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Abstract

This chapter considers associative solutions to “non-linear” discrimination problems, such as
negative patterning (A+ and B+ vs AB-) and the biconditional discrimination (AB+ and CD+ vs
AC- and BD-). It is commonly assumed that the solution to these discriminations requires
“configural” elements that are added to the compound of two stimuli. However, these
discriminations can be solved by assuming that some elements of each stimulus are
suppressed when two stimuli are presented in compound. Each of these approaches can
solve patterning and biconditional discriminations because they allow some elements, as
the arguments of associations, to have differential “presence” on reinforced versus non-
reinforced trials, and thus differential associability and control over responding. The chapter
then presents a more specific version of one of these models, describing how interactions
between stimuli, particularly the competition for attention, provide a mechanism whereby
some elements are more suppressed than others when stimuli are presented
simultaneously as a compound.



Most computational models of conditioning adopt associative strength (V) as the variable that tracks
learning about the association between a conditioned stimulus (CS) or action and the reinforcing
unconditioned stimulus (US). Many of these models make very simple assumptions about the
arguments of associations — the CSs and USs themselves. For example, the Rescorla-Wagner model
treats these stimuli as singular units such that, during learning, a single connection strengthens
between the CS unit and US unit (Rescorla & Wagner, 1972; Allan R. Wagner & Rescorla, 1972).
While the Rescorla-Wagner model has proved a successful account of the algorithms that underlie
many aspects of learning, its simple treatment of the stimuli involved in conditioning has not
equipped it to explain a number of important findings. Two particular pieces of evidence that will be
considered here are the demonstrations that animals can learn, albeit with difficulty, to master
negative patterning and biconditional discriminations. In the simplest case of a negative patterning
discrimination, two distinct CSs, A and B, are each individually paired with reinforcement (+), and
these trials are intermixed among trials in which the compound of the same two CSs, AB, is
presented without reinforcement (-). Many different species in many different paradigms have
successfully learned this discrimination, responding more on A+ and B+ trials than on AB- trials
(Kehoe & Graham, 1988; Pavlov, 1927; Rescorla, 1972, 1973; Whitlow & Wagner, 1972). The
biconditional discrimination represents an even more difficult task in which four CSs are combined
as two compounds (AB and CD) that are both reinforced, while on intermixed trials the same four
stimuli are presented as different pairwise combinations (AC and BD) but these compounds are not
reinforced. Again, there are demonstrations that animals can learn this discrimination, responding
more on AB+ and CD+ trials than on AC- and BD- trials (Rescorla, Grau, & Durlach, 1985; Saavedra,
1975), although this appears to pose even greater difficulty than the negative patterning
discrimination (Harris & Livesey, 2008; Harris, Livesey, Gharaei, & Westbrook, 2008).

The difficulty for models like Rescorla-Wagner derives from the way they treat the
generalisation of associative strength between single CSs and their compounds, or, in the case of the
biconditional discrimination, between different compounds composed of the same stimuli. The
Rescorla-Wagner model makes the simple assumption that associative strengths are additive
between CSs, an assumption at the heart of its common-error term that has been instrumental in
providing an account of many conditioning phenomena, from blocking and overshadowing to
conditioned inhibition (see Le Pelley, in press, Chapter X in current volume). Indeed, the numerous
demonstrations of response summation (e.g., Kehoe, 1982, 1986; Rescorla, 1997; Thein, Westbrook,
& Harris, 2008) support the assumption that most of the associative strength of two CSs generalises
to their combined presentation as a compound. However, if associative strength reliably generalises
between CSs and their compounds, there will always be a consistent ordering in the level of
responding shown to single CSs and their compounds. Typically, responding to the compound will be
greater than that to the single CSs because the summed associative strengths of the CSs in the
compound will be greater than the strength of either individual CS. As such, animals could never
learn to respond less to a compound than to its individual CS components in a negative patterning
discrimination, or could never learn to respond differentially to the different compounds in a
biconditional discrimination.

