Biodiversity
Its measurement and metaphysics

D.M. Roche

A thesis submitted for the degree of Master of Science
University of Sydney

January 2001
Contents

Acknowledgements ii
Abstract iii

1 Biodiversity: introduction to a problem 1

2 Concepts of biodiversity 9
 2.1 Scientific versus political concepts of biodiversity 9
 2.2 Biological triage 14
 2.3 Conservation value 18
 2.3.1 Intrinsic value 20
 2.3.2 Instrumental value 22
 2.3.3 Inherent value 29

3 Measuring biodiversity 33
 3.1 A tale of three taxonomies 34
 3.1.1 Evolutionary taxonomy 35
 3.1.2 Phenetics 36
 3.1.3 Cladistics 38
 3.2 Taxonomic biodiversity 41
 3.2.1 Species richness 42
 3.2.2 Higher taxon richness 43
 3.2.3 Genetic diversity 44
 3.2.4 Phylogenetic diversity measures 47
 3.3 Raw biodiversity 57

4 Complexity 65
 4.1 An intuitive complexity concept 66
 4.2 Information content as a measure of complexity 72
 4.3 Alternative complexity measures 80
 4.4 The metaphysics of complexity 84
 4.5 Effective complexity 86

5 Biocomplexity 91
 5.1 Complexity as a measure of biodiversity 91
 5.2 The uniqueness of biocomplexity 94
 5.3 Defending biocomplexity 99
 5.4 Biocomplexity—a summary 101

6 Applied biocomplexity 105
 6.1 Estimating biocomplexity 105
 6.2 Measures of biodiversity—a retrospective 113
 6.2.1 Biocomplexity, species richness and higher taxa 113
 6.2.2 Genetic biocomplexity 115
 6.2.3 Biocomplexity and phylogenetic biodiversity 117

7 Conclusion 121
 7.1 A rational argument for biocomplexity 121
 7.2 An impassioned plea for biocomplexity 123

8 Bibliography 127
Acknowledgements

I would like to offer my sincerest thanks to Paul Griffiths for his extensive contributions to this project; in particular for his helpful guidance, patient supervision and strong coffee.

I would also like to thank James Maclaurin, Daniel Faith, Karola Stotz, John Collier and Jason Grossman for their helpful comments, and Professor Sahotra Sarkar for his contribution to a joint seminar on defining and measuring biodiversity.

Finally, to my wife Kathryn Phillips, I offer my most heartfelt thanks for, in her words, putting up with me.
Abstract

Biodiversity is a concept that plays a key role in both scientific theories such as the species-area law and conservation politics. Currently, however, little agreement exists on how biodiversity should be defined, let alone measured. This has led to suggestions that biodiversity is not a metaphysically robust concept, with major implications for its usefulness in formulating scientific theories and making conservation decisions.

A general discussion of biodiversity is presented, highlighting its application both in scientific and conservation contexts, its relationship with environmental ethics, and existing approaches to its measurement. To overcome the limitations of existing biodiversity concepts, a new concept of biocomplexity is proposed. This concept equates the biodiversity of any biological system with its effective complexity. Biocomplexity is shown to be the only feasible measure of biodiversity that captures the essential features desired of a general biodiversity concept. In particular, it is a well-defined, measurable and strongly intrinsic property of any biological system. Finally, the practical application of biocomplexity is discussed.