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ASSET REVALUATIONS AND SHARE PRICES
A Study Using the M.S.A.E. Regression Technique

1 Introduction

A recent paper by Sharpe and Walker [13] examined the effect of
changes in accounting methods on stock market prices. Contrary to the
common view that “"changes in accounting methods do not appear to have
had much of an effect on stock market prices”,1 they concluded that

"...the failure of accounting to systematically provide

contemporary information about the affairs of firms can deprive

the stock market of valuable information and lead to the
inequitable treatment of individual investors. '’

This study extends the work of Sharpe and Walker by applying an
alternative method to their data in order to test and supplement the
results produced by the Ordinary Least Squares (0.L.S.) method.

2 The Sharpe and Walker Model

The model employed by Sharpe and Walker was the so-called market
model. Using the ordinary least squares method, the yield on company
shares was regressed against a portfolio or ‘market’ yield, and the
residual term then attributed to the influence of asset revaluation.

If the residual term remained high, this meant that revaluation had
boosted the market price of the shares. Movements of the residual term
over a relevant period of time were assumed to indicate the market's
response to news of a revaluation.

The Sharpe and Walker data were selected from asset revaluation
cases recorded on a file compiled within the Department of Accounting,
University of Sydney. Various criteria were applied to ensure that only
true'' revaluation cases were selected. The final sample was composed of
34 asset revaluations by 32 listed companies and is shown in Table 1,
Appendix III. This sample was then disaggregated into two groups. The
first consisted of companies whose dividendsincreased in the twelve months
following the revaluation (after allowing for capital changes). The second
group comprised companies whose dividends did not increase or declined after
the revaluation. The first group included 18 revaluation cases, and the
second 16 (see Table 1, Appendix III).

According to Sharpe and Walker, the reason for disaggregating the
sample into these two groups was to examine whether the movements in
prices (if any) were in fact due to information about earnings rather



than information about asset revaluations. If the patterns of the residuals

for both these groups were similar, then it must be concluded that price
movements were in fact due to asset revaluation announcements.

3 Chotece of Altermative Estimation Method

The size of the residual term in the market model depends on the choice
of regression method. Sharpe and Walker used the ordinary least squares
method. There are some objections to the use of this method. Firstly, the
distribution of share price changes are generally known to deviate from
the normal or Gaussian distribution. More precisely, empirical distributions
are belicved to follow a non-normal Stable distribution which exhibits the
feature of "infinite variance” (see Appendix I). If this is so, the ordinary
least squares method - which is based on the minimisation of the variance -
will not be suitable, because the variance is infinite. Furthermore,
"infinite variance'’, in fact, implies the presence of many more extreme
observations in the empirical data than are assumed by a Gaussian distribution.
Because the ordinary least squares method is highly sensitive to extreme
observations (due to the greater weights it attaches to the large residuals)
it can produce results significantly biased in the direction of extreme
observations.

Besides the stable distribution, there are other 2nd possibly more
attractive forms of distribution. Preatz [10] and Blattberg and Gonedes [2]
have suggested the scaled t-distribution believing that it has greater
validity than the symmetric Stable distribution. However, it is beyond
the scope of this study to investigate all possible distribution models
and their implications for the ordinary least squares method. Instead,
we concentrate on a comparison between the normal and non-normal Stable
distributions only.

Several authors have suggested alternative methods to be used for the
case of non-normal Stable distributions. Wise3 suggested the method of Best
Linear Unbiased Estimator (B.L.U.E.). Mandelbrot [5] and Fama [3] suggested
the method which Minimises the Sum of Absolute Errors (M.S.A.E.).

The choice of either the B.L.U.E. or the M.S.A.E. estimators depends
on the empirical value of the characteristic exponent a. Blattberg and
Sargent [1] found in a sampling study that if the characteristic exponent
o is less than 1.7 the M.S.A.E. method outperforms the O.L.S. method.h



Furthermore, the margin 3 i. favour of the M.S.A.E. method is much greater
than that in favour of the 0.L.S. when o> 1.7. In short, the M.S.A.E.
estimator is more robust than the O.L.S.

Comparing the M.S.A.E. and the B.L.U.E. methods, one finds that the
latter is less flexible in the sense that it requires knowledge of the
exact value of o . Furthermore, Blattberg and Sargent also found that
the M.S.A.E. outperforms even the best of the B.L.U.E.'s for small values
of a's.

The validity of the 0.L.S. method used in the Sharpe and Walker study
depends essentially on the empirical estimate of the characteristic exponent
o of Australian share price distributions. If a is close to 2, the use of
the 0.L.S. method is justified. However, if o« is much less than 2, the
M.S.A.E. method should be considered.