Configural solutions to non-linear discriminations

The solution to negative patterning and biconditional discriminations requires non-
symmetrical generalisation of associative change between single CS and compound trials, or



between compounds composed of common stimulus components. For example, an animal learning
a negative patterning discrimination must acquire associative strength during A+ and B+ trials that
does not generalise to the AB compound, or else it must acquire inhibitory strength on AB- trials that
does not generalise to A and B individually. In the biconditional case, some excitatory associative
strength acquired on AB+ and CD+ trials must not generalise to AC and BD, or inhibitory strength
acquired on AC- and BD- trials must not generalise to AB and CD. A computationally expedient way
to achieve this is to allow an associative unit to be present during reinforced but not non-reinforced
trials, or vice versa. Spence (1952) pointed out that this could be achieved by assuming that a
compound of two CSs is more than the sum of the individual stimuli, in that the configuration of the
two stimuli is itself represented as an added element (i.e., there is a computational unit that stands
for the conjunction of two or more stimuli). Rescorla (1972, 1973) and Whitlow and Wagner
(Whitlow & Wagner, 1972) showed how these added configural units can be incorporated into the
Rescorla-Wagner model to provide a ready solution to negative patterning and biconditional
discriminations. In negative patterning, the compound configural unit acquires inhibitory strength
that suppresses responding on AB- trials, but this inhibition does not generalise to A+ and B+ trials
because the configural unit is absent on those trials. Similarly, in a biconditional discrimination,
configural units for AB and CD acquire excitatory associative strength on reinforced trials that does
not generalise to AC and BD, whereas configural units for AC and BD acquire inhibitory strength on
non-reinforced trials that does not generalise to AB and CD (Saavedra, 1975).

The configural hypothesis described above does not successfully accommodate findings
from a number of more recent experiments on negative patterning discriminations (see Pearce,
1994, for review). Such evidence has informed alternative descriptions of configural
representations. For example, Wagner and Brandon (2001) have proposed that compound
configural units are not simply added to the arguments of associations, but that these units replace
some elements of the component stimuli. Therefore, in negative patterning, some units are present
in the compound but absent from single-CS trials, whereas other units are present on single-CS trials
but absent from the compound. This facilitates learning because associative strength acquired to
the latter units during A+ and B+ trials does not generalise to AB- trials, as well as allowing inhibitory
strength to be acquired by the compound configural unit that does not generalise to A+ and B+
trials.

The configural approach has been incorporated in layered network models which place
configural units within a hidden layer between input and output layers (e.g., Kehoe, 1988; Schmajuk
& di Carlo, 1992). The behaviour of these hidden configural units differs from that of traditional
models in which configural units are added to the representation of stimuli. In the earlier models,
configural units have a fixed and predefined relation to the stimulus inputs (configural unit AB is
necessarily activated by A and B in compound), whereas hidden configural units have adaptive
relationships to the sensory input, allowing them to be “tuned” to specific combinations of inputs.
This provides the hidden configural units with greater flexibility, allowing them to contribute to
learning phenomena beyond solving non-linear discriminations, such a learning-to-learning (Kehoe,
1988) and occasion-setting (Schmajuk, Lamoureux, & Holland, 1998).

A quite different approach has been described by Pearce (1987, 1994). He has argued that
all CSs, be they single stimuli or compounds, are represented by a single configural unit that codes
for the entire pattern of sensory input. This model assumes that only one configural unit undergoes



associative change on a given trial, and therefore one configural unit acquires excitatory associative
strength on reinforced trials, whereas a different configural unit acquires inhibitory strength on non-
reinforced trials. Since the strength of activation of each configural unit on a given trial is
proportional to the overlap between the current pattern of sensory input and the pattern of input
coded by that unit, the associative strength acquired on reinforced trials generalises only partially to
non-reinforced trials and the inhibition acquired on non-reinforced trials generalises only partially to
reinforced trials.

