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Abstract

The empirical shortcomings of the purely forward-looking New Keynesian Phillips curve

(NKPC) have generally been attributed to its inability to generate sufficient persistence in

inflation. While the literature moved towards incorporating backward-looking terms into the

NKPC, their somewhat ad-hoc rationales have been an ongoing source of criticism. This the-

sis attempts to ascertain the extent to which inflation dynamics in Australia can be explained

by the NKPC without having to rely on such arbitrary backward-looking terms. Specifically,

this analysis considers whether an adapted version of Cogely and Sbordone’s (2008) model

of time-varying trend inflation is sufficient to explain the presence of the backward-looking

term in Australia’s NKPC. The results show that even when time-varying trend inflation

is taken into account, there remains a role for a backward-looking indexation. Moreover,

when one considers the closed form estimates, lagged inflation and expected future inflation

enter the NKPC with near equal weights. These results imply a considerably greater role

for backward-looking behaviour when compared to typical GMM estimates of the Australian

NKPC, which suggest that inflation is predominantly forward-looking.
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1 Introduction

The true nature of inflation dynamics is an ongoing matter of debate and investigation in mod-

ern macroeconomics. That such attention is devoted to the dynamics of inflation is due to

its importance, not only for understanding the nature of business cycles, but also for deter-

mining the appropriate path for monetary policy. Modern models of inflation are typically

derived from the seminal contributions of Calvo (1983) and Taylor (1980) which imply a purely

forward-looking New Keynesian Phillips curve (NKPC) where inflation depends on its future

expectation and the level of real marginal costs. Despite its theoretical elegance, the purely

forward-looking incarnation of the NKPC has been shown to perform poorly against the data.

The empirical shortcomings of the NKPC are generally attributed to its inability to replicate

the innate persistence which is present in inflation (see, for example: Fuhrer and Moore, 1995).

In order to enhance the degree of persistence within the model several authors have proposed

somewhat ad-hoc rationales for the inclusion of lagged inflation terms in the NKPC (see, for

example: Gali and Gertler, 1999 and Christiano, Eichenbaum and Evans, 2005). While these

‘hybrid Phillips curves’ do indeed improve the fit of the model, their questionable microfounda-

tions are an obvious source of criticism. This thesis attempts to ascertain the extent to which

inflation dynamics in Australia can be explained by the NKPC without having to rely on arbi-

trary backward-looking terms that have limited structural meaning. In particular, this analysis

considers whether an adapted version of Cogley and Sbordone’s (2008) extended model of time-

varying trend inflation is sufficient to explain inflation persistence in Australia without the need

for a backward-looking term in the NKPC.

1.1 The NKPC and the necessity of lagged inflation

To provide some context consider the following simple comparison of a purely forward-looking

NKPC and a hybrid specification. The traditional NKPC derived from the Calvo model implies

an Euler equation for inflation, πt, that takes the form1

πt = βEtπt+1 + γỹt,

1For a complete derivation see Gali (2008). Note that for the purpose of this simple illustration the output
gap is used as the driving process, rather than real marginal costs.
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where β denotes the discount factor, ỹt is the output gap and the coefficient γ is a function of

the Calvo model’s structural parameters2. Thus, according to the traditional NKPC, inflation

inherits its persistence entirely from the persistence in the driving process, which in this case

is the output gap. Now, consider a hybrid Phillips curve that allows for the inclusion of lagged

inflation

πt = µπt−1 + (1− µ)Etπt+1 + γỹt.

Accordingly, the hybrid specification allows for both forward and backward-looking elements,

the latter of which provides a channel for the “intrinsic” persistence in inflation to enter the

model.

To explore the dynamic implications of the two specifications, and without loss of generality,

they can be embedded in a basic small-scale macroeconomic model. The model is completed

with the inclusion of an IS relation and a Taylor-type policy rule, which take the form

ỹt = α1ỹt−1 − α2(it − Etπt+1) + εyt,

it = φyEtỹt+1 + φπEtπt+1 + εit,

where it is the short-term interest rate controlled by the monetary authority. For the purposes

of this illustrative example the discount factor, β, in the forward-looking NKPC is fixed to equal

1. In the hybrid specification µ = 0.5, giving equal weight to lagged and future expectations

of inflation. The coefficient α1 is set to equal 0.9, such that inflation inherits some persistence

from the output gap. Finally, the policy parameters, φπ and φy, are calibrated as 2 and 0.3

respectively.

Figure 1 displays the impulse responses of inflation to a monetary policy shock. Given

the forward-looking formulation, inflation falls immediately in response to the policy shock.

Without any intrinsic persistence, inflation must immediately deviate downwards, and then rise

to its steady-state value from below. However, in the hybrid specification inflation declines more

gradually, exhibiting the typical “hump-shaped” impulse response associated with monetary

policy transmission.

2Gali and Gertler (1999) demonstrate that γ = (1−α)(1−βα)
α

, where (1− α) is the probability that a firm may
re-optimise its price in any period.
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Figure 1
Impulse responses of inflation to a monetary policy shock
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To illustrate the implications that the two contrasting specifications have for policy, consider

a shock to the driving process, ỹt. The impulse responses of inflation to such a shock are

displayed in Figure 2 below. Again it is evident that with no inherent persistence, the forward-

looking NKPC implies that inflation must “jump” immediately in response to the shock. On the

other hand, given the hybrid form, inflation displays a more gradual response. Such divergence

in inflation dynamics has important implications for the appropriate path of monetary policy.

Figure 3 displays the policy response to the output gap shock. It is unsurprising, given the

specification of the Taylor-rule, that the central bank’s response is dictated by the path of

inflation itself. In the case where inflation is determined by the forward-looking NKPC, the

central bank responds by increasing its short-term interest rate immediately. In the hybrid case,

the interest rate is raised more gradually in comparison, but is lowered more rapidly so as to

match the path of inflation. Thus, the disparity in the dynamics of inflation implied by the two

specifications can have significant implications for the optimal design of monetary policy.

Although the above example is highly stylised, it is clear that the dynamics of inflation

implied by the traditional forward-looking NKPC are markedly at odds with the empirical
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Figure 2
Impulse responses of inflation to an output gap shock
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Figure 3
Policy responses to an output gap shock

5 10 15 20
−0.2

0

0.2

0.4

0.6

0.8
Interest rate response: Hybrid NKPC

5 10 15 20
0

0.2

0.4

0.6

0.8
Interest rate response: forward−looking NKPC

4



evidence (see, for example the VAR analysis in Christiano, Eichenbaum and Evans, 1999). Thus,

the inclusion of a backward-looking component in the NKPC has become a ubiquitous feature

in modern macroeconomic models. However, a central bank needs to understand the sources

of inflation dynamics in order to act appropriately. As alluded to above, the limited structural

interpretation attached to the backward-looking term in the hybrid NKPC gives rise to the

question of whether the apparent persistence in inflation arises from persistence intrinsic to the

price-setting process, or another source. Is there some other mechanism that can capture the

inertia in inflation without depending on ad-hoc backward-looking terms? This thesis attempts

to provide some answers to this question by examining Australia’s inflation experience with

particular reference to Cogley and Sbordone’s (2008) recently developed model based on time-

varying trend inflation.

1.2 A non-technical summary

Cogley and Sbordone (2008) propose that the apparent structural persistence present in inflation

is derived from a source distinct from the dynamics of price adjustment itself. They stress that

to understand inflation persistence it is paramount to model variation in the slow moving trend

in inflation. In general equilibrium, trend inflation is pinned down by the long-run target in the

central bank’s policy rule, and therefore contributes a highly persistent component to actual

inflation. Given that shifts in trend inflation are attributable to movements in the policy target,

it follows that this source of persistence is independent of any intrinsic persistence derived

from the price-setting process. Accordingly, Cogley and Sbordone (2008) hypothesise that the

apparent structural persistence arises due to the interaction between trend inflation and the non-

linearities of the Calvo model. Conventional versions of the NKPC described earlier abstract

from the variation in trend inflation and model persistence as a pure consequence of the dynamics

of price adjustment.

Cogley and Sbordone (2008) extend the traditional Calvo model to incorporate drifting

trend inflation. In particular, they log-linearise the equilibrium conditions of the model around

a shifting stead-state associated with time-varying trend inflation. Their model gives rise to an

extended NKPC with time-varying coefficients. This analysis adopts the two-stage minimum

distance procedure used by Cogley and Sbordone (2008) to estimate the structural parameters

of the model using Australian data. The first stage involves estimating an unrestricted reduced-
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form VAR, with drifting parameters, for inflation, real marginal costs and other variables. In the

second stage the procedure exploits the cross-equation restrictions implied by the VAR forecasts

and the theoretical model in order to estimate the structural parameters of interest.

During the course of the analysis, Cogley and Sbordone’s (2008) model is appropriately

adapted so as to capture the small open economy effects of Australia. Furthermore, this thesis

extends on Cogley and Sbordone’s (2008) analysis by providing the parameter estimates implied

by the NKPC, not only in its difference (Euler) equation form, but also in its closed form.

The closed form parameter estimates are of particular interest due the additional restrictions

imposed on the evolution of inflation expectations, which improve efficiency.

The documented results point to three main conclusions. First, although the estimated role

for backward-looking indexation is near zero in some difference equation specifications, when

one considers the closed form specifications of the NKPC, the parameter estimate increases dra-

matically, implying a high degree of indexation to past inflation. Thus, the estimates suggest

that accounting for time-varying trend inflation in the NKPC cannot explain away the inertia

in Australian inflation. Second, despite the variation in trend inflation, which alters the relative

magnitude of the NKPC coefficients, the NKPC assigns near equal weights to lagged inflation

and to expected future inflation. The enhanced magnitude of the backward-looking coefficient

is in contrast to conventional GMM estimates of the Australian NKPC, which suggest a pre-

dominant role for forward-looking behaviour. Finally, and notwithstanding the aforementioned

conclusions, the reduced-form evidence and the structural analysis reveals a marked decline in

the persistence of inflation since the Reserve Bank’s implementation of an inflation targeting

regime in 1993.

The remainder of the thesis proceeds as follows. Section 2 reviews the relevant literature and

in particular documents the theoretical evolution of the NKPC. Section 3 presents reduced-form

evidence of inflation persistence in Australia. In Section 4 the difference equation and closed

form specifications are described in the context of a simple NKPC for Australia and the two-

step estimation procedure is introduced. Section 5 documents the primary structural analysis

and results, incorporating Cogley and Sbordone’s (2008) model of inflation dynamics with time-

varying trend inflation. A robustness analysis is conducted in Section 6. Finally, Section 7

concludes.
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2 Literature Review

A central theme in the New Keynesian literature, and indeed macroeconomics, has been the

quest to better understand the dynamics of inflation. The short-run dynamics of inflation not

only affects the nature of business cycles but also has obvious implications for the appropriate

course of monetary policy. A string of papers emerged in the 1990s which aimed to provide a

new theoretical approach to the modelling of inflation dynamics. These papers expanded on

the earlier work of Calvo (1983) and Taylor (1980) that highlighted the role of staggered con-

tracts, price stickiness and the resulting monetary non-neutralities. In particular, the literature

extended the contributions of Calvo and Taylor by embedding the price setting decision within

a firm optimisation problem3. The resulting theoretical abstraction lead to a formulation that

links short-run inflation to expected future inflation and a measure of real activity (typically,

real marginal costs or the output gap). This formulation of inflation dynamics has become

known as the New Keynesian Phillips curve (NKPC) and is a central feature of the canonical

New Keynesian macroeconomic theory.

Estimation of the NKPC in its original formulation has had limited success at best. Despite

its theoretical virtue and derivation from microfoundations the empirical literature has raised

doubts over the validity of the NKPC. In particular a number of studies in the U.S have concluded

that the purely forward-looking incarnation of the NKPC generates too little inflation persistence

and consequently does not provide a good match to the data. According to the New Keynesian

formulation inflation is completely forward-looking, having no intrinsic persistence. Instead

any persistence in inflation is inherited entirely from the persistence in the driving process (i.e.

real marginal costs or output). As evidenced by the illustrative examples in the preceding

section, following a shock to monetary policy or, indeed, any shock which affects the driving

process, inflation can jump immediately in response. However, a key feature of monetary policy

transmission is that inflation demonstrates a gradual response to policy actions over several

periods – a characteristic that the traditional NKPC cannot replicate4. Furthermore, Fuhrer

and Moore (1995) showed that the basic NKPC derived from Calvo-type staggered contracting

3Kimball (1995) and Yun (1996) pioneered the use of Calvo-type price contracts within stochastic, optimising-
agent models.

4Evidence of such a gradual inflation response has been well documented in the vector autoregression (VAR)
analysis of Christiano, Eichenbaum and Evans (1999). Other references include Sims (1992), Gali (1992) and
Bernanke and Mihov (1998).
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models implied a degree of inflation persistence that was far lower than was apparent in the U.S.

inflation data for the post-war period.

In order to address the issue of inflation persistence the empirical literature moved towards

adding ad-hoc backward-looking terms to the NKPC, resulting in the ‘hybrid Phillips curve’.

The hybrid curve typically contains a lag of inflation as an explanatory variable and accordingly

this formulation has been shown to enhance the degree of inflation persistence within the model.

A seminal formulation of the hybrid Phillips curve was introduced by Gali and Gertler (1999).

Essentially, the authors postulated that there exists a proportion of backward-looking firms

who, rather than behaving like firms in Calvo’s model, follow a simple rule-of-thumb that is

based on the recent history of the aggregate price level. Gali and Gertler’s (1999) influential

results suggested that, while the purely forward-looking version of the NKPC is rejected by the

data, the hybrid specification performs reasonably well and moreover it continued to indicate

a predominant role for forward-looking behaviour. They interpreted the dominant role for

forward-looking behaviour as giving credence to theoretical underpinnings of the NKPC and in

this respect they suggested that the NKPC does indeed provide useful insights into the nature

of inflation dynamics. The authors also demonstrated that measures of real marginal costs are

better suited as the relevant determinant of inflation (which is indeed what the theory suggests),

as opposed to an ad-hoc measure of the output gap. Gali and Gertler’s (1999) findings established

the empirical virtue of the hybrid specification, which has since become commonplace in the new

generation of macroeconomic models used in central banks throughout the world.

Several authors, however, have since suggested that the seminal results of Gali and Gertler

(1999) were the product of specification bias or questionable estimation methods. Rudd and

Whelan (2005) assert that Gali and Gertler’s (1999) finding of a significant role for expected

future inflation in determining current inflation may, in fact, reflect the effects of the variables

included in their instrument set, which were omitted from the hybrid model specification. If

these instrument variables directly cause inflation then the estimation results may be biased in

finding a role for forward-looking behaviour even if that role is truly absent or negligible. They

also suggested that Gali and Gertler’s (1999) results were likely a product of misspecification

given that the estimates of the closed form specification were significantly different from those

obtained from estimating the structural form directly. In their detailed response, Gali, Gertler

and Lopez-Salido (2005; henceforth GGLS) were able to refute many of the criticisms levelled
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by Rudd and Whelan (2005). However, Gali and Gertler’s (2008) original formulation of the

hybrid Phillips curve remains the subject of criticism largely due to its somewhat ad-hoc nature

and lack of any convincing microfoudations. As clarified by Rudd and Whelan (2005), Gali and

Gertler’s (2008) specification involving a fixed fraction of backward-looking price-setters each

using an arbitrary and fixed rule-of-thumb can hardly be considered structural in any meaningful

sense. GGLS (2005) conceded that a more coherent rationale for the role of lagged inflation in

the hybrid NKPC was needed.

