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ABSTRACT 
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respectively. Exchange of the indivisible good takes place if and only if the bid is at least as high as 
the ask, the trading price being the bid price with probability k and the ask price with probability 
(1 - k). We show that the stable equilibria of a complete information k-double approximate an 
asymmetric Nash Bargaining solution with the seller’s bargaining power decreasing in k. Note that 
ceteras paribus, the payoffs of the seller of the one-shot game increase in k. Nevertheless, as the 
stochastically stable equilibrium price decreases in k, choosing the seller’s favourite price with a 
relatively higher probability in individual encounters makes him worse off in the long run.  
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1 Introduction

This paper characterizes stochastically stable equilibria in a com-
plete information version of the widely studied k-double auction of
Satterthwaite and Williams (1989). In a k-double auction, a buyer
and seller simultaneously choose a price. Trade takes place only if
the buyer’s price (bid) is at least as high as the seller’s price (ask). In
this case, the seller gets her preferred price (the bid) with probability
k.

The interest in this problem is for two reasons. First, the double
auction is used to stylize important trading institutions such as the
call markets1. Call markets are for instance used to fix the daily
opening price of every stock listed on the New York stock exchange.
Twice a day, call markets are also used to fix the price of gold and
copper in London. As these are markets in which traders participate
repeatedly (and mostly anonymously), these are arguably environ-
ments where equilibrium play could be learned. Stochastically stable
equilibria are equilibria that are robust to certain kinds of perturba-
tions in the learning procedures.

The second reason for undertaking this study is a curiosity about
the relationship between the stochastically stable outcome and the
parameter k. To illustrate, suppose a risk neutral buyer and a seller
seek to trade when the reservation values are one and zero respec-
tively. Assume 0 < p < P < 1 are the two feasible prices. The
double auction is the following 2x2 game where q = kP + (1− k)p.

Buyer

Seller
p P

p 1− p, p 0, 0

P 1− q, q 1− P, P

Figure 1: k-double auction with two prices

Note that (p, p) and (P, P ) are the only strict Nash equilibria for
all k ∈ (0, 1). Although k does not affect the equilibrium set, on a
heuristic basis, it is tempting to speculate that higher values of k

1See Cason and Friedman (1997), Rustichini and Satterthwaite (1994)



indicate a stronger position for the seller and a weaker position for
the buyer. After all, the seller’s payoffs are (weakly) increasing in
k — whenever trade occurs, a higher k means the seller’s favorite
price (i.e. the bid) is more likely. Indeed, if a seller were to choose,
on this heuristic basis, between two such one shot encounters that
differ only in the size of k, she would probably pick the one with the
higher k.

Now suppose we attempt to select between the two equilibria on
the basis of perturbed learning dynamics. Note that higher the k,
the out of equilibrium payoffs of the seller increase while those of
the buyer decrease. In other words, it is less costly for the seller to
ask for less than the buyer’s bid and more costly for the buyer to bid
more than the seller’s asks. Therefore, when the bid is above the ask,
there is more pressure for the bid to fall than for the ask to rise. Both
these forces seem to suggest an increase in the size of the basin of
attraction of the lower price. Consequently a lower price equilibrium
may be more likely outcome for higher values of k. q It is easy
to verify this intuition for the game in Figure 1. Suppose that the
above game is being played according to the slightly noisy dynamics
of Young (1993a). The players would then learn to coordinate on
the stochastically stable equilibrium; for 2x2 games this is the same
as the risk-dominant equilibrium. A direct calculation shows that
for the above example there is a threshold k∗ ∈ (0, 1) such that (p, p)
is the risk dominant equilibrium if k > k∗ while (P, P ) is the risk
dominant equilibrium if k < k∗.

Clearly, k plays an important role in the selection of equilibria,
even though it does not affect the equilibrium set. The curiosity
is that higher values of k select the lower price. Thus, higher the
probability that the seller’s favorite price is selected in the one shot
game, the less favorable is the long run outcome toward the seller.
This is the opposite of what one might argue on an albeit informal
examination of the one shot game.

In the above example, there are only two feasible prices. To show
that these observations are not special, in Section 3, we study a
model of price formation in a market where a population of buyers
is matched at random and pairwise with a population of sellers. A
k-double auction with many feasible prices is played within each
encounter. If a trade for the indivisible object takes place then the
pair exits the market and is replaced with a new one. Traders are
myopic and play a best response to the distribution of prices across

2

the matches from the previous period, unless they are matched for
two consecutive periods. In the latter event they repeat the same
strategy in some probability. Finally, there is a positive probability
that they err and propose a price at random — allowing errors is
only natural in an environment where players are learning to play
the “right” strategies.

We seek those price distributions that are most likely to prevail
in the long run when the probability of errors becomes negligible;
such distributions are said to be stochastically stable distributions
(SSPD)2. As in the case of the above example, a SSPD turns out
to be a degenerate distribution with all traders coordinating on a
strict equilibrium of the static double auction game. Such a strict
equilibrium of the one shot game is said to be a stochastically stable.

In the two prices example, we could use the risk dominance crite-
rion and identify the stochastically stable (SS) equilibrium. It is now
well known that for games with more than two strategies, a pairwise
ranking of strict equilibria based on the risk dominance criterion is
not enough to identify the stochastically equilibria. In order to allow
us to identify a stochastically stable equilibrium in terms of the pay-
offs of the underlying game, we introduce the notion of risk-potential
of an equilibrium: Suppose (s∗1, s

∗
2) is a strategy profile with the

property that s∗i is the unique best response to a (mixed) strategy of
player j if and only if j’s strategy assigns a probability greater than
γ to s∗j . Then γ is said to be its risk potential3.

Proposition 1, Section 2 contains a simple characterization of the
risk potential of an equilibrium. In Theorem 1, we use this character-
ization to show that the equilibrium with the lowest risk-potential
approximates the Nash bargaining solution of an asymmetric bar-
gaining problem in which the bargaining power of the seller is 1− k.
Theorem 2 in Section 3.2 shows that in an SSPD, all traders coor-
dinate on the equilibrium with the lowest risk-potential. The two
theorems together yield the conclusion that the price that is most
likely to prevail when the errors are increasingly unlikely is decreas-

2SSPD basically correspond to a stochastically stable states of the learning
procedure. The notion of stochastic stability was first introduced by Foster and
Young (1990). A precise definition is given in Section 3.2.