The models described above have in common their use of configural representations to
solve negative patterning and biconditional discriminations. Indeed, it has become common for
students of associative learning to consider these discriminations as “proof” of the existence of
configural representations because it is assumed that a solution to these discriminations can only be
achieved by configural units. A key objective of this chapter is to show that this assumption is false.
As described earlier, the solution to negative patterning and biconditional discriminations requires
asymmetrical generalisation of excitatory and inhibitory associative strength between reinforced
and non-reinforced trials. For negative patterning, this can be achieved by assuming that some
elements, such as configural representations, are present on compound trials but not single-stimulus
trials. However, it can also be achieved by assuming that some elements are present on single-
stimulus trials but not on compound trials. Similarly, the biconditional discrimination can be solved if
different configural units are present for each different compound, but it can also be solved if
different stimulus elements are lost (or reduced) for the different compounds. Thus each approach
can provide a successful computational solution to these discriminations. The remainder of this
chapter will be given over to describing computational models that do not involve configural
representations.

Elemental solutions to non-linear discriminations

Two formal computational models have been proposed that can solve negative patterning and
biconditional discriminations without invoking configural representations. Both assume that the
arguments of associations are arrays of elemental units that represent the multiple features of a
given stimulus or stimuli. One of these models, proposed by McLaren and Mackintosh (2000, 2002),
assumes that all stimuli share a large proportion (at least 50%) of their elements in common, and it is
these common elements that provide the solution to negative patterning and biconditional
discriminations. An important feature of this model is the non-linear relationship between elemental
activation strength and the input strength of the corresponding feature (the relationship is modeled
as a steep sigmoid or even step function; see Figure 1). The nature of this function means that
features that are weakly present in both stimuli may become strongly represented in the compound,
even though they are virtually absent from the representation of each stimulus individually.
Consider, for example, a feature, X, with weak input in stimulus A and stimulus B, shown as points Xa
and Xg in Figure 1. The element corresponding to X will be virtually inactive when either A or B is
present on its own. However, when both stimuli are presented together, the inputs from each
stimulus will sum, reaching point Xas which is located on the ascending part of the function and thus
achieves a significant level of activation of that element. This constitutes a mechanism whereby
arguments of associations may be present during a compound but effectively absent during the
individual stimuli. (Note that, while this mechanism does not describe these elements as configural,



in that they do not specifically code for the conjunction of two or more stimuli, their computational
behaviour is equivalent to that of added configural units in the Rescorla-Wagner model.)
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Figure 1. The sigmoidal relationship between the input (the physical intensity of a
stimulus feature) and the resultant strength of activation of the corresponding
elemental unit, as assumed in the MclLaren-Mackintosh model (2002). Note that a
feature (X) with low input strength in each of two stimuli (X5 and Xz in this example)
provokes very little activation of the corresponding element when either stimulus is
present alone. However, when the same two stimuli are presented together, the sum
of those physical inputs (Xag) can provoke strong activation of that element, far
exceeding the simple sum of the activations from each single stimulus.

The MclLaren-Mackintosh model has a second means for solving patterning and biconditional
discriminations. Any element whose feature is strongly present in both individual stimuli will be
activated during presentations of each individual stimulus and will also be activated during
presentations of the compound. However, if the input in each case falls on the upper, flat portion of
the curve, the strength of the element’s activation will be the same for each single stimulus and for
the compound. When associative strength of each element is updated using a common delta-rule,
such as that proposed by Rescorla and Wagner (1972), such elements can contribute to solving
patterning and biconditional discriminations because they have a higher rate of reinforcement than
do other elements (those present in one stimulus but not in the other). For example, in a negative
patterning schedule with equal numbers of A+, B+ and AB- trials, any element, X, that is common to

both A and B will be present on all trials and reinforced on 2/3"™ of those trials. By contrast, any

s of all trials but

element, Y, that is present in only one of the two stimuli will be present on 2/3
reinforced on only half of these trials. Consequently, because X has a higher reinforcement rate
than Y, it will acquire greater excitatory associative strength and Y will eventually acquire inhibitory
strength. Errorless performance is achieved on the discrimination when the associative strength of X

elements is 2\ and the associative strength of Y elements equals -A.

