaction (qRT-PCR) in human
endometrial tissues--75
3.1 Introduction---75
3.2 Materials and methods---75
3.2.1 Human tissues for qRT-PCR---75-76
3.3 Results---76-80
3.4 Discussion---80-81

CHAPTER 4

Molecular studies of baboon endometrial tissues

4 Quantitative real time polymerase chain reaction (qRT-PCR) in baboon
endometrial tissues--83
4.1 Introduction---83
4.2 Materials and methods---83
4.2.1 Baboon tissues for qRT-PCR---83-84
4.3 Results---84-86
4.4 Discussion---86
CHAPTER 5
Immunohistochemical study of eutopic baboon endometrial tissues

5 Immunohistochemistry of eutopic baboon endometrial tissues-------------------88
5.1 Introduction-- 88
5.1.1 Materials and methods---88
 5.2.1 Animals---88
 5.2.2 Immunohistochemistry--88
 5.2.3 Immunohistochemistry grading of stained cells-----------------------------88
 5.2.4 Statistical analysis---89
5.2 Results---89
 5.3.1 IKKβ, Iκβα and NFκβ Immunostaining--89-93
 5.3.2 Ubiquitin Immunostaining--93-95
 5.3.3 TNF-α Immunostaining--95
 5.3.4 Proteasome Immunostaining---95-98
 5.3.5 IKK-α Immunostaining--98-99
5.3 Discussion--100-101

CHAPTER 6
Immunohistochemical study of ectopic baboon endometrial tissues

6 Immunohistochemistry of ectopic baboon endometrial tissues------------------103
6.1 Introduction-- 103
6.2 Materials and methods---103
 6.2.1 Animals---103
 6.2.2 Immunohistochemistry--103
 6.2.3 Immunohistochemistry grading of stained cells-----------------------------103
6.2.4 Statistical analysis-- 104

6.3 Results---104

6.3.1 Ubiquitin, TNF-α, IKKβ, NFκβ Immunostaining--------- 104-109
6.3.2 Proteasome Immunostaining------------------------------110-112
6.3.3 Iκβα Immunostaining---------------------------------- 112
6.3.4 IKK-α Immunostaining-----------------------------------112-114

6.4 Discussion--115-117

CHAPTER 7

Immunohistochemical study of eutopic human endometrial tissues

7 Immunohistochemistry of eutopic human endometrial tissues----------119
7.1 Introduction--119
7.2 Materials and methods---120
 7.2.1 Human tissues---120
 7.2.2 Immunohistochemistry--------------------------------------120
 7.2.3 Immunohistochemistry grading of stained cells---------------120
 7.2.4 Statistical analysis--120
7.3 Results---121
 7.3.1 IKKβ, Iκβα, NFκβ and IKKα Immunostaining----------------121-126
 7.3.2 Proteasome Immunostaining---------------------------------127
7.4 Discussion--127-129

CHAPTER 8

Immunohistochemical study of ectopic human endometrial tissues

8 Immunohistochemistry of ectopic human endometrial tissues--------131
Appendix 1.3: IKKα. Conserved helix-loop-helix ubiquitous kinase (CHUK), mRNA------183

Appendix 1.4: PA28. Homo sapien proteasome (prosome, macropain) activator subunit 1 (PA28 alpha) (PSME1), transcript variant 1, mRNA--184

Appendix 1.5: NFκβ subunit, p65.Homo sapiens v-rel reticuloendotheliosis viral oncogene homolog A, nuclear factor of kappa light polypeptide gene enhancer in B-cells 3, p65 (avian) (REL) mRNA---185

LIST OF FIGURES

Figure 1.1: The human menstrual cycle. (A) Changes in pituitary gland hormones; (B) oocyte development with changes in hormone levels; (C) changes in ovarian hormone levels and (D) changes in endometrial cell thickness--- 9

Figure 1.2: A schematic view of the endometrial changes in the baboon (Papio anubis) and women during the menstrual cycle---10

Figure 1.3. Diagram illustrating treatment groups and sampling time points for the baboon. The days indicated below the lines are the times at which tissue was obtained. M = menses; EF = early follicular; LF = late follicular; ML = mid-luteal; LL = late luteal (Christensen et al, 1995)---25

Figure 1.5: Schematic view of the 26S proteasome, which is made up of two outer 19S subunits that recognize polyubiquitinated target proteins and the inner catalytic 20S subunit that allows protein degradation (Adams 2004)---33

Figure 1.6: Schematic view of the inter-relationships between the proteins in the ubiquitin-NFKβ pathway--- 42
Figure 2.1: The set up of tissue grinding materials for RNA extraction kept frozen in dry ice.