The theoretical literature has proposed several other rationales for the presence of lagged

inflation terms in the NKPC. Christiano, Eichenbaum and Evans (2005) introduced a lagged

inflation term by imposing a form of price indexation whereby firms who cannot optimally

reset their price under the pretences of the Calvo model instead index their price to a weighted

average of past inflation. Fuhrer and Moore (1995) proposed an alternative contracting model

which differed from the typical Taylor/Calvo-type specification in that it focused on a two-

sided average of the inflation rate rather than the price level. Unfortunately such models which

incorporate backward indexation have also suffered criticism, despite their structural superiority

to models which employ simple rule-of-thumb behaviour. In particular, backward indexation

of prices implies that all prices in the economy change every period. As detailed by Chari,

Kehoe and McGrattan (2008), such a model of price dynamics is strongly at odds with evidence

from microdata. For example, Nakamura and Stiensson (2008) show that consumer prices in

the U.S are fixed for many periods at a time, with an implied median duration of 4 – 5 months

(including sales). Thus, although backwardly indexed models can mechanically generate inflation

persistence in the NKPC the mechanism itself is inconsistent with the behaviour of prices at the

micro level.

The debate over the empirical success of the basic forward-looking NKPC specification con-

tinues today, with the ability of the specification to replicate the persistence of inflation an

important focus (Fuhrer, 2009). More recently the theoretical literature has diverged from

hybrid abstractions with the aim of providing new approaches to modelling the NKPC while

capturing the apparent inertia in inflation. One such approach has been documented in a se-

ries of papers, beginning with Cogley, Primiceri and Sargent (2010) and Cogley and Sbordone

(2008), which emphasise the importance of accounting for “trend inflation” in a model of in-

flation dynamics. Cogley and Sbordone (2008) assert that the slow-moving trend in inflation

9



contributes a highly persistent component to the actual inflation series. However, this source

of persistence is obviously different from any intrinsic persistence derived from the dynamics of

price adjustment itself. In general equilibrium, it is the long-run target in the central bank’s

policy rule that determines trend inflation, and any drift in trend inflation should ultimately

be attributed to shifts in the target. The authors hypothesise that the structural persistence

evident in inflation, and documented in the empirical literature discussed above, arises due to

the fact that conventional models neglect the interaction between time-varying trend inflation

and the non-linearities of a more exact version of the Calvo model. Motivated by their hypoth-

esis, Cogley and Sbordone (2008) derive an innovative model where, unlike in the typical New

Keynesian paradigm, steady-state inflation is not constant. Thus, the traditional log-linearised

version of the NKPC, and its hybrid counterpart, no longer apply. The authors extend the orig-

inal Calvo model to incorporate trend inflation. Specifically, they log-linearise the equilibrium

conditions of the model around a shifting steady-state associated with a time-varying inflation

trend. Cogley and Sbordone’s (2008) model culminates in an extended NKPC in which the

coefficients are functions not only of the model’s structural parameters, but also trend inflation.

Cogley and Sbordone’s (2008) empirical findings were profound and somewhat controversial.

The authors found that once the model incorporates time-varying trend inflation, there is no

need for including a lag of inflation to account for its persistence. Accordingly, their specification

suggests the NKPC is purely forward looking, and provides a possible alternative to the heavily

criticised hybrid Phillips curve. As stipulated in Fuhrer (2009) such a formulation of inflation

dynamics is an important contribution to the literature.

It should be noted that a recent study by Barnes, Gumbau-Brisa, Lie and Olivei (2011;

henceforth BGLO) examines the robustness of the findings of Cogley and Sbordone (2008).

One of their main results indicates that simply changing the form of the augmented NKPC

– from a difference equation to a closed form equation – completely reverses the findings of

Cogley and Sbordone (2008). The disparity in the parameter estimates arises due to the way

inflation expectations enter the model. In the difference equation specification, as estimated

by Cogley and Sbordone (2008), inflation expectations are left unconstrained. However, due

to the nature of the closed form solution, inflation expectations are themselves restricted so as

to be model-consistent. In the context of minimum distance estimation, such additional disci-

pline on inflation expectations may be particularly relevant in determining an appropriate model
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of inflation dynamics. BGLO (2011) conclude that time-varying trend inflation is, in fact, in-

sufficient to explain inflation persistence and as a result the NKPC is not purely forward-looking.

Australian Studies

Documentation of inflation persistence in Australia has been limited with the bulk of the research

having been conducted in the U.S. and Europe5. Benati (2008) documents empirical evidence

on changes in the reduced-form persistence of inflation for a broad array of developed countries,

including Canada, New Zealand and the United Kingdom. His analysis draws evidence from long

samples and focuses on differences in estimated inflation persistence across different monetary

policy regimes. While the analysis does not focus specifically on Australia’s inflation experience,

a key finding of the paper is that inflation persistence has declined dramatically in recent years

for all countries that have adopted an inflation targeting monetary policy. In Australia the

inflation targeting framework was first adopted by the Reserve Bank in 1993 as an operational

interpretation of its price stability mandate6. Not only has inflation fallen since the adoption

of an explicit target, but Benati’s (2008) results also suggest that inflation in Australia should

exhibit a marked decline in persistence post-inflation targeting7.

Discussion of structural sources of inflation persistence in Australia is relatively sparse.

Gruen et al. (1999) discusses the development of the Phillips curve in Australia from the 1950s

– 1990s. Although their paper does not focus on the issue of inflation persistence, the authors’

preliminary results indicate that inflation expectations are predominantly backward-looking.

Nimark (2009) estimates a structural model of the Australian economy and employs an ad-hoc

hybrid Phillips curve, similar to the version discussed above, with one lag of inflation. Similarly,

Jaaskela and Nimark (2011) employ a hybrid Phillips curve with an indexation parameter in

their medium-scale New Keynesian model of the Australian economy. A recent study by Kuttner

and Robinson (2010) discusses the flattening of the Phillips curve with particular reference to the

experiences in the U.S and Australia. The authors follow a rule-of-thumb price-setting model as

5For a discussion of inflation persistence in Europe see, for example: Altissimo, et al. (2006) and Angeloni, et
al. (2006).

6International institutions, such as the OECD and IMF, have accepted the above dating. The regime was not
formally endorsed until 1996, when a new government signed a letter of agreement with a new Governor, Ian
Macfarlane, upon his appointment.

7A reduced-form analysis of inflation persistence in Australia is conducted in Section 3 of this thesis.
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stipulated in Gali and Gertler (1999) and estimate the resulting hybrid NKPC for both the U.S

and Australia. The authors’ results for Australia indicate an economically sizeable flattening of

the Phillips curve since 1960. More importantly, for this context, their reduced-form estimates

of the Australian NKPC show that while current inflation does have a positive and significant

backward-looking component, it is predominantly dependent on future expectations of inflation.

The empirical literature on the Australian NKPC emphasises that the open economy as-

pects of the inflationary process demand greater attention than in structural models of the U.S

economy. An innovative approach to embedding open economy aspects within a New Keyne-

sian framework was developed by Monacelli (2005)8. In essence, Monacelli (2005) postulates

that the domestic economy is populated by two types of firms: domestic producers and im-

porters. Prices of domestically produced goods follow Calvo dynamics and may be adjusted

for backward-looking behaviour as in Nimark (2009) and Kuttner and Robinson (2010). The

Australian models employed by Nimark (2009), Jaaskela and Nimark (2011) and Kuttner and

Robinson (2010) simplify Monacelli’s (2005) specification by assuming the law of one price holds

for import prices “at the docks”. The two-sector generalisation yields two Phillips curves where

domestic CPI inflation is simply the weighted average of inflation in the two sectors. Kut-

tner and Robinson (2010) make the simplifying assumption that the Calvo parameter governing

price-stickiness is constant across both the domestic and importing sector – resulting in a single

equation aggregate Phillips curve, which is the form used in the subsequent empirical analysis.

It is evident from the above survey that although the literature recognises the presence of a

backward-looking component in the Australian NKPC, there has been no extensive discussion

as to its source and whether there are possible mechanisms which do not rely on an ad-hoc

backward-looking inflation term to capture its apparent inertia. This thesis attempts to ascertain

whether a model which exploits the interaction between price adjustment and drifting trend

inflation is adequate to explain the apparent structural inflation persistence that is evident in

the Australian data.

8And its closely related precursor, Gali and Monacelli (2005).

12



3 Reduced-Form Inflation Persistence in Australia

In order to contextualise the structural investigation that is pursued in the following sections,

it is appropriate to first establish reduced-form evidence of inflation persistence in Australia.

There is no single definitive measure of reduced-form persistence. While the empirical literature

has established a broad array of measures to capture the persistence in inflation, most methods

tend to be based on the extent of its serial correlation. In this section a truncated version of

Fuhrer’s (2009) analysis of reduced-form inflation persistence is adapted to Australian data.

Specifically, three measures of reduced-form persistence are presented:

• Unit root tests;

• First-order autocorrelations of the inflation series;

• Autocorrelation functions of the inflation series.

3.1 Inflation data

Three key measures of inflation are used for the reduced-form analysis. The relevant price

indexes are all quarterly measures and include the GDP deflator, trimmed-mean consumer price

index (CPI) and the non-farm GDP deflator (NF GDP). Each inflation series is defined as 400

times the first difference of the logged price index. Figure 4 presents the three inflation series

for the sample period 1960:Q1 - 2007:Q2. The figure displays well-known historical trends in

Australian inflation. Inflation was relatively low throughout the 1960s averaging approximately

3% per annum. With the onset of the oil crisis and the corresponding cost-push inflation

episode, inflation rose dramatically during the 1970s, with CPI peaking at 21% in 1974. It then

remained high, with CPI peaking again at 11.5% in 1982. Despite the fact that inflation in most

advanced countries fell sharply in the early and mid 1980s and remained low thereafter Australia

continued to run fairly high inflation with CPI averaging 7.7% for the remainder of the decade.

The recession of the early 1990s lead to a significant reduction in inflation, reaching levels as low

as 1.5% in 1992. Low inflation was maintained during the remainder of the 1990s, coinciding with

the Reserve Bank’s adoption of an inflation targeting regime in 19939. In addition, fluctuations

in inflation have been considerably smaller than in the pre-inflation targeting years. With

9The inflation target is characterised as maintaining consumer price inflation between 2 and 3 percent, on
average, over the cycle.
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Figure 4
Inflation in Australia
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the Australian economy near full employment and experiencing strong growth, inflation rose

slightly during the 2000s, with an average of 2.71%, nearing the upper bound of the target10.

The figure also captures the high correlation amongst the three inflation series, however, the

pursuant statistical tests reveal notable variations across the different measures of inflation and,

in particular, in their degrees of persistence.

3.2 Unit root tests

The preliminary gauge of persistence is a conventional unit root test. If inflation contains a unit

root its persistence is infinite. In fact, if a series contains a unit root a shock in period t has an

influence in all subsequent periods. Early US studies seemed to suggest the presence of a unit

root in inflation11. However, more recent studies indicate that US inflation, while persistent,

is stationary. Most authors attribute this stationarity to the more rigorous monetary regime

adopted in the US post-Volcker and in particular, the Federal Reserve’s low inflation goal. Table

10Note that the sample period used throughout this analysis ends at 2007:Q2. The subsequent GFC was an
extraordinary event that perhaps requires deeper thinking about inflation dynamics.

11See, for example: Barsky (1987) and Ball and Cecchetti (1990).

14



1 presents the results of conventional unit root tests for Australian inflation, testing the null

hypothesis that the series contains a unit root. Two samples are tested: a long sample (1960:Q1

- 2007:Q2), and a shorter sample covering the inflation targeting period (1993:Q1 - 2007:Q2).

The results for Australian inflation are definitive – for all measures of inflation and for both

samples the augmented Dicky-Fuller test (ADF) and the Phillips Perron test reject the null of

a unit root. It should be noted, however, that the CPI measure only weakly rejects the null for

both tests in the longer sample. In the inflation targeting period one can strongly reject the

possibility of a unit root in Australian inflation, which is consistent with the fact that inflation

has been well anchored around its 2-3% target level.

Table 1
Unit Root Tests for Inflation
p-values, H0: series has a unit root

1960:Q1 - 2007:Q2 1993:Q1 - 2007:Q2

ADF Phillips Perron ADF Phillips Perron

CPI 0.0096 0.0448 0.00 0.00

GDP 0.00 0.00 0.00 0.00

NF GDP 0.00 0.00 0.00 0.00

3.3 First-order autocorrelations

The previous tests irrefutably rejected the possibility that Australian inflation has a unit root.

Proceeding naturally from this point, the next simple measure of persistence involves an ex-

amination of the first-order autocorrelation coefficient for the inflation series. Table 2 presents

the first-order autocorrelations for the long sample and for the inflation targeting period. The

results are largely in line with the hypothesis that the Reserve Bank’s adoption of an explicit

inflation target has lead to a reduction in the persistence of inflation. For the long sample, per-

sistence is relatively high according to all three measures, while there is a marked decline after

the introduction of the target. It is worthy to note that for both sample periods CPI displays

significantly higher serial correlation than the two price deflators.
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Table 2
First-order Autocorrelations of Inflation

1960:Q1 - 2007:Q2 1993:Q1 - 2007:Q2

CPI 0.8821 0.3386

GDP 0.5224 0.1257

NF GDP 0.6084 0.2598

3.4 Autocorrelation functions

Extending on the previous results this section presents the full autocorrelation functions for the

three measures of inflation. The ith autocorrelation, ρi, of some stationary variable xt is defined

as:

ρi =
E(xtxt−i)

V (x)
,

where V (x) is the variance of x. The variable’s corresponding autocorrelation function is ex-

pressed as the vector of autocorrelations of current period x with each of its own lags xt−i from

i = 1 to k:

A = [ρ1, ..., ρk].

The autocorrelation function captures much of the information in a time series variable, and

thus it may be regarded as the most complete measure of persistence. Figure 5 displays the

full autocorrelation functions for the two relevant sample periods12. The figure expands on

the results in Table 2. All three measures of inflation display relatively high reduced-form

persistence for the longer sample. Again, it is evident that the CPI measure is considerably

more persistent that both the GDP and NF GDP measures. Since 1993 it is clear that all three

inflation measures have exhibited a lesser degree of persistence, giving credence to the notion

that the Reserve Bank’s inflation target has lead to a change in inflation behaviour.

3.5 Conclusions from the reduced-form evidence

From the above analysis one can strongly dismiss the possibility that Australian inflation pos-

sesses a unit root component. While, at face value, this initial result may seem trivial, it has

12The correlation of inflation with its first 12 lags are presented, that is k = 12.
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Figure 5
Autocorrelations of Inflation data
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important practical implications as discussed in Fuhrer (2009). In particular, the absence of a

unit root implies that inflation may be regarded as a stationary process, which will eventually

return to the Reserve Bank’s inflation target in finite time.

The examination of the autocorrelation properties of inflation yielded interesting results. As

with most other developed countries, inflation in Australia exhibited relatively high persistence,

in the reduced-form sense, from the 1960s through to the mid-to-late 1980s. After the intro-

duction of the inflation target in 1993 the evidence tends to suggest a significant decrease in

the persistence in inflation, which is in line with Benati’s (2008) results regarding the inter-

national experience under inflation targeting regimes. As noted above, it is evident that the

trimmed-mean CPI inflation series exhibited a markedly higher degree of autocorrelation than

both the GDP deflator and non-farm GDP deflator. These results are indicative of the fact

that the trimmed-mean CPI is an underlying measure that abstracts from much of the noise

and transitory fluctuations captured in headline CPI. While these transitory fluctuations affect

Australian consumers, from a modelling perspective they are difficult to reconcile structurally,

thus it is important to analyse such underlying measures. In the following sections, a structural
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analysis of inflation persistence will be undertaken, which will assist in identifying the economic

sources of the aforementioned reduced-form persistence.
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4 A Baseline New Keynesian Phillips Curve for Australia

This section considers a variant of the Calvo (1983) pricing model augmented to include an

indexation mechanism in the vein of Christiano, Eichenbaum and Evans (2005). In each period

t, every firm faces a constant probability, (1 − α), of being able to adjust its nominal price

optimally. The firms’ ability to re-optimise its price is independent across firms and time.

