TELEVISION ADVERTISING REGULATION
AND PROGRAMME QUALITY

by

Donald J. Wright

No. 179
AUGUST 1992

ABSTRACT

In many countries, including Australia and the United Kingdom, there are regulations that limit the amount of advertising content per hour of television broadcasts. This paper examines the effect this regulation has on programme quality and viewer welfare. It is shown that regulation reduces programme quality and that the effect on viewer welfare is ambiguous. In some circumstances, fostering competition can both reduce the number of advertisements per unit of time and increase programme quality. This unambiguously increases viewer welfare. Therefore, depending on the parameters of the model, fostering competition may be preferable to regulating the amount of advertisements per unit of time.
CONTENTS

1. Introduction ... 1
2. The Model .. 3
 2.1 Joint Profit Maximization 4
 2.2 Oligopoly - Nash Equilibrium 5
3. Comparison of Joint Profit Maximization and Nash Equilibrium 6
4. Advertisement Regulation - Joint Profit Maximization ... 7
5. Advertisement Regulation - Nash Equilibrium ... 8
6. Entry and Welfare - Nash Equilibrium ... 9
7. Conclusion ... 10

References ... 11

Addendum ... 12
1. Introduction

The well known public good characteristics of over the air broadcasts of television programmes place privately owned television stations in the position of relying on advertising as their major (and often sole) source of revenue. In many countries, including Australia and the United Kingdom, there are regulations that control the amount of non-programme content per hour.\(^1\) Australia provides a particularly interesting case for in September 1987 television advertising was deregulated to allow stations more flexibility in their scheduling of non-programme material with the aim of reducing the rate of interruption to programmes. The result of this deregulation was an increase in the amount of non-programme content. In response to this increase, the Australian Broadcasting Tribunal (ABT) introduced "guided self regulation" in December 1990 under which television stations would voluntarily limit the amount of non-programme content per hour. Various consumer groups were unhappy with the results of this self regulation and in March 1992 the ABT re-introduced regulations limiting the amount of non-programme content per hour.\(^2\)

In re-introducing regulation in March 1992 the ABT said little about the effect limiting the amount of non-programme material may have on programme quality other than to mention that it believed there would be no detrimental effect on the quality of Australian produced programmes. [Australian Broadcasting Tribunal (1992), p 17]. The aim of this paper is to formally investigate the link between regulations limiting the amount of non-programme content per hour and programme quality.\(^3\) To the author's knowledge there has been no previous work in this area. Nell et al (1973) and Owen et al (1974) develop informal models of television broadcasting, but are mainly concerned with programme choice and the link between advertising and programme quality.

The model is outlined in Section 2. It is assumed that there are two television stations each choosing the number of advertisements per unit of time and programme quality to maximise profit. Increases in programme quality increase the number of viewers and the price a station can charge per advertisement. Increases in the number of advertisements per unit of time decrease the number of viewers and decrease the price a station can charge per advertisement. The only source of revenue for the television station is assumed to be advertising revenue. Joint profit maximizing and Nash equilibrium solutions for the number of advertisements and programme quality are derived and in Section 3 it is shown that the relationships between the joint profit maximizing solutions for these variables and the Nash equilibrium solutions for these variables are ambiguous. This ambiguity results in the welfare ranking of viewers of the joint profit maximizing outcome and the Nash equilibrium also being ambiguous.

Section 4 examines the effect of regulations limiting the amount of non-programme content per unit of time under joint profit maximization. It is found that such regulation reduces the marginal benefit of programme quality which in turn reduces programme quality. The effect on viewer welfare is ambiguous for although there are less advertisements, programme quality is also reduced. A similar result is obtained in Section 5 where regulations limiting the amount of non-programme content in the Nash equilibrium also reduces programme quality. The results of these two sections suggest that a regulatory authority that is trying to increase welfare via regulation of the amount of non-programme content might need to also regulate programme quality or at a minimum take the effect of programme quality into consideration.

In Section 6, entry is examined as an alternative to advertising regulation, but once again the effects on programme quality are in general ambiguous as are the effects on viewer welfare.
welfare. Some concluding remarks are made in Section 7.

