
Lab Report 1

Frequency Modulated Vibrato

Justin Leong 306179806

Digital Audio Systems, DESC9115, Semester 1 2012

Graduate Program in Audio and Acoustics

Faculty of Architecture, Design and Planning, The University of Sydney

Frequency modulated vibrato is a technique commonly

used by performing musicians, especially those who play

string instruments such as the violin or cello. The act

involves the player rolling their finger back and forth

rapidly on the stopped string which results in the sounded

note having a periodic fluctuation in pitch. Due to its

extensive use in live performance, vibrato has been

implemented, as a digital audio effect, into many

synthesised keyboards that have the option of mimicking

string instruments in an attempt to replicate their sound

more faithfully.

This vibrato function operates by putting the input signal

through a time delay system which has had a low-

frequency oscillator (LFO) applied to it. By varying the

time delay of the signal in the shape of a sine wave, the

function has done the equivalent of making the signal

spatially oscillate towards and away from the listener with

simple harmonic motion. This induces a recurring

Doppler effect on the signal and results in a periodic

fluctuation in the signal’s pitch [4]. This system can be

represented by the following signal flow

diagram:

Figure 1. Signal flow diagram of the vibrato function.

The function has two parameters: the modulation

frequency and the width of the vibrato. The modulation

frequency parameter determines the rate of pitch

oscillation applied to the input signal and is measured in

cycles per second (Hz). The width parameter controls the

peak amplitude of the time delay oscillation and is

measured in milliseconds. Figure 2 aids to illustrate this:

Figure 2. A visualisation for the width parameter of the vibrato function.

Increasing the width parameter will increase the apparent

distance through which the input signal oscillates and this,

in turn, will result in a greater variation in the pitch of the

output signal. With this understanding of the parameters,

the time delay function can basically be viewed as

follows:

Figure 3.

The modulation frequency is divided by a factor of the

sampling frequency so that the modulation frequency

parameter is measured in Hertz regardless of the input

signal’s sampling rate.

The “for loop” section of the Matlab code takes each

individual sample of the input signal and alters the delay

time of each in accordance with the sine wave function in

figure 3. In doing this, however, the function generates

delay lengths that are not integer multiples of the

sampling period (line 19 where the ZEIGER variable is

calculated). Due to the discrete nature of the digital

domain, this proves to be problematic because these

fractionally delayed samples have no output data

available to be assigned to them. To overcome this

problem, the function performs a linear interpolation

operation. This involves determining the distance that the

delayed sample lies between the two integer samples

through the use of the floor function.

i = floor(ZEIGER);

 frac = ZEIGER - i;

It then constructs an imaginary straight line between the

neighbouring integer samples and uses this line to

calculate an appropriate output value for the given

fractionally delayed sample [3]. This takes place in the

following line of code:

y(n,1) =

Delayline(i+1).*frac+Delayline(i).*(1-

frac);

Figure 4 serves to aid in visualising the linear

interpolation process:

Figure 4. Shows how output signal values are calculated for fractionally delayed samples.

It is clear that a faster sampling rate will increase the

accuracy of this interpolation process. After each input

sample has been operated on, the resulting output signal

is normalised to produce the finished result.

Appropriate values for the modulation frequency

parameter are between 3 Hz – 8 Hz. Any values higher

than 8 Hz start to produce unusual effects in the

frequency content of the output signal. Suitable values

for the width parameter are dependant on both the

frequency content of the input signal and the value used

for the modulation frequency parameter. For input

signals with low frequency content, such as that of a

double bass, a larger width value of 0.6-0.7 ms is

required due to our logarithmic perception of pitch. For

higher pitched instruments, such as the violin, a smaller

width value of 0.3-0.4 ms will usually suffice. Also, as

the modulation frequency of the vibrato is increased,

the width parameter has to decrease slightly in order to

preserve the natural timbre of the input signal.

The input sound file included with this report is the file

entitled ‘violin_openD.wav’ and the output sound file is

entitled ‘violin_openD.vibrato.wav’.

References

[1] J. Dattorno, “Effect Design, Part 2: Delay-Line

Modulation and Chorus,” J. Audio Eng. Soc., vol. 45,

no. 10, pp. 764-769, Oct. 1997.

[2] D. Marshall, “Tutorial 6: MATLAB Digital Audio

Effects”, Cardiff University, Cardiff, Wales,

http://www.cs.cf.ac.uk/Dave/Multimedia/PDF/06_CM0

340Tut_MATLAB_DAFX.pdf .

[3] G. P. Scavone, “Delay Lines”, McGill University,

Quebec, Canada,

http://www.music.mcgill.ca/~gary/618/week1/delayline

.html .

[4] U. Zölzer, DAFX – Digital Audio Effects, John

Wiley & Sons, West Sussex, England, 2002.

MATLAB code sourced from: U. Zölzer, DAFX –

Digital Audio Effects, John Wiley & Sons, West

Sussex, England, 2002.