Firms that cannot re-optimise their price can still update their current price according to an

indexation mechanism based on lagged aggregate inflation. In line with BGLO (2011) the

indexation mechanism is adapted to allow for two lags of inflation:

Pt(i) = (Πτ
t−1Π1−τ

t−2 )ρPt−1(i).

Here Πt−1 = Pt/Pt−1 is the aggregate gross inflation rate. The parameter ρ ∈ [0, 1] governs

the degree of indexation, with ρ = 0 stipulating the absence of indexation (thus, there is no

mechanical updating of prices for firms who cannot re-optimise, resulting in a purely forward-

looking NKPC), and ρ = 1 denotes full indexation to weighted average of lagged inflation. The

weight parameter, given by τ ∈ [0, 1], represents the importance given to t−1 aggregate inflation

relative to t− 2 aggregate inflation. In this framework, where trend inflation is zero, the NKPC

takes the form13

πt =

[
ρτ − βρ(1− τ)

1 + βρτ

]
πt−1 +

[
ρ(1− τ)

1 + βρτ

]
πt−2 +

[
β

1 + βρτ

]
Etπt+1 +

[
λ

1 + βρτ

]
mct + ut, (1)

where π is inflation, mc is real marginal costs and 0 < β < 1 is a discount factor. The coefficient

λ is a function of the model’s deep parameters, where λ = (1 − α)(1 − αβ)/(α + αθω). The

parameter θ > 1 is the Dixit-Stiglitz elasticity of substitution across differentiated goods, and ω

is the elasticity of firms’ marginal cost to their own output. The above expression of the NKPC

also nests more familiar formulations. When τ = 1 only t−1 aggregate inflation is relevant, and

as such, the specification may be collapsed into a familiar reduced-form:

πt = γbπt−1 + γfEtπt+1 + λ̃mct, (2)

13See Christiano, Eichenbaum and Evans (2005) for a complete derivation.
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where γb = ρ/(1 + βρ), γf = β/(1 + βρ) and λ̃ = λ/(1 + βρ). This generalisation is commonly

referred to as the hybrid NKPC and is of the same form as the reduced-form NKPC derived

in Gali and Gertler (1999) who introduce lagged inflation through rule-of-thumb pricing, rather

than an indexation mechanism14. The coefficients γb and γf measure the backward-looking

and forward-looking components of inflation respectively. Nonetheless, the inclusion of τ in the

subsequent estimations is significant from an empirical perspective as it may act to reduce the

effect of misspecification bias in the structural estimates.

From (1) it is possible to solve the NKPC forward so as to obtain a closed form expression

of inflation. Since (1) holds in every period, future expectations of inflation are constrained

so as to follow the structure implied by the NKPC. Iterating forwards yields the closed form

expression of the NKPC

πt = ρτπt−1 + ρ(1− τ)πt−2 + λ
∞∑
k=0

βkEtmct+k + ut. (3)

4.1 Open Economy Dimensions

The empirical literature on the Australian NKPC emphasises that the open economy aspects of

the inflationary process demand greater attention than in structural models of the U.S economy.

An innovative approach to embedding open economy aspects within a New Keynesian framework

was developed by Monacelli (2005). In essence, Monacelli (2005) postulates that the domestic

economy is populated by two types of firms: domestic producers and importers. Both domestic

producers and importers set prices according to the augmented Calvo mechanism detailed above,

where a fraction αd of firms producing domestically and a fraction αm of importing firms cannot

adjust their prices optimally in a given period. As described in Nimark (2009) the two-sector

generalisation yields two Phillips curves of the form

πdt =

[
ρdτd − βρd(1− τd)

1 + βρdτd

]
πdt−1 +

[
ρd(1− τd)
1 + βρdτd

]
πdt−2 +

[
β

1 + βρdτd

]
Etπ

d
t+1

+

[
λd

1 + βρdτd

]
mcdt + υt,d, (4)

14Although the reduced-form NKPC in (2) is of the same form as that in Gali and Gertler (1999), the coefficients
represent different functions of the models’ structutral parameters.
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and

πmt =

[
ρmτm − βρm(1− τm)

1 + βρmτm

]
πmt−1 +

[
ρm(1− τm)

1 + βρmτm

]
πmt−2 +

[
β

1 + βρmτm

]
Etπ

m
t+1

+

[
λm

1 + βρmτm

]
mcmt + υt,m. (5)

Domestic CPI inflation is simply the weighted average of inflation in both sectors:

πt = (1− φ)πdt + φπmt , (6)

where φ is the share of imports in consumption, and the superscripts d andm denote domestically

produced goods and imports respectively15.

The Australian models employed by Justiniano and Preston (2010) and Jaaskela and Nimark

(2011) measure the marginal cost of importers as the relative price of imported goods ‘at the

dock’ (where the law of one price holds) to the retail price of imported goods16. In accordance

with Monacelli (2005), these models assume that in setting the retail price of their goods, the

importers solve a dynamic markup problem (à la Calvo), thus providing a short-run channel

for deviations from the law of one price17. However, in estimating such models difficulties

arise due to the fact that there is no direct measure of the retail price of imported goods.

Accordingly, Justiniano and Preston (2010) and Jaaskela and Nimark (2011) treat these prices

as an unobserved variable and estimates are achieved using the Kalman filter. This thesis follows

the derivation in Kuttner and Robinson (2010), who make the simplifying assumption that the

Calvo parameter governing price-stickiness is constant across both the domestic and importing

sector, that is αd = αm = α. This is a strong assumption that is not supported in either

Nimark (2009) or Justiniano and Preston (2010), however, given the mixed evidence on the

relative duration of prices it is an appropriate compromise for this exercise18. The simplifying

assumptions allow for the derivation of a single equation aggregate Phillips curve19.

15Note that in the above Phillips curves the slope coefficients, λd and λm, are functions of their respective
sector-specific structural parameters.

16The analysis of Justiniano and Preston (2010) and Jaaskela and Nimark (2011) are pursued using generalisa-
tions of the small open-economy framework proposed by Monacelli (2005) and its closely related precursor Gali
and Monacelli (2005).

17Complete exchange rate pass-through is attained only asymptotically, implying a long-run holding of the law
of one price.

18Nimark (2009) finds the duration of prices to be less for domestic goods relative to imported goods, whereas
Justiniano and Preston (2010) find the opposite.

19It is also assumed that the degree of indexation is common across both sectors, i.e. ρd = ρm = ρ. This
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Combining (4), (5) and (6) yields

πt =

[
ρτ − βρ(1− τ)

1 + βρτ

] [
(1− φ)πdt−1 + φπmt−1

]
+

[
ρ(1− τ)

1 + βρτ

] [
(1− φ)πdt−2 + φπmt−2

]
+

[
β

1 + βρτ

] [
(1− φ)Etπ

d
t+1 + φEtπ

m
t+1

]
+

[
λ

1 + βρτ

] [
(1− φ)mcdt + φmcmt

]
.

Thus, it follows from (6) that the Australian NKPC in its difference equation form can be written

as

πt =

[
ρτ − βρ(1− τ)

1 + βρτ

]
πt−1 +

[
ρ(1− τ)

1 + βρτ

]
πt−2 +

[
β

1 + βρτ

]
Etπt+1

+

[
λ

1 + βρτ

] [
(1− φ)mcdt + φmcmt

]
. (7)

In a similar vein to that described previously, (7) can be solved forwards to obtain the closed

form representation of the Australian NKPC:

πt = ρτπt−1 + ρ(1− τ)πt−2 + λ

∞∑
k=0

βkEt

[
(1− φ)mcdt+k + φmcmt+k

]
+ ut. (8)

4.2 Econometric Methodology

This thesis follows the approach in Cogley and Sbordone (2008) in estimating the deep structural

parameters of the augmented Calvo model: α, θ, ρ and τ . Since the main interest is assessing

the importance of the inertial component of inflation the parameters β and ω are pinned down

for ease of estimation. The strategic complementarity parameter ω is calibrated at a value of

0.429, while β is constrained to equal 0.99 in all estimations20. Thus, the focus of the estimation

procedure is to provide inferences about the elasticity of substitution across differentiated goods,

θ, the frequency of optimal price readjustment, reflected in the estimates of α, and of most

relevance, the extent of indexation to past inflation, ρ.

The estimation procedure employs the two-stage minimum distance framework as detailed in

Cogley and Sbordone (2008)21. Such a procedure exploits cross-equation restrictions between the

assumption is similarly imposed in Kuttner and Robinson (2010) and Nimark (2009) who assume that the share
of firms that use rule-of-thumb pricing is the same for domestic producers and importers. As a corollary it is also
assumed that τd = τm = τ .

20The strategic complementarity parameter is defined as ω = 1/(1− δ), where 1− δ is the Cobb-Douglas labour
elasticity. Thus, ω = 0.429 is consistent with a value of δ = 0.3.

21The estimation procedure follows Cogley and Sbordone (2008) and its subsequent adaptation in BGLO (2011).
Their notation is retained wherever possible.
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structural parameters of the Calvo model and those of an unrestricted reduced-form VAR. The

VAR estimated in the first stage of the procedure is also used to represent agents’ expectations

about future inflation and real marginal costs.

Consider a time series vector xt that includes n variables. For now, xt is constrained to

include period t inflation and real marginal costs of both domestic producers and importers22,

so that n = 3. It is assumed that the law of motion of xt can be expressed as a reduced-form

VAR(p). Then, defining a vector zt = (x′t, x′t−1, ..., x′t−p+1)′, the VAR(p) may be expressed as

zt = Azt−1 + εz,t, (9)

where A is a square matrix containing the VAR coefficients in the first n rows23. In order

to exploit the cross-equation restrictions detailed below it is assumed that the solution to the

structural NKPC model for the variables in xt coincides with the reduced-form representation

captured by the VAR in (9).

As mentioned above, the conditional expectation of a variable yt+j ∈ xt+j at time t can be

obtained from the first-stage VAR, so that

Etyt+j = e′yA
jzt. (10)

The vector e′y is a selection vector that isolates yt in zt. For example, if yt is the second of three

variables in xt and the VAR is of order 2, then:

e′y = [ 0 1 0 0 0 0 ].

22In subsequent sections with time-varying trend inflation xt will be extended to include other variables, such
as output growth and a nominal discount factor.

23The coefficient matrix A has all roots inside the unit circle; εz,t is a vector of i.i.d. residuals. For simplicity
the regression intercepts are omitted here, however, they play an essential role in the NKPC with time-varying
trend inflation and will be appropriately introduced in the pursuant sections.
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4.2.1 The Difference Equation Specification

Taking expectations as at t − 2 of the Australian NKPC as expressed in (7) and using the

conditional expectation rule (10) yields

e′πA
2zt−2 =

[
ρτ − βρ(1− τ)

1 + βρτ

]
e′πAzt−2 +

[
ρ(1− τ)

1 + βρτ

]
e′πIzt−2 +

[
β

1 + βρτ

]
e′πA

3zt−2

+ (1− φ)

[
λ

1 + βρτ

]
e′mcdomA2zt−2 + φ

[
λ

1 + βρτ

]
e′mcimA2zt−2, (11)

where I denotes an identity matrix of the same dimensions as A24. The above restriction captures

the essence of the minimum distance problem, where the left-hand side of (11) represents the

conditional expectation of inflation obtained from the reduced-form VAR, and the right-hand

side represents inflation expectations as derived from the structural NKPC. If inflation is truly

determined according to the NKPC then the reduced-form VAR forecast of inflation and the

forecast according to the NKPC must be equivalent. Thus, imposing that (11) holds for all

realisations of zt yields a vector of non-linear cross-equation restrictions involving the VAR

coefficient matrix A and the structural parameters of the NKPC, which are collected in the

vector ψ = [α, θ, ρ, τ ]. From (11) it follows that

e′πA
2 =

[
ρτ − βρ(1− τ)

1 + βρτ

]
e′πA +

[
ρ(1− τ)

1 + βρτ

]
e′πI +

[
β

1 + βρτ

]
e′πA

3

+ (1− φ)

[
λ

1 + βρτ

]
e′mcdomA2 + φ

[
λ

1 + βρτ

]
e′mcimA2

≡ gDE(A,ψ). (12)

Or, equivalently

FDE(A,ψ) ≡ e′πA
2 − gDE(A,ψ) = 0′, (13)

where 0 is a vector of zeroes, the same size as e′π and the superscript DE indicates that the

expression applies to the NKPC in its difference equation form.

The constrained case, imposing τ = 1, yields the following cross-equation restrictions, where

24The subscripts mcdom and mcim denote real marginal costs corresponding to domestic producers and im-
porters respectively.
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expectations are taken at t− 1:

e′πA =

[
ρ

1 + βρ

]
e′πI +

[
β

1 + βρ

]
e′πA

2

+ (1− φ)

[
λ

1 + βρ

]
e′mcdomA + φ

[
λ

1 + βρ

]
e′mcimA

≡ gDEcon (A,ψ). (14)

Equivalently25,

FDE
con (A,ψ) ≡ e′πA− gDEcon (A,ψ) = 0′. (15)

Thus, the two-stage minimum distance estimation procedure may be summarised as follows.

In the first stage the data, contained in the vector xt, is fitted to an unrestricted reduced-form

VAR as specified in (9). This step yields an estimated coefficient matrix Â. The second stage of

the estimation procedure exploits the cross-equation restrictions described above and involves

searching for values of the parameters in ψ that constrain FDE(Â,ψ) as being close to zero.

Specifically, when τ is constrained to equal 1 the parameters ψ are estimated so as to minimise

the squared deviation of gDEcon (Â,ψ) from e′πÂ:

ψ̂
DE,con

≡ arg min
ψ

FDE
con (Â,ψ) · FDE

con (Â,ψ)′ (16)

When τ is unconstrained then the estimated parameters ψ are those that minimise the squared

deviation of gDE(Â,ψ) from e′πÂ
2
:

ψ̂
DE
≡ arg min

ψ
FDE(Â,ψ) · FDE(Â,ψ)′ (17)

4.2.2 The Closed Form Specification

Estimation of the closed form formulation of the Australian NKPC, represented in equation (8),

is achieved in the same manner as described above. Again, taking expectations at time t − 2

25The subscript con indicates that the expression corresponds to the specification where τ is constrained so as
to equal 1.
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conditional on the forecasting rule (10) yields

e′πA
2zt−2 =ρτe′πAzt−2 + ρ(1− τ)e′πIzt−2 + (1− φ)λe′mcdom(I− βA)−1A2zt−2

+ φλe′mcim(I− βA)−1A2zt−2. (18)

The corresponding vector of non-linear cross equation restrictions is given by

e′πA
2 = ρτe′πA + ρ(1− τ)e′πI + (1− φ)λe′mcdom(I− βA)−1A2

+ φλe′mcim(I− βA)−1A2

≡ gCF (A,ψ), (19)

which may be equivalently expressed as

FCF (A,ψ) ≡ e′πA
2 − gCF (A,ψ) = 0′. (20)

The superscripts CF denote expressions which correspond to the closed form NKPC. The first

stage VAR is identical to that described for the difference equation specification. The second

stage of the estimation is also analogous and involves determining the values of the structural

parameters in ψ that minimise the squared deviation of gCF (A,ψ) from e′πA
2. That is,

ψ̂
CF
≡ arg min

ψ
FCF (Â,ψ) · FCF (Â,ψ)′. (21)

4.3 Difference Equation vs. Closed Form Estimation

Estimation of the NKPC is typically carried out in its difference equation (Euler equation)

form as specified in eqn. (1) (or its open economy equivalent, eqn. (7)). Indeed Cogley and

Sbordone’s (2008) results focus purely on the estimation of the NKPC with time-varying trend

inflation expressed in its difference equation form.