2. The Model

It is initially assumed that there are two television stations in operation indexed by $i = 1, 2$. Assumptions regarding each station’s inverse demand curve follow. Let a_i denote the number of fixed length advertisements per unit of time and Q_i denote the quality of programming per unit of time. For simplicity, it is assumed that both stations are identical so it is possible to concentrate on station 1 and invoke symmetry for station 2.

The number of viewers of station 1 is given by $a_1(a_1, a_2, Q_1, Q_2)$. It is assumed that viewers' utility functions are decreasing functions of the number of advertisements, so if station 1 schedules more advertisements per unit of time, it loses viewers some of which switch to station 2. If station 2 schedules more advertisements per unit of time, station 1 gains viewers from station 2. Finally if both stations schedule more advertisements, both lose viewers; viewers shift to a substitute product such as home video. These assumptions are summarised in the following set of inequalities

$$
\frac{\partial q_1}{\partial a_1} < 0, \quad \frac{\partial q_1}{\partial a_2} < 0, \quad \frac{\partial q_1}{\partial q_1} > 0, \quad \text{and} \quad \frac{\partial q_1}{\partial q_2} + \frac{\partial q_2}{\partial q_1} < 0. \quad (2.1)
$$

It is assumed that viewers' utility functions are increasing functions of programme quality so, if station 1 increases programme quality, it gains viewers some of which switch from station 2. If station 2 increases programme quality, station 1 loses viewers to station 2. Finally if both stations increase programme quality, both gain viewers. That is, people who were not previously viewing television become viewers; they substitute out of, say, home video. These assumptions are summarised in the following set of inequalities

$$
\frac{\partial q_1}{\partial q_1} > 0, \quad \frac{\partial q_1}{\partial q_1} + \frac{\partial q_2}{\partial q_1} > 0, \quad \frac{\partial q_1}{\partial q_2} < 0, \quad \text{and} \quad \frac{\partial q_1}{\partial q_2} + \frac{\partial q_2}{\partial q_2} > 0. \quad (2.2)
$$

It is assumed that the inverse demand curve of station 1 is $p_1(q_1, a_1, a_2, Q_1, Q_2)$, where $\frac{\partial p_1}{\partial a_1} > 0$ and $\frac{\partial p_1}{\partial q_1} < 0$. That is, the more viewers a station has, the higher the price it can charge for advertisements and the more advertisements a station schedules the smaller is the impact of each and so the lower is the price it can charge for advertisements [Noll et al (1973) p 34]. The inverse demand curve can be collapsed to $p_1(a_1, a_2, Q_1, Q_2)$, where given the preceding assumptions,

$$
\frac{\partial p_1}{\partial a_1} > 0, \quad \frac{\partial p_1}{\partial a_2} > 0, \quad \frac{\partial p_1}{\partial q_1} + \frac{\partial p_1}{\partial q_2} < 0. \quad (2.3)
$$

and

$$
\frac{\partial p_1}{\partial Q_1} > 0, \quad \frac{\partial p_1}{\partial Q_2} > 0, \quad \frac{\partial p_1}{\partial Q_1} + \frac{\partial p_1}{\partial Q_2} > 0. \quad (2.4)
$$

It is assumed that the only source of revenue to privately owned television stations is advertising and that each station chooses a_1 and Q_1 to maximize profit.

2.1. Joint Profit Maximization

In this section it is assumed that the two stations act to maximize joint profit. The joint profit maximizing problem is given by

$$
\max_{a_1, a_2, Q_1, Q_2} \{ I = a_1 \cdot p_1(a_1, a_2, Q_1, Q_2) - c(Q_1) - a_2 \cdot p_2(a_1, a_2, Q_1, Q_2) - c(Q_2) \}. \quad (2.5)
$$

where $c(Q)$ is the cost of scheduling a programme of quality Q. It is assumed that higher quality programmes are more expensive for the station to purchase so that $c'(Q) > 0$.