3 The notion of risk potential is related to the the notion of p-
dominance of Morris and Rob (1995) in the following way: Let A((s∗1, s

∗
2)) =

{p | (s∗1, s∗2) is p− dominant.}. Then γ is the infimum (but not the minimum) of
the set A((s∗1, s

∗
2)).



ing in k.
For the learning procedure that we shall study, the notion of risk

potential is closely related to the concepts of radius or exit resistance
developed in Ellison (2000) and Maruta (1997) respectively 4. Elli-
son (2000) in particular offers a variety of sufficient conditions that
in principle can allow an easy characterization of the SS equilibria.
Unfortunately, some of the simpler sufficient conditions, such as 1/2
dominance are not satisfied in our model. Here, one needs to con-
struct explicitly the path of least resistance from one absorbing set
to apply the sufficient condition of in Ellison (2000) that relates to
the modified coradius and radius.

As a by product of the above method of proof, we are able to
compute the expected waiting time to reach a stochastically stable
state. An interesting insight from this exercise is the relationship
between the absolute risk aversion of the traders and the expected
waiting time. It turns out that the more risk averse the players are,
faster is the convergence to the long run equilibrium. We discuss this
in Section 4.3.

For the k-double auction, the equilibrium with the lowest risk po-
tential is stochastically stable. We are however skeptical about the
generality of the link between stochastic stability and risk potential
even to particular classes of games. For, Maruta (1997) presents an
example of 4x4, symmetric, supermodular game in which the equi-
librium with the lowest risk potential is not the stochastically stable
equilibrium.

We shall defer a discussion of the robustness of our results and
the related literature (particularly Section 8.4, Young (1998) ) to
Section 4. Some of the formal arguments are in the Appendix.

2 The Double Auction And Risk-Potential

A buyer and a seller play a k-double auction in order to trade a single
indivisible good. Normalize the utility of the no-trade outcome to
zero and let v(p) and w(p) denote their respective VNM payoffs if

4 The notion of risk-potential depends only on the payoffs of the underlying
game. The radius depends both the underlying learning dynamic as well as the
underlying payoffs. Risk potential is closely related to the idea of p-dominance
described in Footnote 3 and plays a role in contexts other than best response
learning dynamics. Kajii and Morris (1997) is an example. It is therefore useful
to keep this concept distinct from the notion of radius.

3

trade occurs at a price p. Throughout the paper we maintain the
following assumptions: i). v(·) and w(·) are common-knowledge,
ii). v(1) = w(0) = 0, iii). v(·) and w(·) are strictly concave, twice
differentiable and v′(p) < 0, w′(p) > 0, iii). limp→1 v

′(p) = −∞
and limp→0w

′(p) = ∞. Assumptions (iii) and (iv) are technical
assumptions that do entail some loss of generality but substantially
simplify the proofs. For instance, all of the properties are satisfied if
we take v(p) = (1− p)α and w(p) = pα where 0 < α < 1 (where α is
the coefficient of absolute risk aversion).

Let Σn = {i/n : i = 1 . . . (n− 1)} be the set of pure strategies5.
It is useful to think of δn = 1/n as a money unit and traders choose
prices in multiples of this money unit. Some of our results concern
the case when n → ∞ and this corresponds to the case when the
money unit is infinitesimal. A typical mixed strategy will be denoted
by a vector F = (f(p1), . . . , f(pn−1)) where f(p) is the probability
of playing the pure strategy p. The expected payoff of trader i upon
choosing the price pi when her opponent chooses F is

Vb(pb, F ) =
∑

q≤pb

f(q) [kv(pb) + (1− k)v(q)] (1)

Vs(ps, F ) =
∑

q≥ps

f(q) [kw(q) + (1− k)w(ps)] (2)

A best response of trader i to F is a price p such that Vi(p, F ) ≥
Vi(q, F ) for all q ∈ Σn. As there are only finitely many strategies, the
existence of a best response is not an issue. The following Lemma is
stated without proof.

Lemma 1. For every p ∈ Σn, the strategy profile (p, p) is a strict
Nash equilibrium.

As (p, p) is a strict Nash equilibrium, p continues to be the unique
best response to F for either player even if F includes strategies
other than p in its support – provided f(p) is sufficiently large. If p
can be the unique best response even for relatively smaller values of
f(p), then in an intuitive sense the equilibrium is more stable. This
measure of riskiness is made precise below.

5 It is sufficient for our purposes to limit attention to prices in the range (0, 1).
For, these are the only prices that yield a positive utility for both players and
other prices will not be played in any strict Nash equilibrium.



Definition 1. (Risk potential) An equilibrium (p, p) is said to have
a risk potential of γ if for any mixed strategy F and i = b, s,

f(p) > γ ⇔ (Vi(p, F ) > Vi(q, F ), ∀q ∈ Σn, q 6= p) . (3)

The risk potential of a game is related to the notion of p-dominance
of Morris et. al (1995) as described in footnote 3.

For i = s, b consider the functions rin : [δn, 1 − δn] → < and
rbn : [δn, 1− δn]→ < where

rbn(p) =
k [v(p)− v(p+ δn)]

kv(p) + (1− k)v(p+ δn)
(4)

rsn(p) =
(1− k) [w(p)− w(p− δn)]
(1− k)w(p) + kw(p− δn)

(5)

rn(p) = min
{

rbn(p), rsn(p)
}

(6)

We alert the reader to the fact that rin(·) and rn(·) also depend on
k. As we shall show presently in Proposition 1, the risk-potential of
an equilibrium (p, p) can be characterized entirely in terms of rn(·),
provided the size of the money unit is small. But first in Lemma 2
below, we identify several key properties of rin(·) and rn(·) that are
used in the proofs of various results to follow. First define,

qn,k = arg max
p∈[δn,1−δn]

rn(p) (7)

Lemma 2. Let k ∈ (0, 1). There exists an integer Nk such that for
all n ≥ Nk, the following hold:

1. rsn(·) is strictly decreasing and rbn(·) is strictly increasing.

2. qn,k is well defined and rn(p) = rbn(p) if p ≤ qn,k and rn(p) =
rsn(p) if p ≥ qn,k.

3. limn→∞ qn,k = qk where qk maximizes the asymmetric Nash
product:

qk = arg max
p∈[0,1]

v(p)kw(p)(1−k) (8)

Proof. Divide and multiply the RHS rsn(p) by δn to get

rsn(p) =
(1− k)δn

(1− k)w(p) + kw(p− δn)
× w(p)− w(p− δn)

δn
. (9)
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The first term on the RHS is strictly decreasing in p since w(·) is
strictly increasing. The second term on the RHS is strictly decreasing
in p since it is the slope of the concave function w(·) between p− δn
and p. Therefore rsn(·) is strictly decreasing. A symmetric argument
establishes that rbn(·) is strictly increasing. This proves Part 1 of the
Lemma.