The relationship between the difference equation estimates and those implied by the closed

form NKPC is an issue explored deeply in BGLO (2011)26. As is evident from BGLO’s (2011)

analysis, the estimation of the difference equation and the closed from NKPC will yield signifi-

26Sbordone (2005) originally estimated the closed form of a hybrid model similar to eqn. (3) using the two-step
minimum distance procedure.
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cantly different results when using minimum distance estimation. To understand the differences

in the structural estimates, recall that inflation expectations are generated by the forecasting

rule (10), estimated from the first-stage VAR. Conditional on the estimated inflation forecasts,

the second stage uses the minimum distance methods described above to estimate the param-

eters ψ. Since the first-stage VAR estimates are the same across both specifications (DE and

CF), the disparity in the parameter estimates arise from the way inflation expectations enter the

NKPC. In the difference equation specification, inflation expectations are left unconstrained. In

particular, the VAR forecasts of inflation are taken as the only available information on infla-

tion expectations and the structural relationship implied by the difference equation is estimated

directly. On the other hand, in the closed form representation of the NKPC the expectations of

inflation themselves are constrained so as to follow the structure implied by the difference equa-

tion NKPC in every period. In this way the recursive closed form solution adds model-consistent

discipline to the evolution of inflation expectations (BGLO, 2011).

Given that the structural relationship implied by the NKPC can only be considered as an

approximation of the “true” data generating process for inflation, the DE and CF formulations

will not be equivalent27. Thus, it will be of interest to examine how the parameter estimates, ψ,

given Â, are effected when one compare the estimates based on the difference equation NKPC

to the estimates implied by the closed form specification, with its additional model-consistent

discipline on inflation expectations.

4.4 Data

In line with much of the Australian literature concerned with modelling inflation, an underlying

measure is used, as opposed to headline CPI28. Specifically, inflation is measured as the quar-

terly percentage change in the trimmed-mean CPI adjusted for the introduction of the GST29.

Although empirical papers on inflation modelling in different countries generally use headline

measures of inflation (typically based on the consumer price index), an underlying measure such

as trimmed-mean CPI may be preferable as it precludes much of the noise and variation in

the CPI. Headline CPI encompasses several components (such as food and energy prices) that

27For a more comprehensive discussion of the differences between the DE and CF estimates see BGLO (2011).
28See, for example: de Brouwer and Ericsson (1998), Norman and Richards (2010) and Kuttner and Robinson

(2010). This thesis uses data from Kuttner and Robinson (2010).
29This is the same CPI series as used in the reduced-form analysis in Section 3. Note that prior to March 1982

the trimmed-mean CPI is not official data and have been constructed by the RBA for research purposes.
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are subject to large transitory fluctuations. Such transitory fluctuations may have significant

ramifications for consumers, however, they are not easily captured in a structural model.

When modelling CPI inflation the labour share (which is often used as a proxy for real

marginal costs in the US literature) will be an inappropriate measure of real marginal costs as

it deflates nominal marginal costs by the GDP deflator (rather than the CPI). Accordingly, a

measure of nominal unit labour costs deflated by the CPI is used as a proxy for real marginal

costs of domestic producers30. As noted by Norman and Richards (2010), deflating nominal unit

labour costs by trimmed-mean CPI has the added benefit of abstracting from the substantial

influence that commodity prices have on the GDP deflator (and hence labour’s share) in Aus-

tralia. As discussed above, marginal costs for the import sector are measured as import prices

relative to consumer prices31:

mcmt = pmt − pt.

For the constant trend inflation case the reduced-form time-varying VAR is of order 2, with the

ordering of the variables given by: mcdt , πt and mcmt . In line with small open economy models,

foreign real marginal costs , mcmt (as proxied by real import prices), are regarded as exogenous

and it is therefore the last variable in the VAR(2) ordering.

4.5 Estimation Results

Table 3 presents median estimates of the deep structural parameters ψ = [α, ρ, τ ] for the full

sample period: 1960:Q1-2007:Q232. The results are presented for four specifications of the

NKPC: the difference equation (DE) form and the closed form (CF) representation, with τ

constrained to equal one, and unconstrained τ . Given identification issues, θ was calibrated as

5 during all estimations, implying a desired steady-state price markup of 25%33. In addition,

given that the weight of imported goods in consumption, φ, has been a difficult parameter to

30Nominal unit labour costs are for the non-farm sector. The series is calculated as Compensation of Employees
(ABS Table 41 National Accounts) + Payroll Tax (Table 39) less Subsidies (Table 39) divided by seasonally
adjusted real non-farm GDP (Table 41).

31Import prices are measured as the implicit price deflator (ABS Table 5 National Accounts) adjusted for the
declining rate of tariff protection on imports into Australia over much of the sample period. Following Beechy,
Bharucha, Cagliarini, Gruen and Thompson (2000) log import prices are defined as: pm,tart = pmt + (1 + tarifft),
where tarifft is the average tariff rate on Australian imports (not its log).

32The 90% confidence intervals presented in Table 3 were derived using bootstrapping procedures.
33This is the desired steady-state markup in the flexible-price equilibrium. The calibrated value is consistent

with the subsequent estimates of θ in the model with time-varying trend (see Table 6 in Section 5.4), which does
not suffer from the same identification problem.
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Table 3
Structural parameter estimates (baseline NKPC with zero trend inflation)
Sample period: 1960:Q1 - 2007:Q2
φ = 0.2; θ = 5

ρ α τ

DE con 0.005 0.999 1

(0, 0.317) (0.678, 1) -

DEuncon 0.874 0.771 0.706

(0.401, 1) (0.623, 1) (0.385, 0.990)

CF con 0.396 0.896 1

(0.150, 0.562) (0.824, 1) -

CFuncon 0.795 0.943 0.801

(0.373, 0.861) (0.854, 1) (0.310, 0.992)

Notes: numbers in parentheses are 90% confidence intervals; DE con and CF con correspond to the differ-
ence equation and closed form specifications respectively, with τ = 1; DEuncon and CFuncon correspond
to the difference equation and closed form specifications with unconstrained τ , respectively.

estimate (see Kuttner and Robinson, 2010), the estimates presented in Table 3 correspond to

the case where φ is calibrated to 0.2. This calibrated value is approximately equal to the average

share of imports in Australian GDP since 1993 and is also used by Kuttner and Robinson (2010)

in their analysis of the Australian NKPC34.

The first row of Table 3 reports the DE parameter estimates with τ constrained to equal

1. For this specification (denoted DE con) the indexation parameter, ρ, is estimated at 0.0051

indicating that the role of lagged inflation in determining current inflation is negligible, which of

course implies a purely forward-looking NKPC. However, when the DE specification is considered

without constraining τ to unity (i.e. DEuncon), the median estimate for ρ increases dramatically

to 0.8739, with its confidence interval bounded well above zero. Thus, allowing for two lags

of inflation in the indexation mechanism produces a much higher (and significant) estimate for

ρ, suggesting the possibility of misspecification bias in the DE con estimates. Furthermore, τ

is estimated at 0.706, with the upper bound of its confidence interval lying below 1. In all,

the DEuncon estimates indicate that the indexation to the last two lags of inflation is more

appropriate for characterising inflation persistence in Australia.

Focusing on the CF estimates it is clear that in the constrained case (denoted CF con) the me-

34This value is also consistent with Nimark (2009), who calibrates the import share as 0.18.
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dian estimate for ρ is noticeably higher than its DE counterpart. However, for the unconstrained

specification (denoted CFuncon) the estimated value for ρ is lightly lower than in the corre-

sponding DE case. Nevertheless, the estimates for ρ are clearly indicative of a backward-looking

component in Australia’s NKPC given that the (seemingly misspecified) DE con specification is

the only case where ρ is statistically and economically insignificant.

4.5.1 Implied NKPC coefficients

From (7), the Australian NKPC may be expressed in its reduced-form

πt = γb,1πt−1 + γb,2πt−2 + γfEtπt+1 + λ̃mct,

where

γb,1 =
ρτ − βρ(1− τ)

1 + βρτ

γb,2 =
ρ(1− τ)

1 + βρτ

γf =
β

1 + βρτ
.

In the constrained cases, where τ = 1, the coefficients collapse such that γb,1 = ρ/(1 + βρ),

γf = β/(1 + βρ) and t− 2 inflation does not enter the specification.

Conditioning on the point estimates of the structural parameters, Table 4 displays the implied

Table 4
Implied NKPC coefficients
Sample: 1960:Q1 - 2007:Q2

γb,1 γb,2 γf

DE con 0.005 - 0.985

DEuncon 0.225 0.155 0.615

CF con 0.284 - 0.711

CFuncon 0.294 0.097 0.607

Note: the implied NKPC coefficients are conditional on the point estimates of the parameters presented
in Table 3.
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NKPC coefficients for the full sample period. Unsurprisingly the DE con specification implies

essentially a purely-forward looking NKPC, with the coefficient on expected future inflation near

unity. However, all three remaining specifications suggest that there is an important backward-

looking component in Australia’s NKPC. The results seem to indicate an enhanced role for

backward-looking behaviour in comparison to the conventional GMM estimates of the Australian

NKPC presented in Kuttner and Robinson (2010). Kuttner and Robinson (2010) estimate

γf = 0.806 and γb,1 = 0.166 for the same sample period. Comparing the CF estimates to

the DE estimates seems to suggest that when all model-consistent restrictions are placed on

the evolution of inflation expectations the weight given to lagged inflation tends to increase.

Despite the apparent increased role for lagged inflation, the estimates in Table 4 continue to

suggest that the Australian NKPC is predominantly forward-looking, even when one considers

the closed form coefficients.

The aforementioned results are largely illustrative but nonetheless display the clear disparity

between the DE and CF estimates. The estimates reported for the DEuncon specification and the

closed form suggest the presence of an important backward-looking component in the Australian

NKPC. In the next section these issues are explored in greater detail in the context of a refined

Calvo model35. Trend inflation is incorporated into the Calvo model yielding an extended NKPC

with time-varying coefficients.

35Discussion of the estimates for α and θ are reserved until Section 5.4.
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5 The Australian NKPC with Time-Varying Trend Inflation

The traditional NKPC framework, as analysed in the previous section, relies on the assump-

tion that inflation in the steady-state is zero. This section introduces an adapted version of

Cogley and Sbordone’s (2008) refined Calvo model, which divorces itself from this conventional

assumption, and documents its performance against the Australian inflation data.

In essence, Cogley and Sbordone (2008) develop a dynamic version of the NKPC charac-

terised by the inclusion of trend inflation, which is subject to variation over time. It is their

contention that variation in the long-run trend component of inflation is the source of the ap-

parent persistence in US inflation. In contrast to the simple NKPC framework, the Cogley and

Sbordone’s (2008) model takes the log-linearisation of the equilibrium conditions of the refined

Calvo model around a steady-state associated with drifting trend inflation. In the baseline

NKPC, the log-linearisation is taken around a constant trend (π = 0), which is the same in

every period. In the context of this framework trend inflation is assumed to be an exogenous

process that is modelled as a random walk. Unlike the traditional framework, with zero trend

inflation, the NKPC coefficients in this setup will evolve over time according to the level of trend

inflation.

First, the equilibrium conditions of Cogley and Sbordone’s (2008) generalised Calvo model

are described. Their model is augmented slightly to capture open economy dimensions and, in

the same vein as described in Section 4, also allows for two lags of inflation in the indexation

mechanism36.

The primary equilibrium relationship is the restriction between trend inflation and stead-

state real marginal costs, which is of the form

(
1− αΠ

(1−ρ)(θ−1)
t

) 1+θω
1−θ

[
1− αq̄ḡyΠ θ(1+ω)(1−ρ)

t

1− αq̄ḡyΠ (1−ρ)(θ−1)
t

]
= (1− α)

1+θω
1−θ

θ

θ − 1
(mcdt )

1−φ(mcmt )φ, (22)

where q̄ denotes the steady-state real discount factor, ḡy is steady-state output growth, Πt is gross

trend inflation at time t. The structural parameters, α, ρ, θ, ω and φ, retain their definitions from

the previous section. The above restriction differs in an important respect from the equivalent

expression in Cogley and Sbordone (2008)37. In this case, the right hand side includes both

36For the full details of the derivation see Appendix A. Note that this paper follows the version in BGLO (2011),
which allows for two lags of inflation in the indexation mechanism.

37See equation (7) in Cogley and Sbordone (2008).
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mcdt and mcmt , which represent trend real marginal costs of domestic producers and importers,

respectively. Both terms enter the restriction according to the respective weights of domestically

produced goods and imports in domestic consumption. In this way (22) provides a simple

mechanism for capturing the open economy aspects of the inflationary process in Australia.

Following Cogley and Sbordone (2008) it is assumed that the following two inequalities hold

ϕ1,t = αq̄ḡyΠ
(1−ρ)(θ−1)
t < 1 (23)

and

ϕ2,t = αq̄ḡyΠ
θ(1−ω)(1−ρ)
t < 1. (24)

These inequalities ensure that the steady-state relationship (22) is well defined. As in the

constant trend case, it is assumed that the structural parameters are equivalent across both the

domestic and foreign sectors. This simplifying assumption allows for the derivation of a single

equation extended NKPC, which is obtained by log-linearising (22) around a steady-state with

drifting trend inflation

π̂t = ρτ(π̂t−1 − ĝπt ) + ρ(1− τ)(π̂t−2 − ĝπt−1 − ĝπt ) + ΩtEt[π̂t+1 − ρτπ̂t − ρ(1− τ)(π̂t−1 − ĝπt )]

+ λt

[
(1− φ)m̂cdt + φ m̂cmt

]
+ γtD̂t + uπ,t , (25)

where hatted variables represent log-deviations of stationary variables from their steady-state

values38. D̂ is defined recursively as39

D̂t = ϕ1,tEt(q̂t,t+1 + ĝyt+1) + ϕ1,t(θ − 1)Et{π̂t+1 − ρτπ̂t − ρ(1− τ)(π̂t−1 − ĝπt )}+ ϕ1,tEtD̂t+1.(26)

For ease of comparison to Cogley and Sbordone (2008), the extended NKPC in its DE form (as

38In particular, π̂t = ln(Πt/Πt), m̂c
d
t = ln(mcdt /mc

d
t ), m̂c

m
t = ln(mcmt /mc

m
t ) and ĝπt = ln(Πt/Πt−1) is the

growth rate of trend inflation; uπ,t is a structural shock.

39Here ĝyt = ln(gyt /g
y) and q̂t,t+1 = ln(qt,t+1/qt,t+1). Also note that ϕ0,t =

[
1−αΠ

(1−ρ)(θ−1)
t

αΠ
(1−ρ)(θ−1)
t

]
,

and Ωt = ϕ2,t(1 + ϕ0,t).
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described by equations (25) and (26)) may be expressed as40:

π̂t = ρ̃DE1,t (π̂t−1 − ĝπt ) + (1− τ)ρ̃DE2,t (π̂t−2 − ĝπt−1 − ĝπt )

+ λ̃DEt

[
(1− φ)m̂cdt + φ m̂cmt

]
+ bDE1,t Etπ̂t+1

+ bDE2,t Et

∞∑
j=2

ϕj−1
1,t π̂t+j

+ bDE3,t Et

∞∑
j=0

ϕj1,t

[
Q̂t+j,t+j+1 + ĝyt+j+1

]
+ ũπ,t. (27)

While the extended NKPC in (27) retains a similar form to the traditional NKPC, the two

variations differ in some important respects. Firstly, the extended NKPC contains additional

variables, such as the growth rate in trend inflation (ĝπt ), as well as terms involving the nominal

discount factor (Q̂t), real output growth (ĝyt ) and higher-order leads of inflation. While these

additional terms may suggest the presence of omitted variable bias in the traditional NKPC,

perhaps a more important distinguishing feature of the extended NKPC is the fact that the

NKPC coefficients in (27) are non-linear functions of trend inflation and the structural param-

eters of the model. Consequently these coefficients, which are of interest to policy makers, are

subject to variation over time and evolve according to the drift in trend inflation41.