Assuming an interior solution, the first order conditions for a maximum are given by

$$
\frac{\partial I}{\partial a_1} = a_1 \cdot \frac{\partial p_1}{\partial a_1} + p_1 - a_2 \cdot \frac{\partial p_2}{\partial a_1} = 0, \quad (2.6)
$$

$$
\frac{\partial I}{\partial Q_1} = a_1 \cdot \frac{\partial p_1}{\partial Q_1} + p_1 - a_2 \cdot \frac{\partial p_2}{\partial Q_1} - c'(Q_1) = 0, \quad (2.7)
$$

$$
\frac{\partial I}{\partial Q_2} = a_1 \cdot \frac{\partial p_1}{\partial Q_2} - a_2 \cdot \frac{\partial p_2}{\partial Q_2} - c'(Q_2) = 0. \quad (2.8)
$$
and
\[\frac{\partial \Pi}{\partial Q_1} = a_1 \cdot \frac{\partial p_1}{\partial Q_1} (Q_1) - c'(Q_1) + a_1 \cdot \frac{\partial p_2}{\partial Q_2} (Q_2) = 0. \] (2.9)

The second order conditions for a unique maximum are assumed to be satisfied. Condition (2.8) states that \(a_2 \) is chosen so that its marginal revenue (inclusive of the affect \(a_1 \) has on station 1's and station 2's revenue) equals zero and (2.7) is a similar condition for \(a_2 \).

Condition (2.8) states that \(Q_1 \) is chosen so that its marginal revenue (inclusive of the affect \(Q_1 \) has on station 1 and station 2's revenue) equals its marginal cost and (2.9) is a similar condition for \(Q_2 \). Let the values of the choice variables that satisfy these four conditions be denoted by \(a^* \) and \(Q^* \), where the subscripts have been dropped because of the symmetry of the problem.

2.2. Duopoly - Nash Equilibrium

In this section it is assumed that the market structure is duopoly. The equilibrium concept assumed is Nash equilibrium.

The profit maximizing problem of station 1 is given by
\[\max_{a_1, Q_1} \{ \Pi_1 = a_1 \cdot p_1(a_1, a_2, Q_1, Q_2) - c(Q_1) \}. \] (2.10)

Assuming an interior solution, the first order conditions for a maximum are given by
\[\frac{\partial \Pi_1}{\partial a_1} = a_1 \cdot \frac{\partial p_1}{\partial a_1} (Q_1) + p_1(Q_1) - 0 \] (2.11)
and
\[\frac{\partial \Pi_1}{\partial Q_1} = a_1 \cdot \frac{\partial p_1}{\partial Q_1} (Q_1) - c'(Q_1) - 0. \] (2.12)

The second order conditions for a unique maximum are assumed to hold. Condition (2.11) states that \(a_1 \) is chosen so that its marginal revenue equals zero and condition (2.12) states that \(Q_1 \) is chosen so that its marginal revenue equals its marginal cost.

A similar set of first order conditions can be derived for station 2. These four conditions are then solved simultaneously for the Nash equilibrium values of the choice variables which are denoted by \(a^N \) and \(Q^N \), where the subscripts have been dropped because of the symmetry of the problem. It is assumed that the stability conditions are satisfied.

5. Comparison of Joint Profit Maximization and Nash Equilibrium

In maximizing joint profit the effect of \(a_1 \) on station 2's profit is considered as is the effect of \(a_2 \) on station 1's profit. Increases in \(a_1 \) increase station 2's profit. This is captured by the term \(a_1 \cdot \frac{\partial p_1}{\partial Q_2} (Q_2) \) in (2.6). Increases in \(a_2 \) increase station 1's profit. This is captured by the term \(a_2 \cdot \frac{\partial p_1}{\partial Q_1} (Q_1) \) in (2.7). These external effects are ignored in the Nash equilibrium which suggests that \(a^N < a^J \). Similar reasoning applies to programme quality. Increases in \(Q_1 \) decrease station 2's profit. This is captured by the term \(a_1 \cdot \frac{\partial p_1}{\partial Q_1} (Q_1) \) in (2.8). Increases in \(Q_2 \) decrease station 1's profit. This is captured by the term \(a_2 \cdot \frac{\partial p_1}{\partial Q_1} (Q_1) \) in (2.9). Once again these external effects are ignored in the Nash equilibrium which suggest that \(Q^N < Q^J \).