Let φn : [δn, 1− δn]→ < as φn(p) = rbn(p)− rsn(p). Clearly φn(·)
is continuous. By Part 1, it is also strictly increasing. Note that
rs(δn) = 1 while limn→∞ r

s
n(1− δn) = 0. Therefore for n sufficiently

large, rsn(·) is a function whose value is one when p = δn and is
approximately zero when p = (1−δn). A symmetric argument shows
that rbn(·) is an increasing function whose value is approximately
equal to zero when p = δn but equals one when p = (1− δn). For all
such n, φn(δn) ≈ −1 and φn(1− δn) ≈ 1. By the intermediate value
theorem, a solution to φn(p) = 0 where p ∈ (δn, 1− δn) exists. That
this solution is unique follows from the strict monotonicity of φn(·).
Let qn,k denote this unique solution. Part 2 is now immediate.

Assume, with no loss in generality6 that limn→∞ qn,k = qk is well
defined. Then,

lim
n→∞

rsn(qn,k)
δn

= lim
n→∞

(1− k)
(1− k)w(qn,k) + kw(qn,k − δn)

× lim
n→∞

w(qn,k)− w(qn,k − δni)
δn

=
(1− k)
w(qk)

× w′(qk) (10)

Likewise

lim
n→∞

rbn(qn,k)
δn

= − k

v(qk)
× v′(qk). (11)

From Part 2, we know that rsn(qn,k) = rbn(qn,k) for all n sufficiently

large. Therefore we must have limn→∞
rsn(qn,k)
δn

= limn→∞
rbn(qn,k)
δn

.
On using the above equations, we get

k
v′(qk)
v(qk)

= −(1− k)
w′(qk)
w(qk)

(12)

6 {qn,k}n is a bounded sequence. One could apply the arguments to follow
for each convergent subsequence and show that limit of each of them satisfies
Eq. (12). Therefore, all of them converge to the same limit.



Part 3 of the Lemma now follows from the observation that Eq. (12) is
in fact the first order condition that describes the unique interior so-
lution to the concave programming problem maxp∈(0,1) v(p)kw(p)1−k.

�

Proposition 1. For each k ∈ (0, 1), there exists an integer Nk such
that for all n ≥ Nk, if p ∈ Σn then the risk potential of the equilibrium
(p, p) is given by (1− rn(p)).

Proof. A sketch of the argument is as follows. Suppose p ∈ Σn

is such that p > qk. Consider the mixed strategy F with p and p−δn
as its support and f(p) = 1−rsn(p). A direct computation shows that
Vs(p, F ) = Vs(p− δn, F ), i.e. both p and p− δn are the seller’s best
responses against the mixed strategy F . Therefore the risk potential
of (p, p) is at least (1 − rsn(p)), which from Part 2, Lemma 2 equals
(1− rn(p)).

Similarly when p ≤ qk, by considering the mixed strategy F with
the support on p and p + δn, where f(p) = 1 − rbn(p), we note that
both p and p + δn are the buyer’s best responses to F . Therefore,
the risk-potential is (1 − rbn(p)) which, again from Lemma 2 equals
(1− rn(p)).

To complete the proof, we must show that p is the unique best
response for each player to any mixed strategy F such that f(p) >
(1− rn(p)), This is shown in the Appendix. �

Define

Kn,k =
{

p ∈ Σn : rn(p) ≥ rn(p̂) ∀ p̂ ∈ Σn

}

(13)

If n is sufficiently large, by Proposition 1, Kn,k is the set of equilib-
rium prices in Σn with the lowest risk potential. A typical element
of Kn,k differs from qn,k in that the former maximizes rn(·) on the
smaller domain Σn. Even though qn,k is unique, as the following ex-
ample illustrates Kn,k need not be a singleton even when n is large.
In other words, there can be more than one equilibrium with lowest
risk potential even for large values of n.

Example 1. Take v(p) =
√

1− p and w(p) =
√
p and k = 0.5. Note

that rn(p) = rn(1−p) for all p ∈ [δn, 1−δn] and achieves a maximum
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at qn,k = 0.5. However, qn,k ∈ Σn only when n is an even number,
in which case Kn,k = {0.5}. On the other hand when n is odd and
sufficiently large, the maxima of rn(·) on Σn are the neighboring
prices of 0.5, which means Kn,k = {0.5− 1/n, 0.5 + 1/n}.

We shall now proceed to discuss the comparative statics with
respect to k of the equilibria with the lowest risk-potential as well
as the limiting properties of Kn,k as n → ∞. As Theorem 1 below
shows, there is a simple way to characterize this limit in general.

Theorem 1. Let k ∈ (0, 1). Let {pn,k}n be an infinite sequence
of prices such that pn,k is an equilibrium price with the lowest risk-
potential. Then limn→∞ pn,k = qk where qk is as defined in Eq. (8).

Moreover for every k > k̂ ∈ (0, 1), there exists an integer N such
that if pN,k and pN,k̂ are any corresponding equilibrium prices with
the lowest risk potential, then pn,k < pn,k̂.

In particular, note that limk→1 qk → 0. Therefore for small values
of k the equilibrium prices with the lowest risk-potential are almost
zero.

Proof. Let k ∈ (0, 1). By Proposition 1, for all n sufficiently
large, pn,k ∈ Kn,k. Due to the monotonicity properties of rn(·) that
follow from Lemma 2,

| pn,k − qn,k |< δn, for all n sufficiently large. (14)

This together with Part 3, Lemma 2 implies that limn→ pn,k = qk.
That pn,k < pn,k̂ if k > k̂ now follows from the fact that qk < qk̂. �

3 A Matching Model of Price Formation

At each date, a finite number of buyers and sellers are matched in
pairs and play the k-double auction described in the previous sec-
tions. At the end of each period, successful pairs of traders exit the
market and are replaced by identical pairs. Unsuccessful traders re-
turn to the pool and await to be matched again. Every trader in this
pool has a positive probability of being matched. Let m denote the
constant number of matches in each period.

Within a match, strategies are chosen as follows: If the trader is
subject to a certain independent, random, idiosyncratic shock which



occurs with probability ε, she chooses each of the pure strategies
with equal probability. These are perturbations to an underlying
price formation process and can be thought of in different ways -
as mutations, as errors by the agents in choosing otherwise optimal
responses or as uncertainty on the part of the modeler regarding the
specification of the dynamic learning procedure. For concreteness,
we shall use the interpretation of Young (1993a) and think of the
perturbations as mistakes committed by the traders. We reiterate
however, that other interpretations are equally valid.

When a trader does not make errors, she plays a best response
to the distribution of prices of the opposing population from the
previous period – except when matched for two consecutive periods.
In the latter case, there is a small but positive probability that she
repeats her strategy from the previous match (perhaps being subject
to inertia). If there are several best responses, then each of them is
played with an equal probability.