It is possible to obtain a closed form representation of the NKPC by iterating equations (25)

and (26) forward42:

π̂t = ρτ(π̂t−1 − ĝπt ) + ρ(1− τ)(π̂t−2 − ĝπt−1 − ĝπt ) + λt

∞∑
k=0

Ωk
tEt

[
(1− φ)m̂cdt+k + φ m̂cmt+k

]
+ γt

∞∑
k=0

Ωk
tEtD̂t+k + uπ,t . (28)

To maintain consistency with the baseline case in Section 4 in the pursuant analysis the same

four specifications of the extended NKPC are estimated. In particular, the DE specification (27)

40See Appendix A for complete derivation and definition of coefficients.
41A discussion of the implied NKPC coefficients is undertaken in Section 5.5.
42For a complete derivation of the closed form specification see Appendix B. As stipulated in BGLO (2011)

equation (28) is more appropriately referred to as the “quasi-closed form” NKPC as π̂t remains a function of
higher-order leads of inflation. It is possible to obtain an exact closed form solution, however, BGLO (2011) show
that the US estimates of the exact closed form are very similar to the quasi-closed form. Their results indicate
that the additional restrictions that the exact closed form solution imposes over (28) are not critical for estimating
the structural parameters of the model.
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is estimated for the case where τ is constrained to equal one (in this case the NKPC collapses to

the corresponding version originally estimated by Cogley and Sbordone, 2008), and for the case

where τ is left unconstrained. Similarly, the NKPC in its CF representation (28) is estimated

for both the constrained and unconstrained cases.

5.1 Estimating the NKPC Structural Parameters

As in Section 4 the objective is estimate the structural parameters of the NKPC model, ψ =

[α, ρ, θ, τ ]. The same two-step estimation approach, as described in Section 4.2, is adopted here.

In the present context the time series vector xt is extended so as to include not only inflation

and real marginal costs, but also a nominal discount factor and output growth, so that n = 5.

The reduced-form VAR is now written as

zt = µt + Atzt−1 + εz,t, (29)

where εz,t is a serially uncorrelated error vector. In contrast to the estimation of the baseline

NKPC, the reduced-form VAR now has drifting coefficients, captured in µt and At. The drift

in the VAR coefficients follows from the assumption that trend inflation is time-varying.

As detailed previously, if the extended NKPC is the true data generating process for inflation,

then the forecasts from the reduced-form VAR in (29) and the structural forecasts from (27)

should be equivalent. Accordingly, the forecasting rule in equation (10) is augmented such that

the conditional expectation of a variable ŷt+j ∈ xt+j at time t is now written as

Etŷt+j = e′yA
j
t ẑt, (30)

where e′y is the selection vector as defined previously. The above condition differs from the

original forecasting rule (10) as it defines expectations of ŷt+j , rather than yt+j . As such ẑt

represents the vector of variables expressed in deviations from their time-varying trend levels at

time t

ẑt ≡ zt − (I−At)
−1µt. (31)
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5.1.1 The Difference Equation Specification (DE)

Given the structural representations of the NKPC in its difference equation form (27), and the

above forecasting rule (30), the conditional expectation of inflation is written as

e′πA
2
t−2ẑt−2 = ρ̃DE1,t−2e

′
πAt−2ẑt−2 + (1− τ)ρ̃DE2,t−2e

′
πẑt−2

+ (1− φ)λ̃DEt−2e
′
mcdomA2

t−2ẑt−2 + φ λ̃DEt−2e
′
mcimA2

t−2ẑt−2

+ bDE1,t−2e
′
πA

3
t−2ẑt−2 + bDE2,t−2ϕ1,te

′
πMt−2A

4
t−2ẑt−2

+ bDE3,t−2(e′qMt−2A
2
t−2ẑt−2 + e′gyMt−2A

3
t−2ẑt−2), (32)

where

Mt ≡ (I− ϕ1,t At)
−1. (33)

That expectations are taken as at t − 2 follows from the fact that the indexation mechanism

allows for two lags of inflation. The assumption that trend inflation follows a driftless random

walk implies that the expected future growth rate of trend inflation is zero, thus all terms

involving ĝπt are ignored43. The vector of non-linear cross-equation restrictions derived from the

conditional expectation in (32) is given by

e′πA
2
t−2 = ρ̃DE1,t−2e

′
πAt−2 + (1− τ)ρ̃DE2,t−2e

′
πI

+ (1− φ)λ̃DEt−2e
′
mcdomA2

t−2 + φ λ̃DEt−2e
′
mcimA2

t−2

+ bDE1,t−2e
′
πA

3
t−2 + bDE2,t−2ϕ1,te

′
πMt−2A

4
t−2

+ bDE3,t−2(e′qMt−2A
2
t−2 + e′gyMt−2A

3
t−2)

≡ gDE(µt−2,At−2,ψ). (34)

Equivalently

FDE
1 (µt−2,At−2,ψ) ≡ e′πA

2
t−2 − gDE(µt−2,At−2,ψ) = 0′, ∀t . (35)

43The assumption, in equation (23), that |ϕ1,t| < 1, combined with the fact that the coefficient matrix At is
constrained such that the roots of At lie inside the unit circle at each period in time, implies that the series
I + ϕ1,t At + ϕ2

1,t A
2
t + ... , converges and can be expressed as in (33).
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In contrast to the baseline NKPC case, when inflation has a time-varying trend the parameters

must also satisfy the steady-state restriction between trend inflation and marginal costs given

by (22). The condition may be re-written as

F2(µt−2,At−2,ψ) ≡
(

1− αΠ
(1−ρ)(θ−1)
t

) 1+θω
1−θ

[
1− αq̄ḡyΠ θ(1+ω)(1−ρ)

t

1− αq̄ḡyΠ (1−ρ)(θ−1)
t

]

−(1− α)
1+θω
1−θ

θ

θ − 1
(mcdt )

1−φ(mcmt )φ

= 0′ (36)

Thus, F2(µt−2,At−2,ψ) must also be minimised at each period of the estimation sample. The

two moment conditions (35) and (36) are combined by defining the vector

FDEt = [FDE
1 (µt−2,At−2,ψ) F2(µt−2,At−2,ψ)].

The complete set of cross-equation restrictions that must be satisfied is represented as the long

vector,

FDE(Θ) =
[
FDE1 ,FDE2 , ...,FDET

]
, (37)

where

Θ ≡ {µt,At}Tt=1. (38)

As in the baseline NKPC case the first stage of the estimation procedure involves fitting the data

to an unrestricted reduced-form VAR. However, in the presence of time-varying trend inflation,

estimation of the first-stage VAR is achieved by using the Bayesian methods as detailed in

Cogley and Sargent (2005) to deliver the posterior distribution of Θ from a set of N estimates

{Θ̂i}Ni=1
44. Conditional on the estimates {Θ̂i}, the structural parameters ψ̂

D

i are estimated in

44Due to memory constraints the number of estimates in this analysis is set to N = 1, 000. Both Cogley and
Sbordone (2011) and BGLO (2011) use 5,000 ensembles. This discrepancy is explored in Section 6. For a complete
description of VAR specification, see Section III B in Cogley and Sbordone (2008).
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similar fashion to the baseline NKPC case

ψ̂
D

i = arg min
ψ

FD(Θ̂i) · FD(Θ̂i)
′ for i = 1, ..., N. (39)

5.1.2 The Closed Form Specification (CF)

Given the closed form specification of the NKPC in (28) and the forecasting rule (30), the

conditional expectation of inflation as at t− 2 is expressed as45

e′πA
2
t−2ẑt−2 = ρ̃CF2,t−2e

′
πAt−2ẑt−2 + (1− τ)ρ̃CF2,t−2e

′
πẑt−2 + (1− φ)λ̃CFt−2e

′
mcdomKt−2A

2
t−2ẑt−2

+ φ λ̃CFt−2e
′
mcimKt−2A

2
t−2ẑt−2 + bCF0,t−2e

′
πKt−2At−2ẑt−2

+ bCF1,t−2e
′
πKt−2A

2
t−2ẑt−2 + bCF2,t−2e

′
πKt−2A

3
t−2ẑt−2

+ bCF2,t−2ϕ1,t−2e
′
πKt−2Mt−2A

4
t−2ẑt−2

+ bCF3,t−2(e′qKt−2Mt−2A
2
t−2ẑt−2 + e′gyKt−2Mt−2A

3
t−2ẑt−2), (40)

where

Kt ≡ (I− ΩtAt)
−1. (41)

In order for the series I + ΩtAt + Ω2
tA

2
t + ..., to converge and be represented as in (41) the roots

of ΩtAt need to lie inside the unit circle, so that |ΩtAt| < 1. As stressed in BGLO (2011) this

condition is not guaranteed by the conditions of the model, and thus is an important empirical

issue. Essentially, the estimation procedure (in compliance with BGLO, 2011 and Cogley and

Sbordone, 2008) assumes that the NKPC has a reduced-form VAR representation as in (22),

which implies |ΩtAt| < 1. This issue is explored further in the robustness analysis conducted in

Section 6.

The vector of non-linear cross-equation restrictions derived from the conditional expectation

45For a complete derivation see Appendix B.
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in (40) is now given by

e′πA
2
t−2 = ρ̃CF2,t−2e

′
πAt−2 + (1− τ)ρ̃CF2,t−2e

′
πI + (1− φ)λ̃CFt−2e

′
mcdomKt−2A

2
t−2

+ φ λ̃CFt−2e
′
mcimKt−2A

2
t−2 + bCF0,t−2e

′
πKt−2At−2

+ bCF1,t−2e
′
πKt−2A

2
t−2 + bCF2,t−2e

′
πKt−2A

3
t−2

+ bCF2,t−2ϕ1,t−2e
′
πKt−2Mt−2A

4
t−2

+ bCF3,t−2(e′qKt−2Mt−2A
2
t−2 + e′gyKt−2Mt−2A

3
t−2)

≡ gCF (µt−2,At−2,ψ). (42)

The corresponding minimum distance problem is given by

FCF
1 (µt−2,At−2,ψ) ≡ e′πA

2
t−2 − gCF (µt−2,At−2,ψ) = 0′, ∀t . (43)

As in the difference equation specification the steady-state restriction (22) must be satisfied at

all stages of the estimation. Thus, the moment condition given by (36) also applies for the closed

form specification. The steady-state condition (36) is now combined with the closed form mini-

mum distance condition (43) by defining the vector FCFt = [FCF
1 (µt−2,At−2,ψ)F2(µt−2,At−2,ψ)].

The complete set of cross-equation restrictions that must be satisfied is given by

FCF (Θ) =
[
FCF1 ,FCF2 , ...,FCFT

]
. (44)

The first stage VAR that provides the Bayesian posterior for Θ is identical to the VAR estimated

for the difference equation specification. The estimates of the model’s deep parameters are

obtained according to

ψ̂
CF

i = arg min
ψ

FCF (Θ̂i) · FCF (Θ̂i)
′ for i = 1, ..., N. (45)

5.2 Data

The data for inflation and real marginal costs used in the estimation of the first-stage VAR is the

same as in the baseline case, detailed in Section 4.4. However, as mentioned above, in the time-

varying trend case the time series vector xt is extended to include measures of output growth and
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a nominal discount factor, in compliance with the steady-state condition (22). Output growth

is calculated using quarterly non-farm real GDP, seasonally adjusted at an annual rate46. The

nominal discount factor, Qt, is constructed by expressing the Reserve Bank’s “cash rate” on a

quarterly discount basis 47:

Qt = (1 + rt)
− 1

4 ,

where rt is the RBA’s cash rate expressed as a decimal. The monthly cash rate data, as published

by the RBA, was converted to quarterly values by point-sampling the first month of each quarter.

As in Cogley and Sbordone (2008) the reduced-form time-varying VAR is of order 2. However,

in order to capture open economy effects, this analysis requires the inclusion of real marginal

costs of importers, resulting in a five-variable VAR as opposed to Cogley and Sbordone’s (2008)

four. The ordering of the variables given by: gyt , mcdt , πt, Qt and mcmt . Again, given the

exogeneity of foreign real marginal costs, mcmt is the last variable in the VAR(2) ordering. The

sample encompasses the period 1960:Q1 - 2007:Q2. However, the time-varying trend estimation

requires that data from 1960:Q1 - 1965:Q4 be used to initialise the prior, thus the model is

estimated for the sample period 1966:Q1 - 2007:Q2.

5.3 Trend Inflation and Persistence

Prior to the exposition of the estimation results in the next section, it is worthwhile to present

some preliminary evidence of the importance of trend inflation and in particular its relevance

as a possible explanation of persistence. As in Cogley and Sbordone (2008), a measure for

trend inflation is approximated from the first-stage VAR by estimating mean inflation at time t

according to:

πt = e′π(I−At)
−1µt. (46)

46Real non-farm GDP is the same series as used in Kuttner and Robinson (2010) (ABS National Accounts,
Table 41).

47Prior to 1990 the Reserve Bank did not publish a cash rate target, thus the cash rate measures prior to 1990
are proxies of the current measure, and were obtained upon request from the Reserve Bank. The Reserve Bank
previously used other measures of the short-term interest rates, such as the unofficial 11am call rate and the
official (authorised dealers’) rate, as its tool of conducting monetary policy.
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Figure 6 displays the median estimate of trend inflation at each period for the sample 1966:Q1

- 2007:Q2. For comparison, actual inflation, as measured by the trimmed-mean CPI, and mean

inflation for the full sample are also presented.

Figure 6
Trend Inflation in Australia, 1966:Q1 - 2007:Q2
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The graph provides a sound depiction of some of the more important features of trend

inflation, and its significant role in explaining the persistence of inflation. The first notable

feature of the plot is, of course, the fact that the estimated trend in inflation exhibits variation

over time. The estimates indicate that trend inflation rose from 2.3% per annum in the late 1960s

to approximately 7.8% in the 1970s, and then fell back to levels below 3% during the 1990s. The

latter part of the sample is perhaps of most interest in terms of its relevance to policy measures

enacted by the Reserve Bank of Australia. As stipulated by Cogley and Sbordone (2008), in

general equilibrium, trend inflation is determined by the long-run target in the central bank’s

policy rule48. Accordingly, their methodology allows for the interpretation of movements in πt

as ultimately reflecting shifts in that target. Figure 6 clearly depicts a reduction in the level of

trend inflation during the 1990s. Furthermore, trend inflation from 1993 - 2007 hovers between

48Or, peoples’ expectations of that target.

41



2-3%, which coincides with the Reserve Bank’s targeted inflation level.

The time-varying nature of trend inflation also has significant implications for the evolution

of the inflation gap. Conventional NKPCs model inflation in terms of deviations from a constant

mean or a zero inflation steady-state. In the present analysis, however, trend inflation exhibits

drift over time, and accordingly the inflation gap is measured as the deviation of inflation from

its time-varying trend. Recall:

π̂t = πt − πt. (47)

Cogley and Sbordone (2008) argue that the measurement of the inflation gap is an important

consideration as it affects the degree of persistence within the model. It is their contention

that mean-based measures of the inflation gap will be display greater persistence than their

trend-based counterparts. Examination of Figure 6 seems to loosely support such a conclu-

sion, as there are long periods – in particular, during the 1960s, then from the 1970s through

to the late 1980s and during the 1990s – where inflation does not cross its sample mean. In

contrast, inflation intersects its time-varying trend more frequently, especially during the infla-

tion targeting period. Cogley and Sbordone (2008) go further by conducting an autocorrelation

analysis of the two different measures of the inflation gap. Indeed, their results for the US

support their assertion that the trend-based inflation gap displays lower persistence than the

mean-based measure. These results lead the authors to question whether mean-based measures,

in fact, reflect an exaggeration of persistence, rather than there being a lack of persistence in

forward-looking models. Examination of the corresponding autocorrelations, however, reveals a

somewhat murkier picture for inflation persistence in Australia. Table 5 presents the autocor-

relations of the two measures of the inflation gap.