Empirical studies on Australian share price distributions are few,
and the conclusions are not unanimous. Most authors agree that the empirical
distributions of share price changes show significant deviations from the
normal distribution. However, the majority still doubt the Stable dis-
tribution as a useful or valid model. Officer [7] for example, found that
certain empirical properties were inconsistent with the Stable hypothesis
and believed that the sample standard deviation was still a well behaved
measure of dispersion. Preatz [10] found that distributions of share price
changes were 'highly non-normal®’ and '"well-defined', but that these well-
defined distributions were more likely to be a scaled t-distribution than a
Stable distribution [11]. In fact, only the work of D. Osborne [7] supported
the Stable hypothesis and produced results which showed that the characteris-
tic exponent o of the Australian share price distributions was around
1.7 (this, incidentally, is the border value where the M.S.A.E. method starts
to compete with the 0.L.S. method).

Even though most empirical studies do not completely support the
Stable hypothesis, they unanimously reject the normal hypothesis as un-
suitable for the study of share price changes. As a result, there is a
strong case for testimg en alternative method of estimation which can be
used in place of, or in addition to, the 0.L.S. method.

Compared to the 0.L.S. method, the M.S.A.E. method is more attractive
because it is simpler in concept (though not necessarily simpler in the
method of solving), i.e. minimisation of the sum of absolute deviations
instead of the sum of squares of the deviations.



4 The Results

The market model used by Sharpe and Walker is described by the
following relations:

+ +
Rig = 23 * bR +uy,

Where
t denotes the month, varying from -12 to +12; t=0 denotes
the month of the revaluation announcement.
Rit denotes the monthly return for company 'i' in month 't'
calculated from end of month prices and including dividends
as well as appropriate adjustments for stock splits, bonus
issues and 'rights'.
%nt denotes the 'market' rate of return, represented by the
average monthly rate of return on a portfolio consisting of
some 500 Australian stocks traded on the Melbourne Stock Ex-
change asswniing dividends are re-invested and adjustments made
for capital changes.
a; represents the riskless rate of return.
b. is a measure of the volatility of the return on company

i
i's share r2lntive to the mariet return.

a, is the residual term for company 'i' in month 't'.

The term bi%nt represents the effect of market-wide influences on the
company's return. The residual term Uit accounts for other influences, namely
the influence of asset revaluation amnnouncement and random disturbance. In
order to eliminate the latter, the residual term is averaged over the sample
of 34 revaluation cases (or 18, for the group in which dividends increased,
cnd. 16, for thc group in which dividends -Jecreased or romained stcady) to
produce’ an Average Residual for month t (ARt) :

AR = L %
t—ﬁiuit

The Cumilative Average Residual for month t is defined as:

(n=34,18,0r 16)

t
CAR, = I AR
t -12 t
By plotting ARt and CARt against the month t, the movement in prices
as a result of an upward asset revaluation announcement can be observed.
The results are presented in Tables 4,5 and 6 in .\ppendix IIT and in

Figures 1,2, and 3.
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An examination of these results shows that the AR, and hence the CAR,
obtained from the M.S.A.E. regression method is greater than that obtained
from the 0.L.S. method. However, despite this difference in levels, the
patterns for the CAR's are the same for both methods. One can still
recognise the jump in the CAR at month -6, the general rise in the level
of the CAR before the announcement month with the biggest jump occurring at
the announcement month, and the settling down of the level afterwards.

The difference in the level of the residuals is due mainly to the
difference in the estimated values of the volatility b. The average
M.S.A.E. estimate of b for 32 companies is 0.58, whereas the average
0.L.S. estimate is 0.70. The 0.L.S. would attribute more of the upward
movement in prices to the effect of market-wide influences than would the
M.S.A.E. method, thus leaving a smaller amount to be attributed to the
effect of asset revaluation announcement. The final value of CAR by the
0.L.S. method is about 10% less than that by the M.S.A.E. method.

The reason for the smaller estimate of volatility b by the M.S.A.E.
method is illustrated in Figures 4 and 5. In Fig. 4, there are no extreme
points and the M.S.A.E. result is very close to the O.L.S. result. In
Fig. 5, however, there are at least two extreme points. If these are
excluded then the M.S.A.E. estimate is very close to the O.L.S. estimate.
But if these two extreme points are included, the 0.L.S. estimate of b
jumps towards the direction of these two points, whereas the M.S.A.E.

estimate remains more consistent with the main body of the data, i.e.

b » 0. This illustrates the sensitivity of the 0.L.S. method towards the
extreme points. Consequently, it can be said that the O.L.S. estimate of
volatility b is potentially more exaggerated than the M.S.A.E. estimate.
As a result, the movement in prices due to revaluation announcement is
underestimated by the 0.L.S. method.