Let ∆n denote the set of all mixed strategies on Σn which can
be generated from m observations. From the above description of
the decision rules, it is clear that a trader’s choices at date t depend
only on the distribution of the bid and ask prices realized at date
t − 1. Consequently, we can think of the state of the economy as
being an element of Ωn ≡ ∆n ×∆n. Using the above decision rules
and standard probability calculus, we can compute the probability
of being in a state (F̃b, F̃s) at date t + 1 conditional on being in a
state (Fb, Fs) at date t. Therefore the (probabilistic) evolution of the
bid-ask distributions over time can be described by means of a finite
state Markov Process 〈Ωn,Pε

n〉, where the state space is Ωn and Pε
n

is the matrix of transition probabilities. We shall refer to 〈Ωn,Pε
n〉

as the perturbed price-formation process (PPFP).
Ultimately, we are interested in the long run behavior of the

PPFP in the limiting case when ε → 0. Before we do this, we shall
consider the case when ε = 0 in the following subsection.

Further general comments on this learning procedure are deferred
to Section 4.

3.1 The Price Formation Process

When ε = 0, we shall refer to evolution of prices described in the
previous section as the price-formation process or PFP.

Definition 2. (Fb, Fs) ∈ ∆n is an absorbing state of the PFP if the
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probability of transition from (Fb, Fs) to any other state is zero.

Often, one needs a precise computation of the matrix of transition
probabilities in order to identify the absorbing states and the global
convergence properties of a Markov Chain. Fortunately, in this case,
we can provide more direct arguments to show that the absorbing
states are isomorphic to the set of strict Nash equilibria of the one
shot game.

Let p denote a bid (or ask) distribution in which all the buyers (or
sellers) propose the pure strategy p. Suppose that the state at date t
is (Fb, Fs). Let pi be a best response to Fj , where j 6= i, i, j = s, b. In
subsequent periods, there is a positive probability that all the traders
play a best response to the prices in the previous period. Therefore,
the sequence of transitions (Fb, Fs) → (pb,ps) → (ps,pb) can
occur with a positive probability. From this it is clear that for (Fb, Fs)
to be an absorbing state, it must be that Fb = Fs = p for some
p ∈ Σn.

Conversely, take an arbitrary p ∈ Σn and let (p,p) be the state at
date t. As all the bids equal the asks in each of the matches at date
t− 1, all of those matches would have been successful. Therefore, in
each of the matches at date t, a trader must play a best response to
p which is p. Therefore, the state at date t+ 1 is necessarily (p,p).
Therefore, (p,p) is an absorbing state.

A similar set of arguments can also be used to show that the PFP
must globally converge to an absorbing state. Lemma 3 provides the
requisite intermediate step for showing this.

Lemma 3. Let pb and ps be best responses to Fs and Fb respectively.
From an initial state (Fb, Fs), there is a positive probability that PFP
enters the state (ps,ps) or the state (pb,pb) in at most four periods.

Proof. Let (Fb, Fs) be the current state at date t and assume
that pb and ps are as in the hypothesis of the Lemma. There is a
positive probability that all the traders who are matched at date t
play a best response to the distribution of prices from the previous
period. Therefore, there is a positive probability that the state at
date t+ 1 is (pb,ps).

If pb = ps, the proof is complete.
Assume then, that the current state is (pb,ps) and pb < ps. Trade

would not have occurred in any of the matches in the last period.
So there is a positive probability that all the matches in the current



period are repetitions from the last period. If this event occurs, then
there is in turn a positive probability that each of the buyers (subject
to inertia) repeats her strategy pb of the previous period while each
of the sellers plays the best response pb to the distribution pb. Hence,
there is a positive probability that the state in the next period7 is
(pb,pb).

Now consider the case when the current state is (pb,ps) and
pb > ps. In each of the matches, there is a probability that a trader
of type i plays the best response pj to the distribution pi where
i 6= j, i, j = s, b. Therefore, there is a positive probability that the
PFP enters the state (ps,pb) in the next period. As the bid price is
now greater than the ask price, we are in the case considered in the
previous paragraph. Repeat those arguments to conclude that the
transition, (ps,pb)→ (ps,ps) can occur with a positive probability.

�

The above Lemma shows that regardless of the initial state, the
PFP enters a state in which players coordinate on a common price
in at most four periods. Since

〈

Ωn,P0
n

〉

is a stationary process, the
overall probability that the PFP does not enter an absorbing state
must converge to zero over the infinite horizon. We collect these
observations in the form of Proposition 2.

Proposition 2. For every p ∈ Σn, (p,p) is an absorbing state.
Conversely, if (Fb, Fs) is an absorbing state, then Fb = Fs = p for
some p ∈ Σn. Moreover, the PFP globally converges (with probability
one) to an absorbing state.

3.2 Stochastically Stable Price Distributions

Now suppose that ε > 0 so that there is a positive probability that
traders choose arbitrary strategies at random. In this section we
shall characterize those stable price distributions which are robust
to such perturbations of the PFP. This procedure is in the spirit of
Kandori and Mailath (1993) and Young (1993a) among others.

Let µεT (Fb, Fs) denote the relative frequency of observing the state
(Fb, Fs) in the first T periods. Naturally, this frequency would de-
pend on the initial state. The PPFP is however ergodic and the

7 Similarly, if instead the buyers play a best responses and the sellers repeat
their strategy, the PFP would enter the state (ps,ps).
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impact of the initial state wears off as time goes on and therefore
µε(Fb, Fs) = limT→∞ µ

ε
T (Fb, Fs) does not depend on the initial state.

Essentially, µε(Fb, Fs) describes the long run probability of observing
the state (Fb, Fs) for a given ε. Stochastic stability requires that this
long run probability is positive even when mistakes are unlikely, i.e
in the limit as ε→ 0.

Definition 3. (Fb, Fs) is said to be a stochastically stable state (SSS),
if limε→0 µ

ε(Fb, Fs) > 0. p ∈ Σn is said to be a stochastically stable
price if (p,p) is SSS.

Define

Km
n,k =

{

p ∈ Σn : [mrn(p)] ≥ [mrn(p̂)], p̂ ∈ Σn

}

(15a)

where [x] = x if x is an integer and equals one plus the integer part
of x if x is not an integer. We shall see that Km

n,k plays a crucial role
in relating the SSS to equilibria with the lowest risk potential. From
Lemma 2, we know that rn(·) is strictly increasing to the left of qn,k
and strictly decreasing to the right of qn,k. Therefore,

Km
n,k =

{

i1δn, . . . , iδn, (i+ 1)δn, . . . i2δn
}

(15b)

for some integers i1, i2 such that 1 ≤ i1 ≤ qn,k ≤ i2 ≤ (n− 1). That
is to say, the maxima of [mrn(·)] are adjacent to each other and lie
on either side of qn,k.