Table 5
First-order Autocorrelations of the Inflation Gap

1966:Q1 - 2007:Q2 1993:Q1 - 2007:Q2

Inflation 0.8935 0.3386

Trend-Based Gap 0.8088 0.3627
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The first row refers to the deviation of inflation from its constant mean49. The second row

displays the autocorrelations of the trend-based gap as described by equation (47). For the long

sample both measures display high degrees of persistence, albeit, with the trend-based measure

slightly less persistent. During the inflation targeting period the autocorrelation of the inflation

gap is reduced significantly according to both measures. However, contrary to the findings

of Cogley and Sbordone (2008), the trend-based inflation gap for Australia displays slightly

higher persistence than the mean-based gap after the onset of an inflation target. According

to both measures the Australian NKPC only needs to account for a relatively modest degree

of persistence post-inflation targeting, indicating that a purely forward-looking NKPC may be

sufficient to explain inflation dynamics in more recent years.

5.4 Estimation Results

Table 6 displays the benchmark estimates of the structural parameters ψ = [α, ρ, θ, τ ] for the

full-sample (1966:Q1 - 2007:Q2). As in the constant trend case, the discount factor, β, and the

strategic complementary parameter, ω, are pinned down to values of 0.99 and 0.429 respectively.

Again, given the difficulty in estimating the weight of imported goods in consumption, φ, the

estimates reported in Table 6 correspond to the case where φ is calibrated to 0.2. For robustness,

the model was also estimated for the case where φ is left unconstrained. As expected the

parameter estimates are left largely unaffected (see Table 8, in Section 6), however, due to

the imprecision of the estimates of φ itself, the results presented in Table 6 are preferred as a

benchmark.

In Table 6 the estimates implied by the DE and CF specifications are compared.50. The

first row of the table corresponds to the estimates that are presented by Cogley and Sbordone

(2008) (denoted as DE con). These parameter values correspond to the DE estimates ψ̂
DE

with

τ constrained to equal 1. Interestingly, the Australian data implies a non-zero median estimate

for the indexation parameter ρ. This result is in contrast to Cogley and Sbordone (2008), who

estimated ρ at zero – implying a purely forward-looking NKPC for the US. However, as is

evident from the confidence interval (which includes zero), ρ is not significant at the 10% level,

49The results for the mean-based gap are reflective of the reduced-form evidence presented in Section 3 of this
thesis.

50Due to the fact that the distributions of the parameter estimates are non-normal, the table presents the
median estimates and their 90% confidence intervals.
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Table 6
Structural parameter estimates (median and 90% trust region)
Sample period: 1966:Q1 - 2007:Q2
φ = 0.2

ρ α θ τ

DE con 0.158 0.654 5.150 1

(0, 0.784) (0.509, 0.765) (4.614, 6.502) -

DEuncon 0.828 0.635 5.002 0.597

(0.390, 1) (0.421, 0.734) (4.550, 7.899) (0.256, 0.873)

CF con 0.794 0.892 6.015 1

(0.480, 1) (0.255, 0.927) (5.011, 9.782) -

CFuncon 0.890 0.889 4.644 0.709

(0.646, 1) (0.157, 0.925) (4.238, 5.923) (0.378, 0.955)

Notes: numbers in parentheses are 90% trust regions; DE con and CF con correspond to the difference
equation and closed form specifications respectively, with τ = 1; DEuncon and CFuncon correspond to
the difference equation and closed form specifications with unconstrained τ , respectively.

suggesting that a purely forward-looking NKPC may also be applicable for Australia. The Calvo

parameter, α, governing the degree of price-stickiness implies a median duration of prices of 1.63

quarters – a value very similar to that implied by Cogley and Sbordone’s (2008) estimates and

the US micro evidence presented in Nakamura and Stiensson (2007)51.

The second row of Table 6 considers the DE specification adjusted so that τ is no longer

constrained to equal 1. As stipulated by BGLO (2011), this is a minor but important refinement,

as the misspecification bias that arises from constraining τ to equal unity can be very large.

The estimation results (denoted as DEuncon) indicate that this modification produces a large

disparity in the estimation of ρ – indeed suggesting the presence of misspecification bias in the

DE con case. The median estimate of ρ increases dramatically from a value of 0.158 in the DE con

case to 0.828, implying that the Australian NKPC includes a backward-looking component.

Although, the estimate of ρ is relatively imprecise, the 90% confidence interval does not include

zero. Furthermore, τ is estimated as 0.597, with the upper bound of its confidence interval

below 1. This result is in line with the estimates presented in BGLO (2011) and implies that

average inflation over the previous six months is more relevant in determining current inflation

51For a purely forward-looking Calvo model, the time between re-optimisation can be approximated as αt.
Thus, the median duration of prices is given by −ln(2)/ln(α).
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than merely the inflation rate in the most recent quarter.

The final two rows in Table 6 present the estimates implied by the CF specification of the

NKPC. In the constrained case (denoted CF con) the median estimate of ρ is 0.794, and retains

a 90% confidence interval bounded well away from zero. The unconstrained case (denoted

CFuncon) implies a median estimate of ρ equal to 0.890. Thus, the CF estimates of ρ are larger

than their DE counterparts – implying a greater degree of backward-looking behaviour – and are

also estimated somewhat more precisely. The estimated value of τ in the CFuncon case, 0.709,

implies that last quarter’s inflation rate is given a greater weight in the indexation mechanism,

compared to its DE counterpart. However, the confidence interval is still bounded away from

1, suggesting that t − 2 inflation is still relevant in explaining the current inflation rate and

consequently should be included in the model.

In both CF specifications α is estimated at approximately 0.89, suggesting that prices are

re-optimised every 5 quarters, on average. However, as stressed by BGLO (2011), in the presence

of backward-indexation (implied by a non-zero estimate for ρ) αt now refers to the approximate

time elapsed between price re-optimisation, rather than a price change. Backward-indexation

implies that prices are changed much more frequently (in fact, prices are changed every period)

than they are actually being re-optimised. That the frequency of price adjustment is relatively

greater than the frequency of optimal price resets may be reflective of the micro evidence which

suggests that the information required to set the optimal markup is costly to obtain (Zbaracki,

et al. 2004).

The median estimates of θ are fairly consistent across all four specifications and imply a

steady-state markup price of 20% - 27%52. It is worth noting that the above estimates for θ are

markedly lower than those found by both Cogley and Sbordone (2008) and BGLO (2011), im-

plying that the desired steady-state markup in Australia is approximately double that suggested

by the US data. In the context of general equilibrium models, US estimates of the steady-state

markup range from approximately 6 to 23 percent53. Therefore, one can conclude that the

estimates for θ presented in Table 6 imply that the steady-state markup in Australia lies at

least towards the upper limit of the US estimates. Estimation of θ in the Australian empirical

52In a Calvo setting the desired markup is given by θ
θ−1

in a flexible price environment.
53See, for example: Christiano, Eichenbaum and Evans (2005) whose estimates range from 6.35 to 20 percent

depending on the specification of their model; Rotemberg and Woodford (1997) estimate a steady-state markup
of 15 percent (θ ≈ 7.8).
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literature is relatively sparse. In their medium-scale DSGE model for Australia, Jaaksela and

Nimark (2011) estimate θ ≈ 1.10, implying an implausibly high domestic markup. However,

the authors also consider a model specification in which the domestic markup calibrated at 20

percent – a value which is consistent with the estimates presented in Table 6. Adolfson, et

al. (2007) estimate a steady-state markup of 17.4 percent in their open economy DSGE model

for Europe, suggesting that domestic price markups in Australia are more comparable to those

estimated for the Euro area, rather than in the US.

What can one conclude from the estimates reported in Table 6? When one compares the

results presented in Table 6 to those for the baseline NKPC, with zero trend inflation, reported

in Table 3, it is evident that the estimates of ρ have not been greatly affected. Thus, it would

seem that even once time-varying trend inflation is incorporated into the Calvo model, there is

no meaningful change in the degree of autonomous inflation required to match the Australian

data. This conclusion defies the original hypothesis of Cogley and Sbordone (2008) and suggests

that their model is inadequate for explaining inflation persistence in Australia. However, given

the reduced-form evidence presented in Section 3, and the examination of the persistence of

the inflation gap in Table 5, analysis of the NKPC’s performance during the inflation targeting

period is of particular interest.

5.4.1 Parameter estimates during the inflation targeting period

As evidenced in Section 3 and by Figure 6, the inflation targeting period has been characterised

by low levels of inflation and little volatility. It is therefore relevant to ask whether such an envi-

ronment of low and stable inflation has lead to any changes in the structural parameters of the

extended Calvo model. This subsample analysis considers the same specifications of the NKPC

examined in Table 6, with the only change being the chosen sample period. Table 7 presents

the structural parameter estimates for the inflation targeting period (1993:Q1 - 2007:Q2).

The estimates of α and τ are left largely unchanged when compared to the longer sample –

suggesting that the time between optimal price readjustment and the weight given to the first

lag of inflation in the indexation mechanism, have not changed in any meaningful sense since the

introduction of an inflation targeting regime. The median estimates of θ are marginally smaller

than those presented in Table 6 indicating that steady-state price markups may have increased

slightly during the inflation targeting period. Perhaps of the greatest relevance in the present
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Table 7
Structural parameter estimates (median and 90% trust region)
Sample period: 1993:Q1 - 2007:Q2
φ = 0.2

ρ α θ τ

DE con 0.00 0.702 4.268 1

(0, 0.427) (0.457, 0.820) (3.796, 29.290) -

DEuncon 0.740 0.698 4.171 0.598

(0.213, 1) (0.132, 0.829) (3.775, 4.705) (0.232, 1)

CF con 0.424 0.882 5.291 1

(0.180, 0.863) (0.789, 0.921) (4.140, 20.052) -

CFuncon 0.789 0.850 4.899 0.706

(0.350, 1) (0.162, 0.924) (4.137, 25.702) (0.174, 1)

Notes: numbers in parentheses are 90% trust regions; DE con and CF con correspond to the difference
equation and closed form specifications respectively, with τ = 1; DEuncon and CFuncon correspond to
the difference equation and closed form specifications with unconstrained τ , respectively.

context are the changes exhibited in the estimates of ρ. Although the pattern of the findings

is largely the same as in Table 6, for all four specifications the median estimates of ρ are lower

than their corresponding values in the full sample. Indeed, the DE con specification now yields

an estimated ρ centred at zero. That the median estimated values for ρ are lower during the

inflation targeting period reflects the decrease in the reduced-form persistence of inflation found

in Section 3 and presented in Table 5. The decline in backward-looking behaviour in price setting

may be explained by the fact that in the presence of low and stable inflation firms give greater

weight to real marginal costs (an issue which is explored further in Section 5.5). Nonetheless,

given that the DE con case is the only specification that implies a zero value for ρ seems to suggest

that, despite the decline in backward-looking behaviour, a purely forward-looking NKPC is still

insufficient to explain inflation dynamics in Australia.

At this point, it should be noted that conclusions about the changes in the structural param-

eters post-inflation targeting are tentative at best. It is clear from Table 7 that for the shorter

sample period the parameters have been estimated with low precision. Although the median

estimates of α and τ have been seemingly unaffected during the inflation targeting period, the

wide confidence intervals are of some concern. Indeed, for both the DEuncon and CFuncon cases

the upper bounds for τ include 1. While the median estimates of ρ have decreased, their con-

47



fidence intervals overlap with the corresponding confidence intervals in the full sample. Thus,

any inferences drawn from Table 7 about the changes in the structural parameters since the

adoption of an inflation targeting regime should be made with caution.

5.5 NKPC Coefficients

Recall the expression of the extended NKPC in its DE form (27)54:

π̂t = ρ̃DE1,t (π̂t−1 − ĝπt ) + (1− τ)ρ̃DE2,t (π̂t−2 − ĝπt−1 − ĝπt )

+ λ̃DEt

[
(1− φ)m̂cdt + φ m̂cmt

]
+ bDE1,t Etπ̂t+1

+ bDE2,t Et

∞∑
j=2

ϕj−1
1,t π̂t+j

+ bDE3,t Et

∞∑
j=0

ϕj1,t

[
Q̂t+j,t+j+1 + ĝyt+j+1

]
+ ũπ,t.

Of interest to policy makers is how trend inflation, through its interaction with the structural

parameters of the Calvo model, affects the NKPC coefficients ρ̃1,t, λ̃t, b1,t, b2,t and b3,t. Condi-

tioning on median estimates of the VAR and the DE con Calvo parameters, Figure 7 displays the

NKPC coefficients, as defined by (66) in Appendix A. Dashed lines represent conventional ap-

proximations, which assume zero trend inflation, while the solid lines represent approximations

based on the extended model with time-varying trend inflation.

The evolution of the NKPC coefficients are clearly contingent on the level of trend inflation,

πt, and are very similar to the corresponding time paths presented in Cogley and Sbordone

(2008)55. The coefficient λ̃t, which represents the weight given to current marginal costs of

domestic producers and importers, varies inversely with the level of trend inflation. Similarly,

the backward-looking coefficient, ρ̃1,t, moves in the opposite direction to trend inflation. In

contrast, the three forward-looking coefficients – b1,t, b2,t and b3,t – evolve directly with the level

of trend inflation. As described by Cogley and Sbordone (2008), this variation in price-setting

dynamics follows from the fact that a high level of trend inflation accelerates the rate at which a

firm’s relative price is eroded when it lacks the opportunity to re-optimise its price. Accordingly,

54See Appendix A for definitions of the NKPC coefficients.
55See Figure 4 in Cogley and Sbordone (2008).
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Figure 7
NKPC Coefficients – DE con
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when trend inflation is high firms become more vulnerable to contingencies that may prevail in

the future if their price remains fixed for some period of time. As such, when trend inflation

rises, the backward-looking component and the weight given to current marginal costs both

decrease, and the relative influence of the forward-looking terms are enhanced.

The coefficients implied by the conventional approximations (dashed lines) accord well with

the reduced-form GMM estimates of Kuttner and Robinson (2010). Interestingly, when one

compares the coefficients implied by the extended model (solid lines) to those implied by the

conventional approximation, current costs and lagged inflation matter less and future expecta-

tions matter more. Focusing on the forward-looking coefficients, it is evident that the coefficient

b3,t is always close to zero. Thus, terms involving forecasts of output growth and the discount

factor do not contribute to inflation in any meaningful sense.

The above analysis draws on the evolution of the NKPC coefficients as derived from the

DE con specification. As a point of comparison, Figure 8 portrays the NKPC coefficients in (27),

this time contingent on the median estimates of the CF con Calvo parameters. Although the

shape of the coefficients’ time paths are nearly identical to those derived from the DE con case,

it is clear that their relative magnitudes are significantly different.
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Figure 8
NKPC Coefficients – CF con
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Figure 8 shows that when model-consistent restrictions are placed on the evolution of infla-

tion expectations, the backward-looking component, ρ̃1,t, increases dramatically (reflecting the

increased value of the indexation parameter ρ). Indeed, according to the CF con specification

lagged inflation and future expectations of inflation enter the NKPC with almost equal weights,

despite the time-variance in trend inflation. Furthermore, the CF con approximations suggest

that the link between marginal costs and current inflation, captured by λ̃t, is significantly weaker

than traditional DE estimates seem to predict. The fact that λ̃t is always close to zero brings

into question the relevance of marginal costs as the driving process for inflation. These results

could be of particular relevance to policy makers and imply that when all model restrictions on

expectations are taken into account, the Australian NKPC is not predominantly forward-looking

in the sense implied by the theory and the previous empirical literature. As discussed in the

introduction, the relative magnitude of the backward-looking component has important impli-

cations not only for the dynamics of inflation but also in determining the appropriate inflation

management policies to be employed by the central bank.
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6 Robustness Analysis

This section reports the results from four robustness exercises. The first involves estimation

of the second stage with an unconstrained import share parameter, φ. The second considers

an alternative specification of the first-stage VAR, with four variables. Thirdly, the parameter

estimates are presented for the case where an extended number of ensembles are used in the

Bayesian estimation of the first stage VAR. Finally, the validity of the parameter estimates are

considered, with reference to the necessary condition |ΩtAt| < 1.

