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ABSTRACT 

This report investigates single sideband modulation theory. The 
content in this report comprises three parts： the principles and 
characteristics of single sideband modulation, the definition of 
equations used, and a conclusion on single sideband 
modulation. Some additional mathematical theorems used in 
single sideband modulation will also be introduced briefly. 
Single sideband modulation Matlab code will be presented in 
laboratory report 1. 
 

1. INTRODUCTION 

 

It is essential to modulate signals in radio transmission. This 
process reduces the wavelength of signals in order to permit the 
use of much shorter transmission aerials. Single sideband 
modulation is a widely applied method of amplitude 
modulation which uses bandwidth and electrical power more 
efficiently than the transmission of an original signal. 
   Amplitude modulation is a method of converting data into 
an alternating-current carrier waveform. The modulated data 
generated, appears as a form of signal component with a 
frequency slightly higher and lower than the carrier frequency. 
These signal components are called sidebands. Lower sideband 
signals (LSB) appear at frequencies below the carrier frequency; 
upper sideband signals (USB) appear at frequencies above the 
carrier frequency. Upper and lower sideband signals are mirror 
images in the graph of signal amplitude versus frequency as 
shown in Figure 1, and this indicates that these sidebands carry 
the same information. Demodulation of a modulated amplitude 
synthesizes the upper and lower sidebands, and produces an 
output signal. This signal has twice the bandwidth of the 
original signal. Thus single sideband modulation requires only 
one sideband which is then demodulated into a full output 
signal whilst reducing the power demand of transferring a full 
signal [1]. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure1. The graphs above show the baseband signal, the 
signal of full amplitude modulation, the upper sideband and the 
lower sideband signals of single sideband modulation of signal 
frequency versus amplitude on the X-Y axis. 



   The Hilbert Transform and the Fourier Transform are two 
mathematical operations applied to single sideband modulation. 
These operations are explained below. 
 
1.1 The Hilbert Transform 
 
The Hilbert Transform on an amplitude modulated signal 
changes its phase by 90˚. The Hilbert Transform of a signal h(t) 
is represented as ℎ෠(t). 
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h(t) and ℎ෠(ݐ)constitute a Hilbert Transform pair. It is clear that 

the Hilbert Transform convolutes g(t) with ଵ
గ௧

. 

 

The properties of the Hilbert Transform are listed below: 
1. h(t) and 	ℎ෠(ݐ) have the same magnitude spectrum. 
2. If 	ℎ෠(ݐ) is the Hilbert Transform of h(t), then the Hilbert 

Transform of 	ℎ෠(ݐ) is –h(t). 
3.h(t) and 	ℎ෠(ݐ)  are orthogonal over the entire interval 

-∞	to	∞. 
 
1.2 The Fourier Transform 
 
The Fourier Transform is a mathematical operation used to 
decompose a signal into sine and cosine components.  The 
output of the transformation represents the signal as a function 
of frequency, while the input signal is a function of time. The 
Fourier Transform can refer to four categories of operation: 
aperiodic-continuous( also called the Fourier Transform),  
periodic-continuous( also called the Fourier Series), 
aperiodic-discrete( also called the Discrete-time Fourier 
Transform), and periodic-discrete( also called the Discrete 
Fourier Transform). Digital computers can only handle the 
information that is discrete and finite in length, so the only type 
of the Fourier Transform that can be used in computer 
algorithms is the Discrete Fourier Transform. [2] 
   The formula for the Discrete Fourier Transform is 

ܺ௞ = ∑ ௡ݔ ∙ ݁
ି௜ଶగೖಿ௡ேିଵ
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The transform is sometimes denoted by the symbol F, as 
X=F{x}, F(x), or ܨ௫ . This formula shows that the Discrete 
Fourier Transform comprises N discrete frequency components. 
The N-periodic signal also provides the Discrete Fourier 
Transform with a finite length signal. 

The properties of the Discrete Fourier Transform are: 
1. The Discrete Fourier transform is an invertible, linear 

transformation. 
2. The infinite signal produced by the Discrete Fourier 

Transform is periodic with period N. 
 