Theorem 2. Let k ∈ (0, 1). A stochastically stable state is an ab-
sorbing state of the PFP. Moreover, there exists an integer Nk such
that for each n ≥ Nk, the following hold:

1. If p ∈ Σn is a stochastically stable price, then p ∈ Km
n,k.

2. If the number of matches is sufficiently large, then a stochasti-
cally stable price has the lowest risk potential.

Proof. Choose n sufficiently large so that Proposition 1 applies
and Kn,k is the set of all equilibrium prices with the lowest risk
potential. Clearly, Kn,k ⊆ Km

n,k for all m but the inclusion may be
strict for smaller values of m due to integer problems. These integer
problems do not matter if m is sufficiently large and the maxima
of [mrn(·)] are the same as the maxima of rn(·) on the domain Σn.
Consequently, Kn,k = ∩m≥1K

m
n,k. It is now immediate that Part 1

implies Part 2.



Now consider the following union of limit sets:

K∗ = ∪p∈Km
n,k
{(p,p)} (16)

Proof of Part 1 now relies on the techniques described in Ellison
(2000). Given two states z = (Fb, Fs) and ẑ = (F̂b, F̂s), define the
cost c(z, ẑ) as the minimum number of mistakes that are required
for the PPFP to move from z to ẑ. In the rest or this paper, we
shall routinely use terms such as path, modified cost, radius and co-
radius. All of these terms are as defined in Ellison (2000) and we
refer the reader to this work for formal details. Roughly speaking,
the radius of a state z is the smallest cost that must be incurred
for the PPFP to leave the basin of attraction of z. If the PPFP
begins in a state z1 and ends in a state zn+1 after transiting through
a sequence z2, . . . , zi, . . . , zn of states, the cost of this path is simply
∑n

i=1 c(zi, zi+1). The modified cost of the above path is its cost net
of the radii of all the interim states zi, i = 1, . . . , n− 1. Ultimately,
what we shall argue is that the radius of K∗ is strictly greater than
its modified coradius. Through an application of Theorem 2, Ellison
(2000), we shall then conclude that K∗ must contain an SSS.

Let z = (p,p).
Now suppose that the PPFP is initially in state z and because

of the occurrence of a series of mistakes, it wanders to a state ẑ =
(Fb, Fs). Suppose ẑ is in fact the first state such that some trader has
a best response that differs from p. Let 1 − ki/m be the frequency
with which p is observed in Fi, i = s, b. Then by Proposition 1, it
must necessarily be the case that (1−ki/m) ≤ rn(p) and each of the
ki observations that differ from p constitute a mistake. Therefore,
the total number of mistakes involved in the transition from z to ẑ
is bounded below by [mrn(p)]. In other words,

c(z, ẑ) ≥ [mrn(p)] (17)

With a slight abuse in notation, we shall write the cost of reaching
a state ẑ = (p̂, p̂) from z as c(p, p̂). We show in the Appendix, that

c(p, p+ δn) = [mrn(p)] if p < qn,k, (18a)
c(p, p− δn) = [mrn(p)] if p ≥ qn,k. (18b)

Two important conclusions can be drawn from Eq. (17) and Eq.
(18). First, the radius of z is in fact [mrn(p)] for every p ∈ Σn.
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Now suppose p lies to the left of Km
n,k. In fact suppose that

p = i1δn − i0δn so that it is a distance d = i0δn from the smallest
element of Km

n,k. From Eq. (18a), it is possible for the PPFP to
sequentially transit through (pi,pi) where pi = p+iδn and i = 1 . . . i0
and reach the set K∗ with the total cost of the path being

c(p, p1) +
i0−1
∑

i=1

c(pi, pi+1) = [mrn(p)] +
i0−1
∑

i=1

[mrn(pi)] (19)

Subtracting the radii of the intermediate states, we conclude that
the modified cost of reaching K∗ from z is [mrn(p)]. A symmetric
argument for the case when p lies to the right of Km

n,k shows that the
modified cost of reaching K∗ from z is again [mrn(p)].

Thus for each p 6∈ Km
n,k, we have exhibited a path from z = (p,p)

to K∗ whose modified cost is exactly equal to the radius of z. There-
fore this is the path from z to K∗ with the lowest modified cost.
The modified coradius of K∗ is therefore the maximum value of the
modified cost of the above path from (p,p), which is [mrn(p)] as p
varies over the set Σn \Km

n,k. In otherwords, the modified coradius
is the second highest value taken by [mrn(·)] on the set Km

n,k. The
radius of the set K∗ is however [mrn(p)] for p ∈ Km

n,k and is therefore
the highest value of [mrn(·)] on Km

n,k. This leads to the second con-
clusion that the radius of K∗ is greater than the modified coradius of
K∗. Apply Theorem 2, Ellison (2000) to conclude that K∗ contains
a stochastically stable state.

It remains to show that a price that is not in Km
n,k cannot be

stochastically stable. As discussed above, the modified cost of reach-
ing a state in K∗ from a state (p,p) where p 6∈ Km

n,k is [mrn(p)]
which is less than the radius of every state in K∗. By Theorem 3,
Ellison (2000) a price that is not in Km

n,k cannot be stochastically
stable. �

4 Discussion

4.1 Of related Literature.

Recently, there have been a number of papers that seek to charac-
terize the stochastically stable equilibria in various economic models.



Troger (2002) studies dynamics involving bargaining model the size
of the surplus is determined by a prior stage investment decision. He
shows that the equilibria that favor forward induction and lead to
equitable outcomes are stochastically stable. Agastya (1999) char-
acterizes stochastically stable equilibria in coalition form games. He
shows that for convex coalition form games, an allocation that max-
imizes the product of players’ utilities among all core allocations is
stochastically stable. In an evolutionary bargaining model, Ellingsen
(1997) studies the interaction between sophisticated agents (who play
adaptively) and “obstinate agents” who stick to particular demands.
Noldeke and Samuelson (1997) for instance show that the Riley equi-
librium is stochastically stable in a model of market signaling. Young
(1993b) studies the Nash demand game. Our study of the k-double
auction adds to this growing literature.

In fact, our work is most closely related to the study of stochastic
stability in a variant of the Nash demand game described in Section
8.4, Young (1998). Young studies a matching model with two pop-
ulations. At each date, one representative is chosen from the two
populations. The pair play a modified Nash demand game – they
simultaneously demand shares, x and y of a unit surplus. If these
are compatible, i.e. x+y ≤ 1 each gets what she demands and share
half of the remaining surplus (1− x− y). On the other hand, if de-
mands are not compatible, which is the case when x+y > 1 they get
nothing. To decide how much to ask, an agent samples a part of the
recent history to forecast her opponent’s strategy and plays a best
response. Building on some of his earlier results8, Young outlines an
argument by which the stochastically stable allocation is shown to be
the Nash bargaining solution. Moreover, if the two populations differ
in the size of the sample they choose making their best response, one
gets an asymmetric Nash bargaining solution.