However, both of these suggestions ignore the interaction between advertising and programme quality. From (2.2) and (2.9) it is clear that increases in advertising make increases in programme quality more profitable. From (2.6) and (2.7) it is clear that decreases in programme quality, through their affect on price, increase advertising less profitable. When these effects are combined with the aforementioned external effects ambiguity arises. This is summarised in the following proposition.

Proposition 1: Even if all the partial derivatives in (2.6) to (2.8) are independent of \(a_1, a_2, Q_1, \) and \(Q_2 \), the relationship between \(a^N \) and \(a^J \) and \(Q^N \) and \(Q^J \) is in general ambiguous.

Examples: Let \(i = v = a_1, i = x_1 \) and \(x_1 \neq x_2 \); \(i = 1,2 \); \(j = 1,2 \) and let \(G_i = \frac{1}{2} \cdot Q_i^2 \); \(i = 1,2 \), where \(w \geq x \) and \(y > z \).

Case 1: Let \(v = 100, w = 1, x = 5, y = 1, z = 5 \), then \(a^N = 100 < a^J = 133.23 \) and \(Q^N = 100 > Q^J = 60.66 \).
Case 2. Let the parameters be the same as in Case 1 except \(\gamma = 25 \), then \(a^N = 133.33 < a^I = 228.57 \) and \(Q^N = 133.33 < Q^I = 171.42 \).

Although \(a^N < a^I \) in both cases, the relationship between \(Q^N \) and \(Q^I \) differs in each case.\(^5\)

As viewer utility is decreasing in the number of advertisements per unit of time but increasing in programme quality it is impossible, without knowledge of the parameters of the model, to unambiguously rank the joint profit maximizing solution and the Nash equilibrium in terms of viewer welfare.

4. Advertisement Regulation – Joint Profit Maximisation

As mentioned earlier, in Australia and the United Kingdom the number of advertisements scheduled per unit of time is regulated. In this section the effects of such regulation on programme quality will be analysed assuming the two television stations act to maximize joint profit. Let the regulated number of advertisements per unit of time be given by \(\bar{a} \), where \(a < a^N \) and let the quality of programming associated with this regulation be given by \(Q \).

Proposition 2: If \(\bar{a}^N() \), \(\bar{a}^Q() \), \(\bar{a}^N() \), and \(\bar{a}^Q() \) are independent of \(a_1 \) and \(a_2 \), then regulation of the number of advertisements per unit of time below the joint profit maximizing level reduces programme quality, that is \(Q < Q^I \). The effect on viewer welfare is ambiguous even though the number of advertisements is less under regulation.

Proof: In section 2 it was established that \(\bar{a}^N > \bar{a}^Q \). By symmetry, both \(a_1 \) and \(a_2 \) are reduced to \(\bar{a} \) by regulation, so at \(Q^I \), \(\bar{a}^Q \) < \(Q^N \). A similar argument shows that \(B_{QN}^Q < 0 \) at \(Q^I \). Therefore, \(Q < Q^I \). As viewer utility is decreasing in \(a \) but increasing in \(Q \) the effect of advertising regulation on viewer welfare is ambiguous. (Q.E.D.)

The regulation of advertising reduces the marginal benefit of programme quality which in turn reduces programme quality below \(Q^I \). A regulatory authority which is trying to increase viewer welfare via restrictions on the number of advertisements per unit of time might also need to consider regulating programme quality. However, the implementation of quality regulation would be extremely difficult as quality is a nebulous concept and is hard to quantify. Alternatively, the authority might act to increase competition between the two stations if the parameters are such that the Nash equilibrium involves less advertising and higher programme quality than joint profit maximization, but in this case viewer welfare is unambiguously increased. Even this may not be enough for the regulatory authority because the number of advertisements associated with the Nash equilibirum may be viewed as excessive. The implications of this are now examined.

5. Advertisement Regulation – Nash Equilibrium

Let the regulated number of advertisements per unit of time be given by \(\bar{a} \), where \(a < a^N \) and let the programme quality associated with this regulation be given by \(\bar{Q} \).