Figure 2.2: An Agilent RNA 6000 nano chip inside a chip priming station.

Figure 2.3: A step-by-step sequence of sample preparation and analysis for qRT-PCR.

Figure 3.1: Representative electropherogram summary of the ladder marker supplied by Agilent Technologies RNA 6000 nano chip. Height threshold [FU] and ladder peaks [nt]. Adjacent gel output represents ladder peak markers. Measured RNA concentration = 150 ng/µl.

Figure 3.2: Representative electropherogram summary of a human RNA extraction. Height threshold [FU] and ladder peaks [nt]. Adjacent gel output represents ladder peak markers. Measured RNA concentration = 77 ng/µl; rRNA Ratio [28s/18s] = 2.3 and RNA Integrity Number (RIN) = 7.1.

Figure 3.3: Representative gel output of a human RNA extraction whereby samples were unsuitable for further mRNA analysis. Lanes 1, 3, 4, 5, 6, 8, 9, 10 and 11 were excluded in the study. Ladder markers are represented on the y-axis, whilst the x-axis represents individual extracted human RNA sample.

Figure 3.4: Representative standard curve for NFκβ in RNA extracted from women with and without endometriosis, normalized against 18S. y-axis represents the cycle threshold, whilst the x-axis represents the concentration of extracted human RNA sample.

Figure 4.1: Representative electropherogram summary of a baboon endometriotic RNA extraction. Height threshold [FU] and ladder peaks [nt]. Adjacent gel output represents ladder peak markers. Measured RNA concentration = 234 ng/µl; rRNA Ratio [28s/18s] = 0.7 and RNA Integrity Number (RIN) = 6.0. Refer to Figure 3.1 for a summary of the ladder marker supplied by Agilent Technologies.

Figure 4.2: Representative gel output of a baboon RNA extraction whereby samples were unsuitable for further mRNA analysis. Lanes 1-10 and 12 were excluded in the study. As the RIN and quality was compromised. Ladder markers are represented on the y-axis, whilst the x-axis represents an individual baboon RNA sample from lyophilised tissues.
Figure 4.3: Representative standard curve for NFκβ in RNA extracted from baboons with endometriosis, normalized against 18S. y-axis represents the cycle threshold, whilst the x-axis represents the concentration of extracted human RNA sample.

Figure 5.1: Immunohistochemical staining of baboon endometrial sections with IKKβ

Figure 5.2: Immunohistochemical staining of baboon endometrial sections with Ikβα

Figure 5.3: Immunohistochemical staining of baboon endometrial sections with NFκβ

Figure 5.4: Immunohistochemical staining of baboon endometrial sections with Ubiquitin

Figure 5.5: Immunohistochemical staining of baboon endometrial sections with TNFα

Figure 5.6: Immunohistochemical staining of baboon endometrial sections with Proteasome

Figure 5.7: Immunohistochemical staining of baboon endometrial sections with IKKα

Figure 6.1: Immunohistochemical staining of baboon endometrial sections with Ubiquitin

Figure 6.2: Immunohistochemical staining of baboon endometrial sections with TNF-α

Figure 6.3: Immunohistochemical staining of baboon endometrial sections with IKKβ

Figure 6.4: Immunohistochemical staining of baboon endometrial sections with NFκβ

Figure 6.5: Immunohistochemical staining of baboon endometrial sections with Proteasome

Figure 6.6: Immunohistochemical staining of baboon endometrial sections with Ikβα
Figure 6.7: Immunohistochemical staining of baboon endometrial sections with IKK_α--- 114

Figure 7.1: Immunohistochemical staining of human endometrial sections with IKK_β--- 122

Figure 7.2: Immunohistochemical staining of human endometrial sections with $\text{Ik}_\beta\alpha$--- 123

Figure 7.3: Immunohistochemical staining of human endometrial sections with $\text{NF}_\kappa\beta$--- 125

Figure 7.4: Immunohistochemical staining of human endometrial sections with IKK_α--- 126

Figure 7.5: Immunohistochemical staining of human endometrial sections with Proteasome-- 128

Figure 8.1: Immunohistochemical staining of human endometrial sections with IKK_β proliferative phase---135

Figure 8.2: Immunohistochemical staining of human endometrial sections with IKK_β secretory phase---136