The second computational model that does not invoke configural representations was
proposed by Harris (2006). At the heart of this model, non-linear activation of stimulus elements is



created by a limited-capacity attention mechanism that boosts the activation strength of those
elements that have successfully entered attention. The multiple elements within and between
stimuli compete for access to attention, with the more salient elements (those with high input)
winning over the less salient elements. This competition for attention means that some elements in
each individual stimulus lose activation strength when the stimulus is presented as part of a
compound. Specifically, some elements benefit from the attention boost when their stimulus is
present on its own, but lose that boost when the same stimulus is presented as part of a compound
because the increase in total number of elements increases competition for attention.

The decline in activation of some elements when a stimulus is presented in a compound
provides a mechanism for a variety of cue interaction effects, such as one-trial overshadowing
(James & Wagner, 1980; Mackintosh & Reese, 1979), external inhibition (Brimer, 1970; Pavlov,
1927), and incomplete summation between CSs (Thein et al., 2008). In the latter two cases, the
decrease in responding is attributed to a decline in activation of some elements because responding
is modeled as the sum of each element’s activation multiplied by its associative strength. Of course,
in many such cases, decrements in responding could reflect performance interactions, such as when
the orienting response to a novel stimulus interferes with performance of conditioned responses
(CRs) to a CS. However, there is evidence that one CS may reduce the CR produced by another CS
even when the CRs themselves do not compete for expression in behaviour. A particularly clear
illustration is provided in an unpublished experiment by Robert Polewan (2006). In an eyelid
conditioning experiment, rabbits were trained with two CSs, a light and tone, at different CS-US
intervals: 300 ms for the light, 700 ms for the tone. Conditioning at these different latencies gives
rise to temporally distinct CR waveforms, with the conditioned eyeblink response developing earlier
after onset of the 300-ms CS than the 700-ms CS. After such CRs were established to the two CSs,
the rabbits were given probe tests in which the light and tone were presented together as a
compound. If the associative strength of each CS were effectively expressed on these compound
trials, the waveform of the eyeblink CR should have two peaks, corresponding to the two original CR
waveforms from each individual CS. However, Polewan found that the waveform on these
compound probe trials showed only a single peak that was closer to the peak response to the tone,
and in general the early CR (to the light) was suppressed. The is not due to a limitation in the
temporal dynamics of the eyeblink response, because other experiments have shown that rabbits
can produce bimodal CR waveforms, with both early and late peaks, when trained with a mixture of
two CS-US intervals (Choi & Moore, 2003; Millenson, Kehoe, & Gormezano, 1977), including a
mixture of 300 and 700 ms intervals (Polewan, 2006). As Polewan suggested, it was as if the “rabbits
ignored the light and focused their attention to the tone on compound trials, resulting in TL-
waveforms that resembled T- waveforms.” (pp 90-91). This specific direction of this interaction is
likely due to the greater salience of the tone than the light. The fact that one CS can interfere with
the CR to another CS, even when the CRs to each CS do not themselves interfere with one another, is
consistent with the model proposed by Harris (2006) in that the presence of the more salience tone
would steal attention from the light, thereby reducing activation of the light elements and in turn
reducing the ability of those light elements to associatively activate the US elements at the
appropriate time.

The difference in activation strength of certain elements when a stimulus is presented alone
versus a part of a compound, combined with a common-error-term learning rule, allows these
elements to solve negative patterning. That is, because these elements are strongly activated on



reinforced trials but weakly activated on non-reinforced trials, they ultimately acquire most of the
associative strength, while the elements that receive attention on both single-CS and compound
trials become inhibitory. However, this mechanism is less readily equipped to solve the
biconditional discrimination. To do so, it must assume there are some differences between the
different compounds in the level of competition for attention. Such differences can arise from
differences in the salience of the different stimuli themselves, even differences that are idiosyncratic
to individual subjects due to variations in their sensitivity to the different stimuli. For example, if
stimulus A is less salient than stimulus D, B will have steeper competition for attention on BD- trials
than on AB+ trials. Therefore, some elements of B will receive the attention boost in activation on
AB+ trials but will not receive this boost on BD- trials. As a result, these elements will acquire
excitatory associative strength that will produce greater responding on AB+ trials than BD- trials. At
the same time, C will have steeper competition for attention on CD+ trials than on AC- trials, and
therefore some elements of C will receive boosted activation on AC- trials but not on CD+ trials.
Thus these elements will acquire inhibitory strength that will reduce responding on AC- trials relative
to CD+ trials. While such differences are sufficient for the model to solve the biconditional
discrimination, it solves it much more slowly than a negative patterning discrimination. It is worth
pointing out that humans and rats also find the biconditional discrimination more difficult than
negative patterning (Harris & Livesey, 2008; Harris et al., 2008).