There is a conceptual difference between Young’s work and ours:
Young can be interpreted as saying that asymmetry in the way play-
ers learn to play explains relative bargaining strengths. We were
deliberate in excluding such asymmetries in the learning procedure.
(See below however.) Our point is that the fundamentals of the un-
derlying game that are considered irrelevant under standard equilib-
rium analysis can determine relative strengths even with a symmetric
learning process.

8Such as those in Young (1993a,b) and Chapter 8, Young (1998)

9

From a technical viewpoint, our work differs from Young in terms
of the underlying game. The payoffs of a mixed strategy F in the
modified Nash demand game are

V̂b(pb, F ) =
∑

q≤pb

f(q)v
(pb + q

2
)

V̂s(ps, F ) =
∑

q≥ps

f(q)w
(pb + q

2
)

Clearly V̂i ≡ Vi for i = s, b if and only if v(·) and w(·) are linear and
k = 1/2. Binmore et. el (2002) study the more general version of
this problem for other values of k.

The price formation process that we have studied here is also
different from Young’s model of adaptive play. The dynamic we
consider makes the analysis somewhat simpler and hopefully more
transparent than the the one considered by Young. Further, some
inertia is all that one requires for the price formation process to
converge. Young’s dynamic of adaptive play requires a relatively
stringent condition on the amount of information that players gather
(and then forget) in order to ensure convergence. We also allow for
the possibility that there are several matches in a period. Arguably,
this is more descriptive of a market.

The inverse relationship between k and the equilibrium payoff of
the seller has also been observed by Williams (1987) in an entirely dif-
ferent context. Williams studies bilateral trading mechanisms that
are ex-ante efficient, interim incentive compatible and individually
rational between privately informed traders. He shows that in this
class of mechanisms, the seller’s expected gains from trade are great-
est when playing the k-double auction with k = 1, i.e. in which the
buyer’s bid is chosen with probability one. At this stage, it is un-
clear as to how the intuition/results in this paper9 relate to those of
Williams (1987).

9It is my conjecture (and work in progress) that the result of Williams (1987)
and risk-potential can be related by studying equilibrium selection involving
global games. This is however, beyond the scope of this paper.



4.2 Robustness of results to the specified learning pro-
cedure

It is well recognized that some kind of “dampening” of best response
dynamics is needed for convergence. The assumption of inertia plays
this role. An alternative would be to substitute this with the assump-
tion that a trader samples a price distribution (of her opponents) that
was realized in one of the K most recent periods, where K ≥ 2. Our
results remain unaffected.

Certain other specifications of the unperturbed dynamics do not
affect our result in any essential way. For example, one could allow
traders to gather more information about past prices. In the spirit of
Young (1993b), suppose we said that buyers and sellers respectively
choose a random sample of kb and ks prices from the most recent K
periods. They then use an empirical distribution of these prices as
their forecast. It can be shown that all our results hold by redefining
rn(p) = min

{

kbr
b
n(p), ksrbn(p)

}

– other things being the same, more
information (i.e. a higher ki) leads to a higher share of the surplus
for trader i. (Convergence however requires that ki/2 ≤ K for i =
b, s, just as in Young (1993b)). We believe that other variations of
the best response dynamics do not alter the qualitative relationship
between stochastically stable price and k.

On the other hand, the result is sensitive to more general specifi-
cations of error processes. For instance, Theorem 2 is no longer true
if one allows for state-dependent perturbations as in Bergin and Lip-
man (1996). (See Binmore and Samuelson (1999)for an informative
account of the implications of alternative error processes.)

4.3 Risk Aversion & The Rate Of Convergence

For most of the paper we have concerned ourselves with the limiting
invariant distributions of the perturbed process. It is of interest to
know the expected waiting time to reach a stochastically stable state.
Theorem 2, Ellison (2000) shows that the expected wait is in fact of
the order ε−C

∗
where C∗ is the coradius of the stochastically stable

state.
As we have seen in the proof of Theorem 2, in the present model,

the coradius of the union of limit sets containing the stochastically
stable set is the second highest value of [mrn(·)]. For n sufficiently
large, this is approximately the same as its highest value, i.e. rn(pn,k).
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From Eq. (14) and Lemma 2, limn→∞ nrn(pn,k) is given by Eq. (12).
Now consider the special case where v(p) = (1− p)α and w(p) =

pα. This is the case when both traders have a common absolute risk
aversion of α. Applying Eq. (12), we get limn→∞ nrn(pn,k) = α.
Therefore, for sufficiently large values of m and n, we have C∗ ≈
[mn α]. It is then evident that the less risk averse the players are, the
longer is the expected wait, ceteras paribus.

4.4 Local Interaction & The Rate of Convergence

Ellison (2000) and Blume (1995) among others have shown that local
interaction can improve the waiting time. While these papers for the
most part deal with coordination games, the intuition they convey is
of course general. In both global and local interaction, one requires
a critical fraction of mistakes for the process to leave the basin of
attraction of a steady state. With local interaction even if this criti-
cal number is achieved in a neighbourhood, and if there is sufficient
overlap among the neighbourhoods, it sets off a contagion leading
other neighbourhoods to follow suit without further mistakes. The
discussion to follow illustrates the validity of this insight in the con-
text of k-double auction game. The discussion is illustrative and we
leave it to the reader to fill in many of the formal details that we
gloss over.

Imagine that the m matches occur at m nodes on a circle. Think
of m as being very large but finite integer. At each node the traders
play the k-double auction with Σn as the set of strategies. Prior to
making a choice, a trader chooses a random sample of size ` from10

m̂ = ηm of the prices played in the previous period at adjacent
locations on either side of her own. The parameter 0 < η ≤ 1
captures the extent of local interaction. To simplify, assume ` = m̂/2
and each sample of this size from the m̂ observations is chosen with
a positive probability. Given her sample, a trader chooses a price as
per the behavioral rules described in Section 3.

Without perturbations, it is not hard to see that the process must
converge with probability one to a configuration where all traders
coordinate on a common price. For, starting from an initial configu-
ration, there is a positive probability that all the traders located at

10I will ignore the integer problems in this discussion. It should be clear that
they do not affect the main argument.



nodes i = 1, . . . m̂ choose the same sample of prices from the mid-
dle locations `/4 to 3`/4. Consequently there is positive probabilty
that all the buyers in locations 1 through m̂ choose the same price
pb and all the corresponding buyers choose a price ps. By contin-
uing to look at the event where all of these traders sample from
the middle locations and by following the arguments in the proof of
Lemma 3, it is easy to see that within four periods all the traders on
locations 1 through m̂ coordinate on a common price, say p. In the
next period, there is a positive probability that all of these traders
continue to sample from the middle location and the traders located
at m̂+ 1 . . . m̂+ ` sample the the common price p from the locations
`/2 + 1 through m̂. The unique best response is p. Consequently in
the following period there is a positive probability that all the traders
located at 1 through m̂ + 1 trade at p. Continuing in this way, we
note that starting from an arbitrary configuration, there is a posi-
tive probability of reaching a configuration where all traders trade at
price p in finitely many periods. The probability of not converging
to such a state over the infinite horizon is zero, which in turn implies
that absorbing sets of this process are isomorphic to the set of strict
Nash equilibria of the k-double auction.