As alluded to in Section 5.4, given the difficulty in estimating the import share parameter,

φ, the benchmark estimates in Table 6 correspond to the case where φ is calibrated as 0.2. Table

8 presents the median parameter estimates when φ is left unconstrained.

Table 8
Structural parameter estimates (median and 90% trust region)
Sample period: 1966:Q1 - 2007:Q2
Unconstrained φ (import share).

ρ α θ τ φ

DE con 0.108 0.635 4.756 1 0.00

(0, 0.992) (0.018, 0.759) (4.177, 12.277) - (0, 1)

DEuncon 0.858 0.654 4.768 0.585 0.100

(0.405, 1) (0.418, 0.762) (4.1317, 13.330) (0.266, 0.865) (0, 1)

CF con 0.80 0.888 6.289 1 0.259

(0.441, 0.983) (0.836, 0.923) (4.555, 18.750) - (0, 1)

CFuncon 0.934 0.886 4.990 0.701 0.478

(0.625, 0.996) (0.800, 0.925) (4.291, 20.609) (0.423, 0.964) (0, 1)

Notes: This table presents the structural parameter estimates of the extended Calvo model for the case
where the import share φ is also estimated.

The overall effect of leaving φ unconstrained has a seemingly negligible effect on the estimates

of the other parameters. In fact, the inclusion of φ in the estimation seems to improve the

precision of the CF estimates (with the exception of θ). However, that the estimates of φ itself

are extremely imprecise in all specifications of the NKPC is an indication that the parameter is

weakly identified, and is perhaps better suited for calibration.

The next robustness exercise also follows from the difficulty in capturing the effects of
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marginal costs in the importing sector. An alternative four-variable VAR is considered so as

to mechanically capture the inflationary effect derived from the importing sector. Specifically,

data on the marginal costs of domestic producers, mcdt , and importers, mcmt , are aggregated to

create a single marginal cost variable:

mct,total = (1− 0.2)×mcdt + 0.2×mcmt .

Thus, the first stage VAR collapses to the 4-variable case (with their ordering given by: gyt ,

mct,total, πt, Qt), as opposed the 5-variable VAR detailed in Section 5. Table 9 reports the

resulting parameter estimates.

Table 9
Structural parameter estimates (median and 90% trust region)
Sample period: 1966:Q1 - 2007:Q2
4-variable VAR

ρ α θ τ

DE con 0.00 0.649 7.041 1

(0, 0.265) (0.510, 0.755) (6.021, 8.642) -

DEuncon 0.834 0.634 6.982 0.584

(0.471, 1) (0.485, 0.728) (5.840, 11.904) (0.383, 0.797)

CF con 0.869 0.919 9.539 1

(0.645, 1) (0.470, 0.944) (6.850, 19.623) -

CFuncon 0.892 0.917 8.005 0.646

(0.763, 1) (0.269, 0.940) (6.156, 15.265) (0.474, 0.860)

Notes: This table presents estimates based on a different VAR specification used in the first stage. Here
the sector-specific marginal cost data was combined to yield a single variable, such that the first stage
VAR comprised of four variables as opposed to five. Since there is only a single marginal cost variable,
φ is set as 0.

The parameter estimates are marginally affected by the alternative VAR specification. Most

notably, the median estimate of ρ for the DE con case is now zero, in line with Cogley and

Sbordone’s (2008) results using US data. The median estimates of θ are also somewhat higher

than their corresponding values in Table 656. Nonetheless, the conclusions drawn from Table 6

56However, the median estimates for θ presented in Table 9 are still markedly lower than those reported in BGLO
(2011), supporting the conclusion that the desired steady-state price markup is higher in Australia compared to
the US.
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remain robust to the alternative VAR specification. Namely, the estimates of ρ in Table 9 (with

the exception of the DE con specification) continue to suggest an important role for backward-

looking indexation.

The third robustness exercise extends the number of ensembles used to deliver the Bayesian

posterior for the VAR parameters {µt,At}. Cogley and Sbordone (2008) and BGLO (2011) char-

acterise the distribution of the posterior for {µt,At} from a set of N = 5000 estimates. However,

due to computational limitations, N is set to 1000 in order to deliver the estimates presented in

Table 6. Table 10 reports the results with N extended to equal 3000, thereby providing a larger

distribution of parameter estimates in the second stage57. The inclusion of greater number of

ensembles does not affect the parameter estimates in any meaningful sense. Thus, the bench-

mark estimates presented in Table 6 are robust despite the use of 1000 ensembles instead of 5000.

Table 10
Structural parameter estimates (median and 90% trust region)
Sample period: 1966:Q1 - 2007:Q2
φ = 0.2, N = 3000 ensembles

ρ α θ τ

DE con 0.165 0.663 5.156 1

(0, 0.785) (0.492, 0.764) (4.604, 6.581) -

DEuncon 0.843 0.636 4.997 0.613

(0.396, 1) (0.137, 0.736) (4.545, 6.233) (0.286, 0.873)

CF con 0.799 0.892 5.978 1

(0.486, 1) (0.270, 0.927) (5.020, 9.350) -

CFuncon 0.890 0.894 5.653 0.707

(0.623, 1) (0.177, 0.927) (4.877, 7.655) (0.419, 0.968)

Notes: This table presents the parameter estimates when N = 3000 ensembles are used in the Bayesian
estimation of the first stage VAR, as opposed to N = 1000 in Table 6.

Finally, compliance with the necessary condition |ΩtAt| < 1 is analysed. As emphasised in

BGLO (2011), violation of this condition would render the estimates presented in Table 6 invalid

as this condition is necessary for the first stage and second stage estimates to be compatible

57Again, due to computational restrictions we were unable to achieve parameter estimates for N = 5000.
However, the results for N = 3000 should be virtually identical to those with N = 5000.
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with each other58. Panel A in Figure 9 displays the distribution of the largest estimated root of

Ω̂t·Ât for the CFuncon specification, while Panel B displays the corresponding distribution for

the DE con case (note that Ât is the same for both specifications). The figure captures the sharp

contrast between the compatibility of two specifications with the first stage VAR. Although the

99th and 95th percentiles for the CFuncon specification do occasionally rise above unity, it is

strikingly clear that |Ω̂CF
t Ât| < 1 is satisfied much more readily than in the DE con case. Indeed,

in the DE con case, the 99th and 95th percentiles lie almost completely above unity. These find-

ings strongly suggest an inconsistency between the assumption of a VAR representation in the

first stage, and the DE estimates obtained in the second stage. Figure 9 unequivocally shows

that the minimum-distance estimation procedure is better suited for the CF specification.

Figure 9
Distribution of the largest root of Ω̂t·Ât in absolute value,

Median, 95th and 99th percentiles

Panel A: Closed Form, distribution of | Ω̂CF
t Ât|
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58When the condition |ΩtAt| < 1 is violated, the NKPC solution is indeterminate. See BGLO (2011) for an in
depth discussion.
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Panel B: Difference Equation Form, distribution of | Ω̂DE
t Ât|
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7 Conclusion

This thesis has highlighted the nature of inflation in Australia as being a highly persistent

series, at least historically. In essence, the structural analysis undertaken attempts to address

whether a more exact version of the Calvo model, based on Cogley and Sbordone’s (2008) recent

model of time-varying trend inflation, can explain inflation dynamics in Australia without having

to rely on ad-hoc backward-looking terms. The results illustrate the substantial difference

in estimates when the model is expressed in its typical difference equation (DE) form rather

than its closed form (CF). While estimation of all NKPC specifications seem to suggest at

least some role for backward-looking indexation, its estimated importance is contingent on the

particular specification. In line with Cogley and Sbordone’s (2008) US results, the backward-

looking indexation parameter is negligible in some DE specifications. In contrast, when a more

plausible indexation mechanism is imposed on the DE, and when using the CF specification, the

backward-looking parameter is estimated at values close to one. Thus, in light of the evidence

presented, and especially when one considers estimation of the closed form, the results suggest

that accounting for time-varying trend inflation in the NKPC cannot explain the apparent inertia

present in the Australian inflation data.

What can one make of the disparity between the DE and CF estimates? It is arguable

that explicitly imposing rational expectations ad infinitum, as the nature of the closed form

dictates, is an overly restrictive empirical test of a model. However, Cogley and Sbordone

(2008) themselves concede that, in the context of minimum distance estimation, identification

of forward and backward-looking terms in the NKPC depends on assumptions about other

structural equations in a DSGE model. When such equations are left unspecified — as is

the case in the present analysis — their identification is reliant on supplementary assumptions

about features of the model, such as the VAR lag length. Thus, by imposing further discipline in

terms of economic restrictions on the evolution of the model, the CF specification may provide

more convincing estimates. Moreover, BGLO (2011) have shown that for the US, estimates

that discipline inflation expectations for only a few periods ahead converge quickly to the CF

estimates.

Analysis of the NKPC coefficients implied by the closed form parameter estimates has shown

that lagged inflation and future expectations of inflation enter the NKPC with almost equal
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weights. Such a finding is, of course, in stark contrast to the results of Cogley and Sbordone

(2008) who find in favour of a purely forward-looking NKPC. In the context of Australia, the

traditionally accepted GMM estimates of the NKPC suggest that inflation is predominantly

forward-looking (see Kuttner and Robinson, 2010). However, as emphasised in BGLO (2011), an

almost equal split between past and future inflation when analysing inflation dynamics according

to the NKPC is common when estimation procedures take into account the model-consistent

constraints placed by the NKPC on all future expectations of inflation (Fuhrer and Moore,

1995; Linde, 2005; BGLO, 2011). Notwithstanding the historical performance of the NKPC

in Australia, this thesis has also documented a significant decline in both reduced-form and

structural persistence in inflation since the adoption of an inflation targeting regime by the

Reserve Bank in 1993. Accordingly, it is possible that the characterisation of the Australian

NKPC as being predominantly forward-looking is more applicable in recent years.

The structural analysis in this thesis has shown that in order to explain inflation dynamics

in Australia using the NKPC, ad-hoc backward-looking terms are required even when shifts

in trend inflation are accounted for. Thus, when using the NKPC, a specification that has be-

come commonplace in modern macroeconomic analysis, there is a need to assume some degree of

autonomous inertia in inflation as there are no existing microfounded mechanisms which can ad-

equately capture such persistence. While backward-indexation or rule-of-thumb behaviour may

help, in a limited sense, to capture the persistence in inflation, there is a need to develop more

comprehensive mechanisms which can explain the complex structural behaviours underlying in-

flation dynamics. Whether such mechanisms as time-variance in the Calvo pricing parameters,

the impact of learning on pricing, sticky-information models or state-dependent menu-cost mod-

els provide avenues to stronger microfoundations remains to be seen. Nonetheless, the quest to

uncover the true nature of inflation dynamics is an important exercise that requires ongoing

research and investigation.

57



Appendix A: Derivation of the NKPC in difference equation (DE)

form

This appendix details the derivation of the extended NKPC with time-varying trend inflation in

its difference-equation (DE) form as described in (25) and (26). The NKPC derivation is almost

identical to that in BGLO (2011), however, the model is augmented slightly to capture open

economy effects.

First, the log-linear approximation of the evolution of aggregate prices is derived. Let Xt be

the optimal nominal price at time t chosen by firms that are allowed to adjust their prices, which

occurs with probability probability (1−α). Based on the indexation mechanism, the price of an

individual firm i that is unable to adjust its price (with probability α) is determined according

to

Pt(i) = (Πτ
t−1Π1−τ

t−2 )ρPt−1(i) .

Hence, the aggregate price based on the CES aggregator is given by

Pt =
[
(1− α)X1−θ

t + α
{

(Πτ
t−1Π1−τ

t−2 )ρPt−1

}1−θ
] 1

1−θ
.

Dividing by the price level Pt, yields

1 = (1− α)x1−θ
t + α

{
(Πτ

t−1Π1−τ
t−2 )ρΠ−1

t

}1−θ
, (48)

where xt is the optimal relative price at time t. Next define stationary variables Π̃t = Πt/Πt,

gπ̄t = Πt/Πt−1, gyt = Yt/Yt−1, and x̃t = xt/xt. Here, for any variable kt, kt is its time-varying

trend. Equation (48) can then be transformed in terms of these stationary variables to yield:

1 = (1− α)x̃1−θ
t x1−θ

t

+α

 Π̃
ρ(1−τ)(1−θ)
t−2 Π̃

ρτ(1−θ)
t−1 Π̃

−(1−θ)
t Π

(1−ρ)(θ−1)
t ·

(gπ̄t−1)−ρ(1−τ)(1−θ)(gπ̄t )−ρ(1−τ)(1−θ)(gπ̄t )−ρτ(1−θ)

 . (49)

58



In the steady state where x̃t = Π̃t = gπ̄t = 1, (49) can be solved for xt as a function of Πt:

xt =

[
1− αΠ

(1−ρ)(θ−1)
t

1− α

] 1
1−θ

. (50)

Defining π̂t ≡ ln Π̃t ≡ ln(Πt/Πt) and x̂t ≡ ln x̃t, imposing (50), and rearranging gives the

log-linear approximation of (49) around the steady state, which can be expressed as

x̂t = − 1

ϕ0,t
ρ(1− τ)

(
π̂t−2 − ĝπ̄t−1 − ĝπ̄t

)
− 1

ϕ0,t
ρτ
(
π̂t−1 − ĝπ̄t

)
(51)

+
1

ϕ0,t
π̂t ,

where ϕ0,t = 1−αΠ
(1−ρ)(θ−1)
t

αΠ
(1−ρ)(θ−1)
t

.

Next, take the log-linear approximation to the first-order condition (FOC) of firms’ pricing

problem. The firms’ FOC can be expressed as

Et

∞∑
j=0

αjQt,t+jYt+jPt+jΨ
1−θ
tj

(
X

(1+θω)
t − θ

θ − 1
MCt+jΨ

−(1+θω)
tj P θωt+j

)
= 0 , (52)

where Qt,t+j and MCt+j are the nominal discount factor and average marginal cost at t + j,

respectively. The variable Ψtj enters in the CES demand function for any good i, Yt+j(i) =

Yt+j

(
Pt+j(i)Ψtj

Pt+j

)
, with

Ψtj =

 1∏j−1
k=0

(
Πτ
t+kΠ

1−τ
t+k−1

)ρ j = 0

j ≥ 1
(53)

Combining (52) and (53) and rearranging leads to

X1+θω
t =

Ct
Dt

,
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where Ct and Dt are recursively defined by

Ct =
θ

θ − 1
YtP

θ(1+ω)−1
t MCt

+Et

[
αqt,t+1Π

−ρτθ(1+ω)
t Π

−ρ(1−τ)θ(1+ω)
t−1 Ct+1

]
(54)

Dt = YtP
θ−1
t

+Et

[
αqt,t+1Π

ρτ(1−θ)
t Π

ρ(1−τ)(1−θ)
t−1 Dt+1

]
, (55)

where qt,t+1 now is the real discount factor. Defining the stationary variables C̃t = Ct

YtP
θ(1+ω)
t

and

D̃t = Dt
YtP

θ−1
t

, yields the following two expressions, based on (54) and (55):

C̃t =
θ

θ − 1
mct

+Et

[
αqt,t+1g

y
t+1Π

θ(1+ω)
t+1 Π

−ρτθ(1+ω)
t Π

−ρ(1−τ)θ(1+ω)
t−1 C̃t+1

]
(56)

D̃t = 1 + Et

[
αqt,t+1g

y
t+1Π

(θ−1)
t+1 Π

ρτ(1−θ)
t Π

ρ(1−τ)(1−θ)
t−1 D̃t+1

]
. (57)

Also note that

C̃t

D̃t

=
Ct
Dt

1

P
(1+θω)
t

= x1+θω
t , (58)

where xt ≡ Xt/Pt. Evaluating (56) and (57) at the steady state leads to

Ct =
θ
θ−1mct

1− αqgyΠθ(1+ω)(1−ρ)
t

Dt =
1

1− αqgyΠ(θ−1)(1−ρ)
t

Imposing the assumption that MCt+j = (MCd
t+j)

1−φ(MCm
t+j)

φ and combining the two expres-

sions above with (50) while using (58) leads to the steady-state restriction (22). This restriction

does not depend on τ and hence is identical to the case in Cogley and Sbordone with τ = 1.