The model proposed by Harris (2006) relies on an attention system that is selective in its
action. That is, more salient elements selectively enter attention and thereby receive a
multiplicative boost to their activation, while less salient elements that do not compete effectively
for attention receive no boost. In the rest of this chapter, | will describe an alternative formulation
of the way that attention can modulate the activation of elements. Rather than assuming that
attention selectively exerts its effect on some elements and not others, | propose that the elements
vary in their sensitivity to attention as an inherent property of their own activation function. The
theoretical processes underlying this are ones that have been developed already in the
psychophysical and sensory neuroscience literatures. They capture the way that stimuli interact
within sensory systems and how attention influences this interaction. Thus the formulation
presented here has the advantage of being better grounded in sensory-perceptual research. It also
specifies in greater detail the mechanism by which attention operates on the elemental network to
create non-linear changes in element activation.

One crucial feature of the operations | describe below is the non-linear relationship between
the input strength of a stimulus and the response of the sensory/perceptual system. It has been
long known that the rate of change in perceived magnitude of a stimulus decreases as the absolute
magnitude of the stimulus increases, as captured by the Weber-Fechner law and Stevens’ power law
(Stevens, 1962). While this relationship holds for most of any stimulus dimension, the opposite
relation has also been observed frequently for the lowest end of many stimulus dimensions. That is,
for stimuli near detection threshold, observers become more sensitive in discriminating the relative
magnitudes of stimuli as their absolute magnitude increases (Arabzadeh, Clifford, & Harris, 2008;
Solomon, 2009). The two contrasting psychophysical effects indicate that the relationship between
the physical intensity of a stimulus and its perceived intensity is sigmoid. This relationship has been
confirmed in numerous experiments using electrophysiological recordings in cats or primates to
determine the relationship between the intensity of a stimulus (eg, the contrast of a visual grating)
and the response magnitude of neurons tuned to that stimulus (Crowder et al., 2006). As mentioned



earlier, this sigmoid relationship has already been used by McLaren and Mackintosh (2002) to
predict non-linear summation between element input strengths and thereby provide a solution to
non-linear problems such as negative patterning and biconditional discriminations. Here, however, |
explore a very different means by which this relationship can effect the type of inter-stimulus
interactions that are required to solve non-linear discriminations.

The formulation | present below derives in large part from computational models of sensory
systems that incorporate a normalization model of gain control (Heeger, 1992; Reynolds & Chelazzi,
2004; Reynolds & Heeger, 2009). The approach used here is similar to the network normalisation
rules used by Grossberg’s (1975) model of attention and associative learning which uses on-centre
off-surround shunting inhibition to constrain entire network activity at an upper bound and to
guench noise in the network (see also Schmajuk & di Carlo, 1992). Such normalisation also has the
advantage that it allows the number of elements (or stimuli) to be increased indefinitely without
saturating the network. The present model achieves normalisation by defining the activation
strength, R, of a given element as equal to the strength of the sensory input to which that element is
tuned, S, subjected to a divisive normalization (or “gain control”) that sums across all sensory inputs
weighted according to a suppressive field, z. This relationship between S and R for element x is
shown in Equation 1.
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The properties of the suppressive field are similar to those of the receptive field to which an element
is tuned, in that some inputs have a greater effect than others on the normalisation of S, depending
on how close they are to X in topographic and featural space. Inputs that are close to X have greater
weighting in the inhibitory field, such that z, = 1, and for any input Y, z, < 1. The greater the
difference between X and Y, the smaller z, becomes, and if X and Y are very different sensory inputs
(e.g., from different sensory modalities), z, = 0. If all inputs apart from X are held constant, the
summed weighted value for all inputs other than X is constant (C). Therefore, to describe how R,
changes across variations in S,, we can simplify Equation 1 as:

S +C

Ry (2)
Equation 2 is a monotonically increasing function with an asymptote of 1. It represents a specific
instance of a more general relationship expressed in Equation 3, which, as shown in Figure 2
describes a sigmoid function between R, and S,, again with an asymptote of 1. The power, p,
determines the slope of the curve, and C determines the position of the curve such that R, equals
half its maximum height (0.5) when S,” equals C.
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Figure 2. The function relating the strength of a sensory input (S) to the magnitude of
the sensory response (R) as described in Equation 3. In this example, p = 2 and C = 100.

In Equation 3, increasing the amount of sensory input by, for example, adding a new
stimulus, will increase the value of C. This will shift to the right the function relation R, to S,, as
shown in Figure 3. The consequence of this will be a reduction in activation of each element, as per
the normalisation effect. But more specifically, the amount that R, decreases will depend on S,, with
the greatest drop in R, for values of S,” close to C. Therefore, some elements with strong input will
suffer relatively little change in their activation whereas other elements with intermediate input will
suffer a substantial decrease in activation strength. It is this differential effect, whereby some
elements suffer greater loss of activation than others when their stimulus is presented as part of a
compound, which provides a solution to non-linear discriminations such as negative paternning.
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Figure 3. The relationship between the physical intensity of sensory input (S) and the
magnitude of the sensory response (R) as described in Eq 3. In each of these examples, p
= 2. Note how increasing C shifts the function to the right, and in each case R, equals 0.5
when S,” equals C.



The normalisation process described above captures how stimuli can affect the activation of
one another’s elements in such a way as to provide a solution to non-linear discriminations. As
described, this process relies on the features of each stimulus acting within the supressive field of
the other, but this presents a limitation. The mechanism can operate for stimuli from the same
modality, but it is less plausible that stimuli from different modalities should act to affect one
another in this way. Attention, as an amodal mechanism, provides a means to explain how stimuli
from different modalities can afffect one another’s activation. Attention is modelled as a spatially
and featurally selective field that multiplicatively increases the input strength, S, of a stimulus. Thus
if a stimulus or feature, X, captures (or receives) attention its input strength is increased by a gain
factor, y. The consequence of this for R is shown in Equation 4.
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This shows the attention gain exclusively applied to S,. In practice, it is likely to affect some
other elements close to X, and therefore have some effect on C. However, as long as the attention
field is smaller (more selective) than the suppressive field, most elements in the suppressive field for
X will not be in the attention field, and therefore C will increase less than S,. Therefore, for
simplicity, | will allow attention to increase S, but not C. As such, we can re-write Equation 4 by

dividing through by y to give Equation 5.
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Equation 5 makes it clear that attention directed to S, will effectively reduce C, and therefore shift to
the left the function relating S, to R,. Conversely, a decrease in attention to S, will result in the
opposite shift.

The operations just described represent the key ingredients of the current proposal.
Whenever two stimuli are presented as a simultaneous compound, attention directed to the
features of one stimulus reduces (or removes) attention to the features of the other. In effect,
attention is simply divided equally among all the stimuli that are present. As a result, the function
relating R, and S, is effectively shifted to the right, resulting in an overall decrease in their activation
strength (R). More importantly, because of the non-linear nature of this function, the rightward shift
will have much greater impact on some elements (those for which SP is close to C) than on others
(those with higher values for S). Figure 4 illustrates this point, showing how a rightward shift
effected by a decrease in attention can differentially reduce R, depending on the magnitude of S,.
Thus, one stimulus changes the pattern of element activation of another stimulus, rather than
simply scaling the activity uniformly across elements, making a compound qualitatively distinct from
its component stimuli.