Proposition 3: If \(\bar{a}^N() \) and \(\bar{a}^Q() \) are independent of \(a_1 \) and \(a_2 \), then regulation of the number of advertisements per unit of time below the Nash equilibrium level reduces programme quality, that is \(\bar{Q} < Q^N \). The effect on viewer welfare is ambiguous even though the number of advertisements is less under regulation.

Proof: Regulation reduces \(a^N \) to \(\bar{a} \), so at \(Q^N \), \(B_{QN}^Q < 0 \). A similar argument shows that \(B_{QN}^Q < 0 \) at \(Q^I \). Therefore, \(Q < Q^I \). As viewer utility is decreasing in \(a \) but increasing in \(Q \) the effect of advertising regulation on viewer welfare is ambiguous. (Q.E.D.)

As was the case under joint profit maximization, regulation of advertising reduces the marginal benefit of programme quality which in turn reduces programme quality below \(Q^N \). Once again, a regulatory authority which is trying to increase viewer welfare by restricting the number of advertisements per unit of time might also need to consider regulating
programme quality, though as mentioned above this is likely to be extremely difficult in practice. A more fruitful approach might be to encourage competition through entry as it was established in Case 1 of the example in Section 3 that the Nash equilibrium can result in less advertisements per unit of time, higher programme quality, and higher viewer welfare than joint profit maximization.

8. Entry and Viewer Welfare – Nash Equilibrium

The question addressed in this section is whether increases in the number of television stations operating in the market increases viewer welfare. Before answering this question the impact of an additional station on existing stations' inverse demand curves must be ascertained. A third station increases competition, so in the Nash equilibrium it would be expected that the price of advertising would fall. Also it would normally be expected that the responsiveness of price to changes in advertising and programme quality would increase.

With three stations the first order conditions of station 1 are similar to (2.11) and (2.12) except the bracketed terms is now given by \((a_1, a_2, a_3, Q_1, Q_3, Q_2)\). The effect of the lower price and the increased responsiveness of price to advertising is, ceteris paribus, to decrease marginal profit with respect to advertising. This suggests that the number of advertisements per unit of time is lower when there are more stations. The effect of the increased responsiveness of price to quality is, ceteris paribus, to increase marginal profit with respect to quality. This suggests that programme quality is greater when there are more stations.

However, just as in Section 3, both of these suggestions ignore the interaction between advertising and programme quality. Decreases in the number of advertisements per unit of time make increases in programme quality less profitable while increases in programme quality make increases in the number of advertisements more profitable. Without writing down specific functional forms nothing can be unambiguously stated about the relationship between the number of television stations and programme quality or the relationship between the number of television stations and the number of advertisements per unit of time. As a result, the effect of more stations on viewer welfare is ambiguous.\(^5\)

7. Conclusion

The effect of regulating the amount of advertisements per unit of time on viewer welfare is ambiguous because such regulation reduces programme quality regardless of whether television stations act to maximize joint profit or are in a Nash equilibrium. A better regulatory response may be to foster competition, in the case of joint profit maximization, or allow further entry in the case of a Nash equilibrium. However, these responses will not necessarily increase viewer welfare because the effect on programme quality is in general ambiguous, depending on the particular parameters of the model. Although this paper does not provide the definitive answer to the question of whether regulating the amount of advertisements per unit of time increases viewer welfare, it does provide a framework which can be used to answer this question. A framework which is at present missing in the literature.

\(^5\) A third factor that can tilt the balance in favour of entry and more stations is the fact that additional stations increase the variety of programmes available to viewers. However, the aforementioned ambiguity is still present.
Working Papers in Economics