Next, define Ĉt = ln C̃t
Ct

, D̂t = ln D̃t
Dt

, and m̂ct = ln mct
mct

. Log-linearizing (58) yields

(1 + θω)x̂t = (Ĉt − D̂t) . (59)
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Combining (59) with (51) and rearranging leads to an intermediate expression for π̂t:

π̂t = ρτ
[
π̂t−1 − ĝπ̄t

]
+ρ(1− τ)

[
π̂t−2 − ĝπ̄t−1 − ĝπ̄t

]
+

ϕ0,t

(1 + θω)
(Ĉt − D̂t) . (60)

The expressions for Ĉt and D̂t are obtained by log-linearizing (56) and (57). Combining the

resulting expressions with (59) leads to an expression for π̂t similar to that in the main text

π̂t = ρτ(π̂t−1 − ĝπ̄t ) + ρ(1− τ)(π̂t−2 − ĝπ̄t−1 − ĝπ̄t )

+ΩtEt(π̂t+1 − ρτπ̂t − ρ(1− τ)(π̂t−1 − ĝπ̄t )) + λtm̂ct + γtD̂t + uπ,t (61)

D̂t = ϕ1,tEt(q̂t,t+1 + ĝyt+1) (62)

+ϕ1,t(θ − 1)Et
{
π̂t+1 − ρτπ̂t − ρ(1− τ)(π̂t−1 − ĝπ̄t )

}
+ ϕ1,tEtD̂t+1 .

To derive the final NKPC as expressed in (25) and (26) recall that the in order to capture open

economy effects of the inflationary process it is assumed

MCt+j = (MCd
t+j)

1−φ(MCm
t+j)

φ,

where average aggregate marginal costs, MCt+j , is a combination of average marginal costs of

domestic producers, MC d
t+j and importers, MCm

t+j . As mentioned in the main text, it is assumed

that the structural parameters of the Calvo model (α, ρ, θ, ω and τ) are identical across both

sectors. Thus, given (61) and (62), imposing such assumptions leads to the formulation of an

open-economy NKPC as expressed in (25) and (26)

π̂t = ρτ(π̂t−1 − ĝπ̄t ) + ρ(1− τ)(π̂t−2 − ĝπ̄t−1 − ĝπ̄t ) + ΩtEt(π̂t+1 − ρτπ̂t − ρ(1− τ)(π̂t−1 − ĝπ̄t ))

+λt

[
(1− φ)m̂cdt + φ m̂cmt

]
+ γtD̂t + uπ,t (63)
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D̂t = ϕ1,tEt(q̂t,t+1 + ĝyt+1) (64)

+ϕ1,t(θ − 1)Et
{
π̂t+1 − ρτπ̂t − ρ(1− τ)(π̂t−1 − ĝπ̄t )

}
+ ϕ1,tEtD̂t+1 .

with the time-varying coefficients given by

λt = χtϕ3,t

Ωt = ϕ2,t(1 + ϕ0,t)

γt =
χt(ϕ2,t − ϕ1,t)

ϕ1,t

χt =
ϕ0,t

1 + θω

ϕ1,t = αqgyΠ
(θ−1)(1−ρ)
t

ϕ2,t = αqgyΠ
θ(1+ω)(1−ρ)
t

ϕ3,t = 1− ϕ2,t.

Finally, iterating D̂t in (64) forward, substituting the resulting expression for D̂t into (63), con-

verting real discount factors q̂t+j,t+j+1 into nominal discount factors Q̂t+j,t+j+1 and rearranging

terms yields the NKPC in DE form (as expressed in equation (27) in the main text):

π̂t = ρ̃DE1,t

(
π̂t−1 − ĝπ̄t

)
+ (1− τ)ρ̃DE2,t

(
π̂t−2 − ĝπ̄t−1 − ĝπ̄t

)
+λ̃DEt

[
(1− φ)m̂cdt + φ m̂cmt

]
+bDE1,t Etπ̂t+1

+bDE2,t Et

∞∑
j=2

ϕj−1
1,t π̂t+j (65)

+bDE3,t Et

∞∑
j=0

ϕj1,t

[
Q̂t+j,t+j+1 + ĝyt+j+1

]
+ ũπ,t,
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where the coefficients are defined by

ρ̃DE1,t = [ρτ − λtρ(1− τ)− γt(θ − 1)ρ(1− τ)ϕ1,t] /∆t

ρ̃DE2,t = ρ/∆t

bDE1,t = b̃D1,t + bD3,t

bDE2,t = b̃D2,t + bD3,t

bDE3,t = [γtϕ1,t]/∆t

λ̃DEt = λt/∆t

∆t = 1 + ρτΩt + γt(θ − 1)ρϕ1,t {τ + (1− τ)ϕ1,t}

b̃DE1,t =
[
Ωt + γt(θ − 1)ϕ1,t

{
1− ρτϕ1,t − ρ(1− τ)ϕ2

1,t

}]
/∆t

b̃DE2,t =
[
γt(θ − 1)ϕ1,t

{
1− ρτϕ1,t − ρ(1− τ)ϕ2

1,t

}]
/∆t (66)

Note that as in Cogley and Sbordone (2008) and BGLO (2011), the “anticipated utility” assump-

tion (Kreps, 1998) is used in deriving the NKPC in (65) such that Et

i∏
k=0

ϕ1,t+kĥt+i = ϕi+1
1,t Etĥt+i

for any variable ĥt+i.
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Appendix B: Derivation of the CF specification

This appendix describes in detail the derivation of the CF representation of the NKPC. The

derivation closely follows that in BGLO (2011) and is based on solving (63) and (64) forward.

First, define the variable

B̂t = π̂t − ρτ(π̂t−1 − ĝπ̄t )− ρ(1− τ)(π̂t−2 − ĝπ̄t−1 − ĝπ̄t ) ,

so that

EtB̂t+1 = π̂t+1 − ρτπ̂t − ρ(1− τ)(π̂t−1 − ĝπ̄t ) .

Note that the expectation above reflects the fact that ĝπt is an innovation process so that Etĝ
π̄
t+j =

0 for j ≥ 1. Using this definition, we can rewrite (63) as

B̂t = ΩtEtB̂t+1 + λt

[
(1− φ)m̂cdt + φ m̂cmt

]
+ γtD̂t + uπ,t. (67)

Solving (67) forwards

B̂t = λtEt

∞∑
j=0

Ωj
t

[
(1− φ)m̂cdt+j + φ m̂cmt+j

]
+ γtEt

∞∑
j=0

Ωj
tD̂t+j + uπ,t. (68)

In deriving (68) (and (69) below), the “anticipated utility” assumption is used so that

Etλt+j

j∏
k=0

Ωt+k

[
(1− φ)m̂cdt+j + φ m̂cmt+j

]
= λtΩ

j+1
t Et

[
(1− φ)m̂cdt+j + φ m̂cmt+j

]

Etγt+j

j∏
k=0

Ωt+kD̂t+j = γtΩ
j+1
t EtD̂t+j

for any j > 0. Next, solving forward (64), converting real discount factors into nominal ones,

and rearranging leads to

D̂t = ϕ1,tEt

∞∑
j=0

ϕj1,t

[
Q̂t+j,t+j+1 + ĝyt+j+1

]
−κ1,t

[
π̂t−1 − ĝπ̄t

]
+ κ2,tπ̂t + κ3,tπ̂t+1 (69)

+κ3,tEt

∞∑
j=2

ϕj−1
1,t π̂t+j ,
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with the new coefficients defined by

κ1,t = (θ − 1)ρ(1− τ)ϕ1,t

κ2,t = (θ − 1)ρτϕ1,t + (θ − 1)ρ(1− τ)ϕ2
1,t

κ3,t = θϕ1,t − (θ − 1)ρτϕ2
1,t − (θ − 1)ρ(1− τ)ϕ3

1,t

Next, the auxiliary variables B̂t and D̂t are removed and the NKPC is derived. Using the

definition of B̂t, and sustituting into (68)

π̂t = ρτ(π̂t−1 − ĝπ̄t ) + ρ(1− τ)(π̂t−2 − ĝπ̄t−1 − ĝπ̄t )

+λtEt

∞∑
j=0

Ωj
t

[
(1− φ)m̂cdt+j + φ m̂cmt+j

]
+ γtEt

∞∑
k=0

Ωj
tD̂t+j . (70)

Finally, substitute for D̂t+j terms in (70) using (69) and rearrange the resulting expression to

obtain the CF representation of NKPC:

π̂t = ρ̃CF1,t (π̂t−1 − ĝπ̄t ) + (1− τ)ρ̃CF2,t (π̂t−2 − ĝπ̄t−1 − ĝπ̄t )

+λ̃CFt Et

∞∑
j=0

Ωj
t

[
(1− φ)m̂cdt+j + φ m̂cmt+j

]
+bCF0,t Et

∞∑
k=0

Ωk
t

[
π̂t+k−1 − ĝπ̄t+k

]
+bCF1,t Et

∞∑
k=0

Ωk
t π̂t+k

+bCF2,t Et

∞∑
k=0

Ωk
t π̂t+k+1 (71)

+bCF2,t Et

∞∑
k=0

Ωk
t

∞∑
j=2

ϕj−1
1,t π̂t+j+k

+bCF3,t Et

∞∑
k=0

Ωk
t

∞∑
j=0

ϕj1,t

[
Q̂t+j+k,t+j+k+1 + ĝyt+j+k+1

]
+ uπ,t,
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with the new coefficients defined as

ρ̃CF1,t = ρτ

ρ̃CF2,t = ρ

λ̃CFt = λt

bCF0,t = −γtκ1,t

bCF1,t = −γtκ2,t

bCF2,t = γtκ3,t

bCF3,t = γtϕ1,t

Cross-equation restrictions

Using the forecasting rule (30), the t− 2 conditional expectation of the CF (71) takes the form

e′πA
2
t−2ẑt−2 = ρ̃CF2,t−2e

′
πAt−2ẑt−2 + (1− τ)ρ̃CF2,t−2e

′
πẑt−2 + (1− φ)λ̃CFt−2e

′
mcdomKt−2A

2
t−2ẑt−2

+ φ λ̃CFt−2e
′
mcimKt−2A

2
t−2ẑt−2 + bCF0,t−2e

′
πKt−2At−2ẑt−2

+ bCF1,t−2e
′
πKt−2A

2
t−2ẑt−2 + bCF2,t−2e

′
πKt−2A

3
t−2ẑt−2

+ bCF2,t−2ϕ1,t−2e
′
πKt−2Mt−2A

4
t−2ẑt−2

+ bCF3,t−2(e′qKt−2Mt−2A
2
t−2ẑt−2 + e′gyKt−2Mt−2A

3
t−2ẑt−2), (72)

where

Kt ≡ (I− ΩtAt)
−1. (73)
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Hence, the vector of cross-equation restrictions is given by

e′πA
2
t−2 = ρ̃CF2,t−2e

′
πAt−2 + (1− τ)ρ̃CF2,t−2e

′
πI + (1− φ)λ̃CFt−2e

′
mcdomKt−2A

2
t−2

+ φ λ̃CFt−2e
′
mcimKt−2A

2
t−2 + bCF0,t−2e

′
πKt−2At−2

+ bCF1,t−2e
′
πKt−2A

2
t−2 + bCF2,t−2e

′
πKt−2A

3
t−2

+ bCF2,t−2ϕ1,t−2e
′
πKt−2Mt−2A

4
t−2

+ bCF3,t−2(e′qKt−2Mt−2A
2
t−2 + e′gyKt−2Mt−2A

3
t−2)

≡ gCF (µt−2,At−2,ψ). (74)
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“New Evidence on Inflation Persistence and Price Stickiness in the Euro Area: Implications

for Macro Modeling.” Journal of the European Economic Association, 4(2/3): 562–574.

Ball, L.M., and D.H. Romer. 1990. “Real Rigidities and the Non-Neutrality of Money.” The

Review of Economic Studies, 57(2): 183–203.

Ball, L.M, S.G. Cecchetti, and R.J. Gordon. 1990. “Inflation and Uncertainty at Short

and Long Horizons.” Brookings Papers on Economic Activity, 1990(1): 215–254.

Barnes, M. L., F. Gumbau-Brisa, D. Lie, and G. P. Olivei. 2011. “Estimation of Forward-

Looking Relationships in Closed Form: An Application to the New Keynesian Phillips

Curve.” Federal Reserve Bank of Boston Working Paper No. 11-3.

Barsky, R. B. 1987. “The Fisher Hypothesis and the Forecastablility and Persistence of Infla-

tion.” Journal of Monetary Economics, 19(1): 3–24.

Beechey, M., N. Bharucha, A. Cagliarini, D. Gruen, and C. Thompson. 2000. “A Small

Model of the Australian Macroeconomy.” Research Discussion Paper 2000-05, Reserve Bank

of Australia.

Bernanke, B.S., and I. Mihov. 1998. “Measuring Monetary Policy.” The Quarterly Journal

of Economics, 113(3): 869–902.

Beveridge, S., and C.R. Nelson. 1981. “A New Approach to Decomposition of Economic

Time Seires into Permanent and Transitory Components with Particular Attention to Mea-

surement of the ‘Business Cycle’.” Journal of Monetary Economics, 7(2): 151–174.

Calvo, G. A. 1983. “Staggered Prices in a Utility-Maximizing Framework.” Journal of Mone-

tary Economics, 12(3): 383–398.

Chari, V.V., P. Kehoe, and E. McGrattan. 2008. “New Keynesian Models: Not Yet Useful

for Policy Analysis.” American Economic Journal: Macroeconomics, 1(1): 242–266.

Christiano, L.J., M.S. Eichenbaum, and C. Evans. 1999. “Monetary Policy Shocks: What

Have We Learned and to What End?” Handbook of Macroeconomics, 1A. J.B Taylor and

M. Woodword (eds.), 65-148. Amsterdam: Elsevier Science.

Christiano, L.J., M.S. Eichenbaum, and C. Evans. 2005. “Nominal Rigidities and the

Dynamic Effects of a Shock to Monetary Policy.” Journal of Political Economy, 113(1): 1–

45.

68



Cogley, T., and A.M. Sbordone. 2008. “Trend inflation, Indexation, and Inflation Persis-

tence in the New Keynesian Phillips Curve.” The American Economic Review, 98(5): 2101–

2126.

Cogley, T., and T.J. Sargent. 2005. “Drifts and Volatilities: Monetary Policies and Outcomes

in the Post WWII U.S.” Review of Economic Dynamics, 8(2): 262–302.

Cogley, T., G.E. Primiceri, and T.J. Sargent. 2010. “Inflation-Gap Persistence in the US.”

American Economic Journal: Macroeconomics, 2(1): 43–69.

de Brouwer, G., and N.R. Ericsson. 1998. “Modeling inflation in Australia.” Journal of

Business and Economic Statistics, 16(4): 433–449.

Fuhrer, J. 2009. “Inflation Persistence.” Federal Reseve Bank of Boston Working Paper No.

9-14.

Fuhrer, J., and G. Moore. 1995. “Inflation persistence.” The Quarterly Journal of Economics,

110(1): 127–159.
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