To confirm that this model can solve negative patterning and biconditional discriminations,
Figure 5 plots the average of 50 simulations for both types of discrimination. In these simulations, all
stimuli had 10 elements and the activation strength (R) for each element was calculated using
Equation 5. The sensory input, S,, was a random number between 1 and 10, the power, p, was set at
2 and the constant, C, was 4. The loss of attention when any stimulus was combined with a second



stimulus was simulated by defining y in proportion to the sum of the initial (pre-normalised) values
of the second stimulus. This is specified below in Equation 6 for a stimulus, X, when compounded
with a stimulus Y containing 10 elements.
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Figure 4. A rightward shift in the function relating S to R produces a large drop in R for
values of S close to X (at which, S is close to C), but produces only a small change in R
for high values of S (such as at Y) or for very low values of S. For points X and Y, the shift
from the solid curve to the dashed curve corresponds to a decrease in R of 0.33 and 0.1,
respectively. These represent 50% versus 10% reductions.

This simulates a process in which attention is shared between stimuli in proportion to the
salience of their elements. Figure 5 shows the predicted conditioned response strength across all 10
elements for each single CS, or 20 elements of each compound. The term R} , defined below in

Ill

Equation 7, is the activation strength of a US element, y, in response to the summed “internal” input
from every other element. As such, the aggregate of Ris for all US elements gives the estimated
conditioned response strength. On each trial, the associative strength (V) between each CS element
(x) and each US element (y) is updated according to a modified version of the Rescorla-Wagner
(1972) rule, as defined in Equation 8 with 3 set at .02. It is worth noting that, by incorporating this
learning rule, the model is equipped to deal with the range of empirical findings, such as cue

competition effects like blocking, that are explained by the Rescorla-Wagner model.
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Figure 5. The average of 50 simulations of negative patterning and biconditional
discriminations, showing the sum of the products of associative strength and activation
strength (R) for each element (the maximum value is 10). Bicon+ and Bicon- refer to
reinforced and non-reinforced trials of the biconditional discrimination (i.e., the mean of
AB+ and CD+ versus the mean of AC- and BD- trials). NP+ and NP- refer to reinforced (A+
and B+) and non-reinforced (AB-) trials of the negative patterning discrimination.

The operations described above produce differential changes in the activation of elements
depending on whether they are part of a single CS or compound. The proposal uses attention
because this is a plausible mechanism by which one stimulus could influence the sensory response to
one another even when those stimuli are very different, such as from different sensory modalities.
However, the model does predict an even greater interaction between stimuli that are more similar
due to the fact that such stimuli would not only compete for attention, but could also fall within the
suppressive field and thus contribute directly to the normalisation process. That is, for two similar
stimuli, the value of C may increase for each stimulus, shifting to the right the function relating S to
R.

In conclusion, this chapter considers the nature of stimulus interactions that are required to
explain how animals can solve non-linear discriminations such as negative patterning and the
biconditional discrimination. While some researchers (e.g., Melchers, Shanks, & Lachnit, 2007) have
assumed that these discrimination problems can only be solved by recourse to configural
representations that uniquely code stimulus conjunctions, the modeling discussed in the present
chapter shows that this is not correct. Non-linear discriminations are intractable to those associative
models that assume a one-to-one relationship between the representation of an event and the
separate components of that event (e.g., between a compound of two stimuli and the individual
stimuli themselves) because these models predict effective generalisation of associative change
between reinforced and non-reinforced trials. Viable models of associative learning must assume
that stimulus representations involve a non-linear combination of stimulus elements. This can be
achieved by adding configural elements to the representation of each compound, or by suppressing
the activation of some stimulus elements when stimuli are presented in compound. As such, most
complex discriminations can be solved relying solely on elemental representations. Of course the



model formulated here was designed with the express purpose of solving those non-linear
discriminations. The mechanisms proposed do not equip the model with the means to explain a
range of phenomena that extend beyond the scope of this chapter. Perhaps relevant among these
phenomena are learning-to-learn and occasion-setting, given that these can be accounted for by
layered network models that incorporating configural representations (Kehoe, 1988; Schmajuk & di
Carlo, 1992).
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