Let us now turn to a uniform perturbation of this process as
done in Section 3.2. Now suppose that the process is in a state
where all the traders are trading at the price p where p < qn,k.
Suppose then through a series of mistakes the process wanders to a
state where some `rbn,k(p) adjacent sellers, located say at conseceutive
nodes starting at 1 ask for p + δn instead of p. All the remaining
traders play p. Clearly, there are `rbn,k(p) mistakes. Since the risk
potential of p is rbn,k(p), it follows that p + δn is a best response to
any buyer who chooses a sample that includes the prices from these
locations. As there is a positive probability that every buyer located
between 1 and m̂ chooses this sample, and the sellers at locations 1
through `rbn,k(p) would not have traded, there is a positive probabiliy
that the state in the next period is one where all the buyers located
at 1 through m̂ choose p+ δn while the sellers located between 1 and
`rbn,k(p) choose p + δ. Straighforward arguments as in the previous
paragraph will show that the process converges to a state in which all
the traders coordinate on the price p+ δn with no further mistakes.
The total number of mistakes involved in this transition is therefore
`rbn,k(p). In fact, only slight alterations to the part of the proof
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of Theorem 2 found in the Appendix will show that the equations
corresponding to Eq.(18a) are

c(p, p+ δn) = `rn(p) if p < qn,k, (20a)
c(p, p− δn) = `rn(p) if p ≥ qn,k. (20b)

Repeat all the subsequent arguments in the proof of Theorem 2 to
argue that a stochastically stable price must necessarily have the low-
est risk potential. The coradius of the union of limit sets containing
the stochastically stable state is the second highest value of `rn(·).

Proceeding as in Section 4.3, when v(·) and w(·) exhibit constant
absolute risk aversion of α , the rate of convergence is now approx-
imately of order `α/n = ηαm/2n. That smaller values of η mean
faster convergence is now clear.

4.5 Method of Proof for Theorem 2

In this paper, we have used the methods of Ellison (2000) in the proof
of Theorem 2. It is also possible to characterize the stochastically
stable states11 using the method described in Young (1993a). The
chief advantage of the current approach is that it provides a sense
of the expected waiting time for the PPFP to reach a stochastically
stable state. This yields useful insights – the relationship between
risk-aversion of the speed of convergence discussed in the Section 4.3
is an example.

On the other hand, the results of Ellison (2000) allow one only
to conclude that the stochastically stable state is an element of K∗

(See Eq. (16)). In fact, it is not hard to construct a p−tree for each
p ∈ Km

n,k – by following the arguments used to construct a path from
an arbitrary absorbing state (p̂, p̂) in the proof of Theorem 2 (in the
Appendix) – and then showing that this has the highest stochastic
potential. The tree surgery arguments of Young would then give us
the stronger result that every p ∈ Km

n,k is stochastically stable.

4.6 A modified double auction

Our result is also robust to the following generalization of the double
auction game: Suppose that 0 < ki < 1 is the probability that pi
is the trading price when pb ≥ ps. There is no trade if pb < ps.

11Indeed, this was the method that was used in an earlier version.



Suppose that we only required that kb + ks ≤ 1, so that we allow for
the possibility that no agreement is reached even when the proposed
prices are compatible. All our results remain unchanged by taking
k = kb/(kb + ks).

To see this, note that the VNM utility for a buyer, resulting from
the strategy profile (pb, ps) is

ũ(ps, pb) =

{

(kb + ks)[kv(pb) + (1− k)v(ps) if pb ≥ ps
0 otherwise

(21)

Likewise for the seller. Clearly, the VNM utility of an arbitrary
strategy profile in this revised formulation is (kb+ks) times the VNM
utility in our original formulation. As VNM utility is unique only up
to a positive linear transformation, these are the same games.

Appendix

Proofs of Results in Section 2

Lemma 4 and Lemma 5 provide the necessary intermediate steps for
the proof of Proposition 1.

Lemma 4. Let F be such that Vs(p̃, F ) ≥ Vs(p, F ) for some p̃ 6= p.
Then, (1− f(p)) ≥ min

{

rsn(p), w(δn)
w(1)

}

Proof. First consider the case when p < p̃. Then,

Vs(p̃, F )− Vs(p, F ) = (1− k) (1− F (p̃− δn)) [w(p̃)− w(p)] +

−
∑

p≤q<p̃
f(q) [(1− k)w(p) + kw(q)]

≤ (1− k) (1− F (p̃− δn)) [w(p̃)− w(p)]
− (F (p̃− δn)− F (p− δn))w(p).

The above inequality is due to the monotonicity of w(·). Simplify
the above RHS and use the hypothesis that 0 ≤ Vs(p̃, F ) − Vs(p, F )
to conclude that

(1− F (p̃− δn)) ≥ w(p)
(1− k)w(p̃) + kw(p)

(1− F (p− δn)) .
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Therefore,

1− f(p) = [1− F (p)] + F (p− δn)
≥ [1− F (p̃− δn)] + F (p− δn) (22)

≥ w(p)
(1− k)w(p̃) + kw(p)

(1− F (p− δn))

+ F (p− δn)

≥ w(p)
(1− k)w(p̃) + kw(p)

≥ w(δn)
w(1)

Now consider the case where p̃ < p.

Vs(p̃, F )− Vs(p, F ) = (1− F (p− δn)) (1− k) [w(p̃)− w(p)] +
∑

p̃≤q<p
[(1− k)w(p̃) + kw(q)] f(q)

≤ (1− F (p− δn)) (1− k) [w(p− δn)− w(p)]
F (p− δn)w(p− δn).

Again, the inequality is an immediate consequence of the fact that
w(·) is increasing. By hypothesis Vs(p̃, F )− Vs(p, F ) ≥ 0 and hence
the RHS above must be non-negative, i.e.

(1− f(p)) ≥ F (p− δn) ≥ (1− k) [w(p)− w(p− δn)]
(1− k)w(p) + kw(p− δn)

= rsn(p).

�

Lemma 5. Let F be a distribution of ask prices such that Vb(p̃, F ) ≥
Vb(p, F ) for some p̃ 6= p Then, (1− f(p)) ≥ min

{

rbn(p), v(1−δn)
v(0)

}

.

