2" ORDER BUTTERWORTH LOWPASS FILTER

Lab report 1
EunJu Gong 311050557
Digital Audio Systems, DESC9115, Semester 1 2012

Graduate Program in Audio and Acoustics
Faculty of Architecture, Design and Planning, The University of Sydney

1. INTRODUCTION

Developments of a filter began with the exploration of the
simple low pass filter using delay and add processing, which we
experimented in MatLab session in week 2. This led to
exploring more complex filters such as the IIR 2™ order
Butterworth filter. The ideal low pass filters can be described as
a system that allows through a certain frequency components or

octave of an original signal above cutoff frequency fc (the
passband), and rejects other frequency range (the stopband). [1]

A butterworth low pass filter (2™ order) is often referred
one that has almost maximally flat (no ripple) filter. This is
because the filter is optimized to provide the sharpest roll off
(drop in amplitude) to have flat frequency response with no
ripples in the pass band (Figurel). [2]

1.6 : ,
1.4+ __|b. Butterworth |
1.2
81
‘;:: 0.8
E 0.6 i
N\
0.4
0.2 \\\4\2 pole
R PN\ s s
0 2 3 4

Freq_uency (hertz)

Figure 1. The butterworth filter provides the flattest passband.

The Butterworth filter will be designed with the
exploration of a simple low pass FIR Filter using delay and add
processing, and its technical overview. The MatLab code was
sourced from the MatLab tutorials from the MathWorks website
and YouTube tutorials. The scripting and function were based
from a simple code that was expanded.

2. FIRFILTER

FIR Filters are digital filters with finite impulse response.
They are known as non-recursive digital filters as they do not
have the feedback loops. [3] With the exploration of the simple
low pass filter using delay and add filter that uses basic comb
filtering as the process is the first step of this project.

As shown in Fig.2, the MatLab session in week 2 in which
we experimented in MatLab using a signal with an exact copy
of itself superimposed with a very short delay of 1 sample.

5 L t :
0 o5 1 is 2
frequencylre) x10*

Figure 2. The simple low pass filter using delay and add processing,
magnitude response of the frequency spectrum. X= Frequency, Y=
Magnitude.

2.1 FIR low pass filters

It is almost impossible to get an ideal FIR low pass filter. This
is because that the impulse response required to implement the
perfect filter is infinitely long. Finite length approximations to
the ideal impulse response lead to the presence of ripples in
both the pass band and the stopband of the filter. [5]

2.2 Technical overview of a FIR filter

Finite Impulse Response (FIR) filters are one of the primary
types of digital filters in Digital Signal Processing, the other
type being Infinite Impulse Response (IIR) filters. Input and
output relation from the FIR is described by the equation below.

N-1 N-1

y(n) =D h(k)x(n—k), H(z)=> hk)z™
k=0 k=0

Equation 1. Input and output relation from the FIR filters.

As shown in Fig.3, FIR filters are easily designed to be linear
phase and simple to implement. Multiplying the impulse
response g(0),g(1),g(2) resulting from the tab delay line with
delay z~1 and sum all the values. [4]

u(n) o

Figure 3. The diagram of FIR Filters and its implementation.

3. I1IR-2"" ORDER BUTTERWORTH LOW PASS
FILTER

3.1. Technical aspects of IIR Filters

Infinite Impulse Response (IIR) filters consist of a feedback
path and it contributes to the output signal. Each output is a sum
of new input signal: x/nj, x/n-1], x[n-3]..., with previously
calculated values of the output signal: y/n-1], y/n-2], y[n-3]....,
and summation of earlier output values, all multiplied by their
respective coefficients: agy, a;, a,[6]

vinl = ayx[n] + ax[n-1] + a,x[n-2] + a;x[n-3] + -

+ byy[n-11 + byy[n-2] + byy[n-3] + -

Equation 2. The recursion equation. In this equation x[| is input signal,
y[] is the output signal, and the a’s and b’s are coefficients.

As mention in the introduction, a Butterworth low pass filter
@ order) is often referred one that has almost maximally flat
(no ripple) filter. When the ripple is set to 0%, the filter is called
Butterworth filter. [8] Because of this reason, choosing the
Butterworth filter for this project is the next process from the
simple low pass FIR Filter.

3.2. Butterworth Filters

A British engineer S. Butterworth first described Butterworth
filter in 1930. Its frequency response is given as below.

1
w 2n
1+ s(—)
Wp

Equation 3. Where the generalized equation representing a "nth" Order
Butterworth filter

|H(jw)|? =

n represents the filter order, Omega ® is equal to 2nf and
Epsilon ¢ is the maximum pass band gain, (Amax). ewp is the
3dB cut off frequency.

3.3. Making the filter

The basic MatLab code of the filter is obtained from
tutorial from the MathWorks website and also watching
YouTube tutorials provided for using MatLab.

The procedure to design a Butterworth filter is to
determine the four specifications.

1) @y, = The passband edge.

2) w; = The stopband edge.