Figure 8.3: Immunohistochemical staining of human endometrial sections with $\text{NF}_\kappa\beta$ proliferative phase---138

Figure 8.4: Immunohistochemical staining of human endometrial sections with $\text{NF}_\kappa\beta$ secretory phase---139

Figure 8.5: Immunohistochemical staining of human endometrial sections with Proteasome proliferative phase---141

Figure 8.6: Immunohistochemical staining of human endometrial sections with Proteasome secretory phase---142

Figure 8.7: Immunohistochemical staining of human endometrial sections with $\text{Ik}_\beta\alpha$ proliferative phase---144
Figure 8.8: Immunohistochemical staining of human endometrial sections with $\mathrm{I\kappa\beta\alpha}$ secretory phase

Figure 8.9: Immunohistochemical staining of human endometrial sections with $\mathrm{IKK\alpha}$ proliferative phase

Figure 8.10: Immunohistochemical staining of human endometrial sections with $\mathrm{IKK\alpha}$ secretory phase

Figure 9.1: (A) The classical NF$\kappa\beta$ pathway; (B) proposed mechanism during the menstrual cycle

LIST OF TABLES

Table 2.1: Antibodies for baboon tissue immunohistochemistry

Table 2.2: Antibodies for human tissue immunohistochemistry

Table 2.3: Primers for qRT-PCR

Table 2.4: List of Reagents

Table 3.1: Human mRNA expression of transcripts within the eutopic and ectopic endometrium normalized for 18S

Table 4.1: Baboon mRNA expression of NF$\kappa\beta$ transcript within the ectopic endometrium normalized for 18S

Table 5.1: IKK-β protein immunostaining in the endometrium

Table 5.2: $\mathrm{I\kappa\beta\alpha}$ protein immunostaining in the endometrium

Table 5.3: NF$\kappa\beta$ protein immunostaining in the endometrium
Table 5.4: Ubiquitin protein immunostaining in the endometrium--------------------------93

Table 5.5: TNF-α protein immunostaining in the endometrium--------------------------95

Table 5.6: Proteasome protein immunostaining in the endometrium----------------------98

Table 5.7: IKK-α protein immunostaining in the endometrium--------------------------98

Table 6.1: Ubiquitin protein immunostaining in ectopic [E] and eutopic endometrium-----104

Table 6.2: TNF-α protein immunostaining in ectopic [E] and eutopic endometrium-------104

Table 6.3: IKK-β protein immunostaining in ectopic [E] and eutopic endometrium-------105

Table 6.4: NFκβ protein immunostaining in ectopic [E] and eutopic endometrium--------105

Table 6.5: Proteasome protein immunostaining in ectopic [E] and eutopic endometrium----110

Table 6.6: Ikβα protein immunostaining in ectopic [E] and eutopic endometrium---------112

Table 6.7: IKK-α protein immunostaining in ectopic [E] and eutopic endometrium--------112

Table 7.1. IKK-β protein immunostaining in the endometrium--------------------------121

Table 7.2. Ikβα protein immunostaining in the endometrium--------------------------121

Table 7.3. NFκβ protein immunostaining in the endometrium--------------------------124

Table 7.4. IKK-α protein immunostaining in the endometrium--------------------------124

Table 7.5. Proteasome protein immunostaining in the endometrium----------------------127
Table 8.1: IKK-β protein immunostaining in ectopic [E] and eutopic endometrium during the proliferative phase

Table 8.2: IKK-β protein immunostaining in ectopic [E] and eutopic endometrium during the secretory phase

Table 8.3: NFκβ protein immunostaining in ectopic [E] and eutopic endometrium during the proliferative phase

Table 8.4: NFκβ protein immunostaining in ectopic [E] and eutopic endometrium during the secretory phase

Table 8.5: Proteasome protein immunostaining in eutopic [E] and ectopic endometrium during the proliferative phase

Table 8.6: Proteasome protein immunostaining in eutopic [E] and ectopic endometrium during the secretory phase

Table 8.7: Iκβα protein immunostaining in ectopic [E] and eutopic endometrium during the proliferative phase

Table 8.8: Iκβα protein immunostaining in ectopic [E] and eutopic endometrium during the secretory phase

Table 8.9: IKK-α protein immunostaining in ectopic [E] and eutopic endometrium during the proliferative phase

Table 8.10: IKK-α protein immunostaining in ectopic [E] and eutopic endometrium during the secretory phases