Proof. This is similar to the proof of the previous Lemma and
is hence omitted. �

Proof. (Proposition 1) Let F be a strategy such that Vi(p̃, F ) ≥
Vi(p, F ) for some p̃ 6= p, for some i = s, b. Then, by Lemma 4-5, it



must be the case that 1− f(p) ≥ min
{

rbn(p), rsn(p)), v(1−δn)
v(0) , w(δn)

w(1)

}

.
If we show that

min
{

rbn(p), rsn(p)),
v(1− δn)
v(0)

,
w(δn)
w(1)

}

= rn(p), (23)

then the contrapositive of the previous sentence is

(f(p) > (1− rn(p))) ⇒ (Vi(p, F ) > Vi(p̃, F ) ∀p̃ 6= p,∀i) .

We will argue that Eq. (23) holds for all p ∈ Σn provided n is suffi-
ciently large.

By Lemma 2, limn→∞
rn(qn,k)
δn

< ∞ whereas because of the as-

sumption that −v′(1) = w′(0) = ∞, we have limn→∞
v(1−δn)
δnv(0) = ∞

and limn→∞
w(δn)
δnw(1) =∞. Therefore,

rn(qn,k)
δn

< min
{

v(1− δn)
δnv(0)

,
w(δn)
δnw(1)

}

for all n sufficiently large.

(24)

That Eq. (23) holds for all n sufficiently large is immediate on noting
that by definition of qn,k we have rn(p) ≤ rn(qn,k) for all p∈Σn. �

Proofs of Results in Section 3.2

Proof. (Theorem 2) Proof of Eq. (18a- 18b).
Let p > qn,k where qn,k is as defined in Eq. (7). Then rn(p) =

rsn(p) is the risk-potential of the equilibrium (p, p). Now let F m̂

denote a distribution of prices where the price p is observed with a
frequency 1−m̂/m and the price p−δn is observed with the remaining
frequency of m̂/m. We shall argue that the transition (F m̂,p) →
(F m̂+1,p) involves exactly one mistake, provided m̂ < mrsn(p).

When the current state is (F m̂,p), there is a positive probability
that all the sellers choose a best response to F m̂. Since m̂/m <
rsn(p), the definition of risk-potential tells us that p is the unique
best response. Therefore, the ask distribution in the next period
continues to be p.

The behavior of the buyers in the next period is a little different.
There are m̂ buyers in the preceding period who had bid p−δn. Each
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of these buyers would have been matched with sellers who asked
for p. Consequently, each of these buyers would not have traded
and returned to the pool of unsuccessful buyers. With a positive
probability they are rematched in the current period and, due to
inertia, choose p − δn again. For the remaining m − m̂ buyers, the
unique best response is to choose p. However, if exactly one of these
buyers err and choose p − δn instead, then the new bid distribution
would contain m̂+1 observations of p−δn with the remaining being p.
In other words, the new state would be (F m̂+1,p) and the transition
from (F m̂,p) involved exactly one mistake.

Now on the other hand if m̂ ≥ [mrsn(p)], then clearly p − δn is
also a best response to a typical seller. In this case there would be
positive probability of transition from (F m̂,p) to (p,p− δn). By
Lemma 3, the PPFP can transit to (p− δn)p− δn) with no further
mistakes.

Thus, through the following sequence of transitions,

(p,p)→ (F 1,p)→ · · · → (F [mrsn(p)]−1,p)→ (F [mrsn(p)],p)→ (p,p− δn)→ (p− δn,p− δn),

which involves exactly [mrsn(p)] mistakes and therefore c(p, p−δn) =
[mrsn(p)].

A symmetric argument for the case when p < qn,k establishes
that c(p, p+ δn) = [mrbn(p)]. �

References

Agastya, M., December 1999. Perturbed adaptive dynamics in coali-
tion form games. Journal of Economic Theory 89 (2), 207–33.

Bergin, J., Lipman, B. L., July 1996. Evolution with state-dependent
mutations. Econometrica 64 (4), 943–56.

Binmore, K., Samuelson, L., April 1999. Evolutionary drift and equi-
librium selection. Review of Economic Studies 66 (2), 363–93.

Blume, L. E., November 1995. The statistical mechanics of best-
response strategy revision. Games and Economic Behavior 11 (2),
111–45.



Cason, T. N., Friedman, D., March 1997. Price formation in single
call markets. Econometrica 65 (2), 311–45.

Ellingsen, T., May 1997. The evolution of bargaining behavior. Quar-
terly Journal of Economics 112 (2), 581–602.

Ellison, G., January 2000. Basins of attraction, long-run stochastic
stability, and the speed of step-by-step evolution. Review of Eco-
nomic Studies 67 (1).

Foster, D., Young, P. H., 1990. Stochastic evolutionary game dynam-
ics. Journal of Theoretical Biology 38, 219–232.

Kajii, A., Morris, S., November 1997. The robustness of equilibria to
incomplete information. Econometrica 65 (6), 1283–1309.

Kandori, M., Mailath, George J; Rob, R., January 1993. Learning,
mutation, and long run equilibria in games. Econometrica 61 (1),
29–56.

Maruta, T., May 1997. On the relationship between risk-dominance
and stochastic stability. Games and Economic Behavior 19 (2),
221–34.

Morris, S., Rob, Rafael; Shin, H. S., January 1995. Dominance and
belief potential. Econometrica 63 (1), 145–57.

Noldeke, G., Samuelson, L., March 1997. A dynamic model of equi-
librium selection in signaling markets. Journal of Economic Theory
73 (1), 118–56.

Rustichini, A., Satterthwaite, Mark A; Williams, S. R., September
1994. Convergence to efficiency in a simple market with incomplete
information. Econometrica 62 (5), 1041–63.

Satterthwaite, M. A., Williams, S. R., June 1989. Bilateral trade with
the sealed bid k-double auction: Existence and efficiency. Journal
of Economic Theory 48 (1), 107–33.

Troger, T., February 2002. Why sunk costs matter for bargaining
outcomes: An evolutionary approach. Journal of Economic Theory
102 (2), 375–402.

Young, H. P., January 1993a. The evolution of conventions. Econo-
metrica 61 (1), 57–84.

14

Young, H. P., February 1993b. An evolutionary model of bargaining.
Journal of Economic Theory 59 (1), 145–68.

Young, P. H., 1998. Individual Strategy and Social Structure: An
evolutioanry theory of institutions. Princeton University Press,
Ch. 8.


	Introduction
	The Double Auction And Risk-Potential
	A Matching Model of Price Formation
	The Price Formation Process
	Stochastically Stable Price Distributions

	Discussion 
	Of related Literature.
	Robustness of results to the specified learning procedure
	Risk Aversion & The Rate Of Convergence
	Local Interaction & The Rate of Convergence
	Method of Proof for Theorem 2
	A modified double auction




