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ABSTRACT

An Envelope Controlled Filter  (ECF) is  a  signal  processing 
system which applies an input signal's average gain to a filter 
kernel, which in turn acts upon the input signal.

This  review examines  the  algorithms  that  underlie  ECF 
systems.

1. INTRODUCTION

Envelope Controlled Filters offer a highly interactive method 
of signal processing. This is due to the systems responsiveness 
to input signal variations over time, allowing the user to have a 
degree of control over the system's response on-the-fly. This is 
particularly  useful  when  used  in  conjunction  with  musical 
performance.

1.1 Background

The ECF is commonly associated with music genres prevalent 
throughout the 1970s,  most notably  funk.  The Mu-Tron III’s 
liberal  use on seminal  recordings  of  the  era  established the 
ECF as mainstay system in signal processing.

1.2 Aim

The aim of this paper is to demonstrate understanding of ECF 
algorithms in a manner that is easily understood for the benefit 
of academic peers.

2. METHOD

In this section, we will comprehensively examine the way in 
which this ECF acts upon input  x(n) to produce output y(n). 
For reference, the systems tunable parameters (input arguments 
in MATLAB) are;

• M point window length (aka. Q factor)
• Cutoff frequency fc

• Filter type (Low Pass, High Pass or Band Pass)
• Sampling frequency  fs (though typically defined by 

the input signal)

Note:  These variables  will  be  explained in detail  during the 
Filter Implementation stage.

2.1 Envelope Following

2.1.1 Hilbert transform

MATLAB's hilbert function is used to output a gain value 
derived from the running average value of the input signal. It  
achieves this in a highly time-efficient manner by creating an 
envelope  follower  using  the  Fast  Fourier  transform and  its 
Inverse.

hilbert takes the input signal and outputs a  ReX analytic 
signal and the ImX Hilbert transform. The absolute value of the 
analytic  signal  is  calculated  and  normalised,  creating  the 
envelope  which  describes  the  input's  average  positive 
amplitude.

Hz (t )=H f (t)+i f̂ (t)= f̂ ( t)−if (t )=−iz( t)

 Hilbert transform of an analytic signal (2.1) [1]
where

Hz(t) = Hilbert transform of analytic 
signal

Hf(t) = Hilbert transform of input signal
if(t) = Imaginary N/2 signal
f(t) = Input signal
iz(t) = analytic signal

The IFFT moves this information back to the time domain 
where it may be convolved as the transfer function of the FIR 
filter, defining its gain parameter.



 An input signal and it's envelope [Fig. 2.1]

2.1.2 Delay Samples

To allow for  the envelope  processing  time,  the input  signal 
needs to be delayed by M/2 samples (ie. warm up).

2.2 FIR Filter Design

2.2.1 Finite Impulse Response

The ECF is executed as a Finite Impulse Response filter, acting 
upon the impulse for a fixed (finite) period, as opposed to an 
IIR which responds infinitely [2].

2.2.2 Ideal Low Pass Filter

The metaphorical  canvas of the filter design is an ideal low 
pass  filter.  The  reason  for  its  idyllic  label  is  due  to  all  
frequencies below the cutoff frequency being passed at unity 
gain, and all frequencies above are attenuated to 0. As a curve,  
this translates as the sinc function, given by Eq. (2.2) [3].

h [i ] =
sin(2 π f C i)

i π
(2.2) [3]

 
The sinc function is shifted so that all values lie between 0 and 
M. This becomes the standard window length for the kernel.

2.2.3 Windowed-Sinc Function

A Blackman window is  imposed on the established low 
pass to smooth its transition between stopband and passband. 
This creates a transition band (BW), defined by M. This value 
in turn defines the size of the window, and hence the amount of  
samples processed per period through the whole system.

Considering the predefined parameters outlined earlier, we 
now have all of the information required to define the filter.  
The only information the kernel requires is the gain from the 
envelope follower.

While there are many different types of window functions 
to  choose  from,  the  Blackman  window  is  superior  for  use 
within  a  windowed-sinc  function.  In  comparison  to  a 
comparable window, the Hamming, the Blackman has a slow 
roll off, but excellent stopband attenuation [3].

w [ i ] = 0.42−0.5cos(2π i / M )+

0.08cos(4π i / M )
The Blackman Window function (2.3) [3]

[Fig. 2.2]

2.5.3 State Variable Filtering

State variable filtering utilises the corresponding relationship 
between  lowpass,  bandpass  and  highpass  filters  (2.4)  to 
process the signal according to  user selection.

y l(n) = F 1 yb(n)+ y l(n−1)

yb(n) = F1 yh+ yb(n−1)
yh(n) = x (n)− yl (n−1)−Q1 yb(n−1)

(2.4) [2]
where

x(n) = input signal
yl(n) = low pass filter
yb(n) = bandpass filter
yh(n) = high pass filter 
F1 = fc related tuning parameter
Q1 = resonance related tuning 

parameter

2.3 Tuning Parameters

2.3.1 Q-factor

M,  more commonly known as the  Q setting,  is arguably the 
most significant variable of the system. The value of M defines 
the  number  of  points  in  the  roll  off  curve.  This  in  turn 
determines  the  window  size  in  relation  to  the  sampling 
frequency through it's inversely proportional relationship to the 
transition bandwidth (BW).  This relationship is approximated 
using the calculation in (2.5).
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M ≈( 4
BW )

(2.5) [3]

For  example,  if  the  sampling frequency  is  48  kHz,  and the 
value of M is 40;

BW = 0.1 fs

= 4.8 kHz

therefore 
slower roll off = smaller M value 

= larger BW value

Most people with a knowledge of DSP would be aware of the 
Q's  affect  on  the  resonance/  damping  contrast  of  the  filter. 
While this is a central aspect of the filter, if we look at the flow 
on effect of its value we can appreciate that that the Q/ M value 
is the heart of the ECF. By controlling the roll off severity, it is 
also defining how many samples are processed at a time.

2.3.2 Cutoff frequency

This  leads  us  to  the  cutoff  frequency.  Like  BW,  this  Hz 
frequency is expressed as a fraction of the sampling frequency. 
Being that  the window is  0.5  fs,  the  cutoff  frequency  value 
must lie between 0 and 0.5. 

A good starting point is the center frequency;

fc = 0.25 fs

therefore, if
fs = 48 kHz

then
fc = 12 kHz

2.3.3 LP/ HP/ BP

The filter selection simply chooses which equation from (2.4) 
to impose on the sinc function,  with one exception.  For the 

purposes of this system, a LP selection would not require any 
further information as it  is  the default  selection of the ideal 
sinc function.

2.4 Filter Implementation

The filter kernel is the impulse response containing all of the 
required parameters for each M point sample period. Once the 
kernel is convolved with the input signal, the output signal is 
produced and, providing there is input at the next sample point, 
the whole process starts again... and again... and again... until 
the input signal discontinues.

h[ i] = K
sin (2π f

c
(i− M /2))

i−M /2 [0.42−0.5 cos( 2π i
M )+0.08cos( 4π i

M )]
 Windowed-Sinc kernel (2.6)[3]

3. CONCLUSION

The  ECF  is  an  impressive  system  to  say  the  least.  It's 
implementation  of  the  Hilbert  transform  makes  for  a  very 
computationally efficient method of DSP.
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