129	S. Hargreaves-Heap & Y. Varoufakis	Multiple Equilibria in Finite Repeated Games; October 1989
130	J. Sheen	International Monetary and Fiscal Policy: Coexistence of Inflation and Unemployment; October 1989
131	E. Jones	Was the Post-War Boom Keynesian?; October 1989
132	L. Laffit & J. Sheen	A Risk-Averse Price-Setting Monopolist in a Model of International Trade; October 1989
133	P. Hill	A Target-Wage Bilateral: Some Consequences of Incomplete Information; December 1989
134	W. P. Hogan	New Banks in Australia: December 1989
135	Y. Varoufakis	Modelling Political Conflict: The Limits of Game Theory; February 1990
136	C. Erimen	Shock Persistence in Australian Output and Consumption; March 1990
137	G. Zia	Strategic Investment, Competition and the Independence Result; March 1990
138	D. J. Wright	International Technology Transfer with an Asymmetric Information and Endogenes Research and Development; April 1990
139	D. J. Wright	International Technology Transfer and Per Unit Royalties; April 1990
140	F. Gambardella & S. Math	Optimal Mix of Urban Public Services: The Case of Three Indian Cities; May 1990
142	J. Sheen	Real Wages and the Business Cycle in Australia; June 1990
143	C. J. Karfakis	A Model of Exchange Rate Policy: Evidence for the US Dollar-Greek Drachma Rate 1975-1987; August 1990
144	C. J. Karfakis & D. H. Moschos	Interest Rate Linkages within the European Monetary System: A Time Series Analysis; August 1990
145	C. J. Karfakis & D. H. Moschos	Asymmetries in the European Monetary System: Evidence from Interest Rates; September 1990
146	M. P. Hogan	International Capital Adequacy Standards; October 1990
147	J. Yates	Shared Ownership: The Socialisation of Management; October 1990
148	G. Butler	Contracts in the Political Economy of a Nation; November 1990
149	B. Yao	Some Further Evidence on the Policy Ineffectiveness Proposition; November 1990
150	D. J. Wright	Hidden Action and Learning-by-Dying in Models of Monopoly Regulation and Infant Industry Protection; November 1990
151	C. J. Karfakis	Testing for Long Run Money Demand Functions in Greece Using Cointegration Techniques; November 1990
152	D. Hutchinson & S. Nicholas	The Internationalisation of Australian Business: Technology Transfer and Australian Manufacturing in the 1980s; November 1990
153	B. Yao	A Disequilibrium Approach to the New Classical Model; December 1990
Working Papers in Economics Published Elsewhere

1 L.G. Sharpe & P.A. Valker Journal of Accounting Research, 13(2), Autumn 1975
2 N.V. Tan Journal of the Development Economists, 17(1), March 1979
3 R.H. Suits New Zealand Economic Papers, 10, 1976
4 V.B. Hall & R.L. King Economic Record, 53(143), September 1977
6 H.V. Lam Australian Journal of Management, April 1976
7 T.G. Sharpe Economic Papers, 8, The Economic Society of Australia and New Zealand, October 1977
8 I.G. Sharpe & P.A. Valker Economic Letters, 2, 1979
9 K.G. Sharpe & P.A. Valker Kredit und Kapital, 12(1), 1979
11 P. Gill Australian Economic Papers, 19(35), December 1980
12 I.G. Sharpe Journal of Banking and Finance, 3(1), April 1979
14 I.G. Sharpe & P.A. Valker Economic Record, 56(152), March 1980
15 V.B. Hall Australian Journal of Management, October 1979
16 W.P. Hagan Melvyn Economic Review, 2(11), April 1979
17 P. Sambodo Australian Economic Papers, 15(34), June 1980
19 I.G. Sharpe & P.A. Valker Australian Economic Papers, 18(33), December 1979
21 G.K. Hills Australian Economic Papers, 21(391), December 1982
23 W.J. Morielles Applied Economics, 15, February 1983
24 P.A. Valker Australian Economic Papers, 20(37), December 1981
26 W.J. Morielles Journal of Industrial Economics, 31, March 1983
27 W.J. Morielles Review of Economic Studies, 50(166), January 1983
28 P. Sambodo Economic Record, 57(159), December 1981