3. EQUATIONS 

 

The equations relevant to single sideband modulation are 

described below: 

Where s(t) is the real-valued baseband signal to be transmitted, 
the Discrete Fourier Transform of s(t) is S(f). S(f) is a signal 
which is symmetrical about the frequency axis where ݂ = 0. 
Modulating s(t) to a carrier frequency ௖݂ moves the axis of 
symmetry to ݂ = ௖݂ and the two symmetrical sides of the axis 
are called sidebands. 
   So ̂(ݐ)ݏ is the Hilbert Transform of s(t). An analytic signal 
 :is useful to demonstrate the mathematical concept as in (ݐ)௔ݏ
  

(ݐ)௔ݏ = (ݐ)ݏ + ݅ ∙  (4)                  (ݐ)ݏ̂

 

The Discrete Fourier Transform of ݏ௔(ݐ) is equal to 2 ∙ S(݂). 
This signal has no negative components, so it can be modulated 
to a radio frequency and produce a single sideband signal. 
A representative analytic signal ݏ௔(ݐ) for this is: 

 

cos(2ߨ ௖݂ݐ)+ ݅ ∙ sin(2ߨ ௖݂ݐ) = ݁௜ଶగ௙೎௧         (5) 

 

The Discrete Fourier Transform of ݏ௔(ݐ) is δ(݂ − ௖݂). 
Modulating ݏ௔(ݐ) by ݁௜ଶగ௙೎௧ , all frequency components are 
shifted by + ௖݂ . This produces the upper sideband signal 
 .which is a real-valued signal (ݐ)ௌ஻௎ݏ
 

(ݐ)௔ݏ ∙ ݁௜ଶగ௙೎௧ = (ݐ)ௌ஻௎ݏ +  (6)          (ݐ)ௌ஻௎ݏ݅

 

(ݐ)ௌ஻௎ݏ = (ݐ)௔ݏ}ܴ݁ ∙ ݁௜ଶగ௙೎௧}                         (7) 

(ݐ)ௌ஻௎ݏ = 	ܴ݁{[s(t) + ݅ ∙ s(t)] ∙ [cos(2ߨ ௖݂ݐ) + ݅ ∙ sin(2ߨ ௖݂ݐ)]} 

       = s(t) ∙ cos(2ߨ ௖݂ݐ)− (ݐ)ݏ̂ ∙ sin(2ߨ ௖݂ݐ) 

 

The lower sideband signal ݏ௅ௌ஻(ݐ) is a mirror signal that is 
symmetrical to ݏௌ஻௎(ݐ) about the axis ݂ = ௖݂ . Due to the 
Discrete Fourier Transform characteristics, this symmetry 
means the signal ݏ௅ௌ஻(ݐ) is a complex conjugate of the signal 
 .(ݐ)ௌ஻௎ݏ
 
(ݐ)௅ௌ஻ݏ = (ݐ)ݏ − ݅ ∙  (8)                             (ݐ)ݏ̂

       = 	s(t) ∙ cos(2ߨ ௖݂ݐ) + (ݐ)ݏ̂ ∙ sin(2ߨ ௖݂ݐ) 



 

Note that: 

(ݐ)ௌ஻௎ݏ + (ݐ)௅ௌ஻ݏ = (ݐ)ݏ2 ∙ cos(2ߨ ௖݂(9)         (ݐ 

 

Equation (9) demonstrates why the product of amplitude 
modulation has a doubled signal compared to the baseband 
signal. 
The demodulation formula of single sideband modulation is: 

 

p(t) = (ݐ)ௌ஻௎ݏ ∙ cos(2ߨ ௖݂(10)                (ݐ 

 

To recover the original signals from the upper sideband signal, 
the upper sideband signal must be shifted down to its original 
range on the baseband frequency. This can be done by using a 
product detector demodulator which mixes the upper sideband 
signal with the output of a beat frequency oscillator (BFO). The 
BFO output waveform is cos(2ߨ ௖݂ݐ). 
   When the upper sideband signal is multiplied by the BFO 
waveform, this signal is shifted into two frequencies, one of 
which is unwanted. The unwanted signal can be removed by a 
low-pass filter. 

 

Figure2. The schematic representation of single sideband 

modulation. 

 

4. CONCLUSION 

 

Although single sideband modulation was the basis for long 
distance telephone communications up to the last decade, there 
are some difficulties in its application. For instance, designing 
and implementing a sharp low-pass filter is not an easy task for 
a circuit designer. Furthermore, single sideband modulation 
cannot be applied to message signals which contain significant 
energy around zero frequency, like video signals and computer 
data signals. However, if the message signal does not contain 
significant energy, like a speech signal for example, the signal 
can be modulated by single sideband modulation. 
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