3) Passband ripple, in dB. This value is the maximum
permissible passband loss in dB.

4) Stopband attenuation, in dB. This value is the number
of decibels the stopband is down from the passband.

The cut off frequency is 1000 Hz in this project. The
main part of the filter is the filter coefficients, which are derived

from;

[b,a]=butter(n,w,’'s’);

N is the filter order therefore, if n is 2, it will design the ond
order Butterworth filter. W is the 3dB cut off frequency, num is
1x2 vector numerator coefficients, and dom is a 1x2 vector of
denominator coefficients. [9]

[b,a]=butter(2,fc/fn);

The numerator is being the frequency cut-off and the
denominator being the Nyquist frequency, fn. From there I
applied the filter to the input wave using the IIR Filter
coefficients, b=numerator, a=denominator.

y=filter(b,a,x);

After getting IIR Filter coefficients, the next step is that apply
filter to x, which is an input wave file. Filter is an inbuilt
function of Matlab whereas “Butterworth filter” usually comes
with MatLab signal processing toolbox. To complete the filter
function, using two coefficients obtained from the previous
process is essential. Apply this filter to the input signal, x, then
simply can listen the filtered output signal, y.

The script was created to implement the function,
including importing the wave file, determining the parameters
and finally writing the filtered wave file to disc. [Sound file
‘yeah_filtered.wav’]

3.4. Parameters

The parameters for the MatLab function are:

‘fn’ — Nyquist frequency

‘y’ — output of wave file

‘x” — input of wave file

‘fs” — Sample rate

‘fc’ — cut-off Frequency (Cut off Frequency applies to an edge
in low pass filters and it characterizes a boundary between a
passband and a stopband.). Therefore, filters select low
frequencies up to the cut-off frequency fc and attenuate
frequencies higher than fc [7].

H(f) LP

h
|
|
i
'
|
i

0 f, fiHz

Figure 4. Low pass filter with cut off frequency fc.

4. RESULTS

As you can see from the diagrams below the filter response as a
result of the filter was very successful. The high frequencies
above 1kHz frequency cut-off, selected for this experiment have
been eliminated. [Figure 5 and 6] In a more complex filter other
parameters such as Q (bandwidth) would be accessible however
for this example a fixed slope is more than enough to exhibit the
filter standard behavior.

T 3 T z B £ 5 35 o s
from— i

Figure 5. A FFT frequency spectral response of the original signal.
X= Frequency, Y= Magnitude.

o £ T 75 z B B 5 T s
from—— gt

Figure 6. A FFT frequency spectral response of the filtered signal.
X = Frequency, Y= Magnitude.

As shown in Fig. 7 and 8, the diagrams are obtained by
using the myspectrogram function in MatLab (week 5
tutorial), the window size of 4096. As illustrated below, the
frequency response has changed and eliminated above the
cut off frequency 1000Hz.

Figure 7. The average magnitude spectrum of the original file.
X= Frequency, Y= Magnitude.

Figure 8. The average magnitude spectrum of the filtered file.

X= Frequency, Y= Magnitude.

It is evident from these diagrams that the filter has changed

the frequency response effectively.

5. CONCLUSION.

I drew upon many aspects of the lab sessions for the creation of
this MatLab function, and derived a logical progression from a
basic FIR filter (as from week 2) to a working and functional
low-pass Butterworth filter.

6. ADDITIONAL FILES

MatLab files: - delay add_filter.m
- butterworth_filter.m
- butterworth_filter_script.m

Audio files: - Yeah.wav
- Yeah_filtered.wav

Diagrams: - Average magnitude spectrum x
- Average magnitude spectrum y
- Delay add filter
-FFT x
-FFTy

7. REFERENCES

[1] Digital Audio Effects, Edited by Udo Zolzer, John Wiley &

Sons, 2002, ISBN: 0-471-49078-4.

[2] The scientist and engineer’s guide to digital signal
processing, Steven W. Smith, 1997.

[3] Digital Audio Effects, Edited by Udo Zolzer, John Wiley &

Sons, 2002, ISBN: 0-471-49078-4.

[4] Digital Audio Effects, Edited by Udo Zolzer, John Wiley &
Sons, 2002, ISBN: 0-471-49078-4

[5] Practical FIR filter Design in MatLab, revision1.0, Ricardo
A Losada, The MathWorks, Inc. March 31, 2003.

[6] The scientist and engineer’s guide to digital signal
processing, Steven W. Smith. 1997

[7] Digital Audio Effects, Edited by Udo Zélzer, John Wiley &
Sons, 2002, ISBN: 0-471-49078-4

[8] The scientist and engineer’s guide to digital signal
processing, Steven W. Smith. 1997

[9] The MathWorks, Inc. 1984-2012, Product Documentation,

R2012a Documentation- Signal Processing Toolbox,

<http://www.mathworks.com.au/help/toolbox/signal/ref/buttord.

html;jsessionid=9d15614f8ed617ed81676ead4bed>