Copies are available upon request from:
Department of Economics,
The University of Sydney,
N.S.W. 2006, Australia.
<table>
<thead>
<tr>
<th>Page</th>
<th>Author(s)</th>
<th>Title</th>
<th>Year</th>
<th>Journal/Book</th>
</tr>
</thead>
<tbody>
<tr>
<td>53</td>
<td>J. Yates</td>
<td>AFSU, Commissioned Studies and Selected Papers</td>
<td>1982</td>
<td></td>
</tr>
<tr>
<td>54</td>
<td>J. Yates</td>
<td>Economic Record, 58(161), June 1992</td>
<td>1992</td>
<td></td>
</tr>
<tr>
<td>56</td>
<td>V.B. Hall & P. Saunders</td>
<td>Economic Record</td>
<td>60(158), March 1984</td>
<td></td>
</tr>
<tr>
<td>57</td>
<td>P. Saunders</td>
<td>Economic Record, 59(162), September 1983</td>
<td>1983</td>
<td></td>
</tr>
<tr>
<td>58</td>
<td>F. Gill</td>
<td>Economic Valuation, 5(3-4), 1984</td>
<td>1984</td>
<td></td>
</tr>
<tr>
<td>63</td>
<td>W.J. Hertlees</td>
<td>Economic Record, 58(163), September 1983</td>
<td>1983</td>
<td></td>
</tr>
<tr>
<td>65</td>
<td>V.B. Hall & T.F. Truong</td>
<td>Economics Letters, 12, 1983</td>
<td>1983</td>
<td></td>
</tr>
<tr>
<td>66</td>
<td>V.B. Hall & V.A. Nguyen</td>
<td>Economic Letters, 12, 1983</td>
<td>1983</td>
<td></td>
</tr>
<tr>
<td>67</td>
<td>F. Gill</td>
<td>Economic Papers, 23(2), April 1987</td>
<td>1987</td>
<td></td>
</tr>
<tr>
<td>68</td>
<td>W.J. Hertlees</td>
<td>Australian Economic Papers, 22(3), December 1984</td>
<td>1984</td>
<td></td>
</tr>
<tr>
<td>69</td>
<td>C.O.P. Sinkin</td>
<td>Singapore Economic Review, 29(1), April 1984</td>
<td>1984</td>
<td></td>
</tr>
<tr>
<td>70</td>
<td>J. Yates</td>
<td>Australian Quarterly, 56(3), Winter 1986</td>
<td>1986</td>
<td></td>
</tr>
<tr>
<td>73</td>
<td>R.T. Ross</td>
<td>Economic Record, 62(178), September 1986</td>
<td>1986</td>
<td></td>
</tr>
<tr>
<td>76</td>
<td>F. Gill</td>
<td>Australian Economic Papers, 27(50), June 1989</td>
<td>1989</td>
<td></td>
</tr>
<tr>
<td>78</td>
<td>H. Trebilcock</td>
<td>Company and Securities Law Journal</td>
<td>6(1), February 1988</td>
<td></td>
</tr>
<tr>
<td>80</td>
<td>B.W. Ross</td>
<td>The Economic and Social Review, 20(3), April 1989</td>
<td>1989</td>
<td></td>
</tr>
<tr>
<td>83</td>
<td>L. Hadley</td>
<td>Nueva Economia</td>
<td>(111), Winter 1992</td>
<td></td>
</tr>
<tr>
<td>84</td>
<td>J. Elsegood</td>
<td>Public Sector Economics - A Reader</td>
<td>F.Hare ed., Basil Blackwell, 1988</td>
<td></td>
</tr>
</tbody>
</table>

104 B.M. Ross | *Prometheus*, 6(2), December 1988 |
114 V.B. Hall, T.F. Truong & V.A. Nguyen | *Australian Economic Review*, (85) 3-89 |
118 W.P. Hogan | *Abacus*, 25(2), September 1989 |
128 S.Lahiri & J. Sheen | *The Australian Quarterly*, 60(4), 1990 |
130 J. Sheen | *The Economic Journal*, 104(400), 1990 |
134 C.J. Karfakis | *Journal of Economic Dynamics and Control*, 16, 1992 |
143 C.J. Karfakis | *Applied Economics*, 22, 1993 |
144 C.J. Karfakis | *Journal of Money, Credit, and Banking*, 22(3), 1990 |
150 M.P. Hogan | *Economic Papers*, 10(1), March 1991 |