5 Conclusione

Despite the difference in the general level of CAR, the patterns are
quite similar for both the 0.L.S. and M.S.A.E. methods. This means that
most of the conclusions arrived at by Sharpe and Walker regarding the
efficiency of the market are still valid, viz. the market regards the
announcement of asset revaluation as information of significance and tries
to absorb this piece of information into its price quickly. Indeed, most
of the adjustment is completed by the end of the announcement month. What
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the M.S.A.E. study has added to the Sharpe and Walker study is a
confirmation that this basic conclusion is not affected by the particular
estimation method used, whether it be one which is heavily biased towards
the extreme points (0.L.S. method) or less biased (M.S.A.E. method). The
Sharpe and Walker conclusion is the property of the main body of the
data and not just that of the few extreme observation points only. Had
it been otherwise the two sets of results would have diverged signi-
ficantly, the 0.L.S. results being biased towards the direction of the
extreme points and the M.S.A.E. results towards the main body of the data.
On the level of the average increase in return following a revaluation,
it is difficult to say whether the 0.L.S. prediction of 20% is nearer to
the true figure than the M.S.A.E. prediction of about 30%. If the data
is truly normal, the 0.L.S. prediction will be nearer to the true figure.
But if the data is highly non-normal (characteristic exponent a is much
less than 2) the M.S.A.E. prediction should be considered. In reality,
we expect the empirical data to be somewhere in between these two extremes,
consequently, the 0.L.S. and the M.S.A.E. predictions should provide
useful lower and upper limits for the true results.
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APPENDIX I

Stable Distributions

If X is a random variable, with density function p(x), the
characteristic function if X is defined as:

1]

B{ e1%%} T <y
L) Hax

C(¢)

That is, the characteristic function is the conjugate of the
Fourier transform of the density function. Inversely, the density
is the conjugate of the inverse Fourier transform of the characteristic
function:

P(X) = == [C(0)e Pap

The distribution of a random variable can be described uniquely
either by its density function or its characteristic function. The
Gaussian distribution, for example, is described simply by a density
function:

( [x'U] 2)
20°
‘'The Stable (or Paretian) family of distributions, however, is

P(X) = S exp

defined more simply by its characteristic function:

C(¢) = exp{16¢ - v]o|® [1 + ieT%f w($,0)] }

Where
0<ag?2
-1 <8<
-0 < § <
_.oo<‘¥<oo
and
ftan (gg-)9 if a# 1
w(¢,a)="+

.;%1og|¢| , ifo=1
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There are four parameters to describe the family of stable Paretian
distributions.The parameter o is called the characteristic exponent '
which determinesthe height of, or total probability contained in the
extreme tails of the distribution. If a = 2z, the distribution is normal.
When 0 < o < 2, the extrame tails of the stable distribution are higher
than those of the normal distribution, the higher the smaller value of a.
The parameter B is an index of skewness. When B > 0 the distribution is
skewed right, when g < 0 , the distribution is skewed 1left, and when 8 = 0
the distribution is symmetric. The parameter § is the location parameter.
When o > 1, 8 represents the mean of the distribution. Wheir a € 1 the
mean of the distribution is not defined. Finally, y defines the scale of
the distribution, for example, when o = 2, y is half the variance. When
a < 2, the variance is infinite, but y remains finite to represent the
scale of the distribution.

The fact that the variance of the stable distributicn is infinite
when o < 2 can be illustrated as follows:

variance = E{X?} - (E{X})?

2
B(x*} = L LT

iz d¢? ¢=0

but

d*c(¢)

= tems in [¢|*™? + temms in |¢]|*?

a¢? $=0

if o <2, [9|%7% = is infinite when ¢ = 0

|¢|2"0t

thus the variance is infinite when a <2



[PPENDIX II
M.S.A.E. Iegrcasion Methods

There are maity ways of arriving at the M.S.A.E. estimate of the equation
y; =a+ bxi

The first method used in this study is the one developed by Karst [4]
based on the method of steepest descent by Singleton [14] . This method,
too lengthy to be described here, is capable of producing a mathematically
exact estimate of a and b at the price of more iteration steps and computing
time. The second meched used in this study is an approximate method
developed by Schlossmacher [12] which can be described briefly as follows:

n
Llet S=7] lu; | (1)
i=1

be the cbjective function whichk one has to minimise and lc¢t ui(k)
and uy (k+1) be the ith residual after the kth and (k+1)th iterations
respectively. Then

n 1 2
5= ] ——— [u;{eD)] )
i=1 |u. (k+1) |
i
or approximately
S = v 1 [ui(kﬂ)]2
=1 oy (0]
n
"}' mi‘.ui2 (3)
i=1

This is a weighted least squares problem, with the weights after
1

|ui(k)|

As wc approach the final value for S, u;(k+1) + u,; (%), thus making

the kth iteration being given as

the objective function in (3) even closer to (1).

One of the problersof (3) is that when ui(k)=0, the weight Wy is
undsfined. To avoid this problem, we let wi=0 whenever ui(k)=0. This 1is
justified in the sense that ui(k+1) will be very close to ui(k),. i.e.
close to zero, andé hence it can be excluded temporarily from the objective
function. ¥Whenever Uy (k+1) becomes non-zero again, the weight w; will
be reintroduced.



The second problem of (3) is the question of whether the method is
convergent or not. That is, will |ui(k+1) - u; (k) |+ 0, as k » = for all
i ? Although a rigorous mathematical proof has not been found, experience
in this study revealed that the method was indeed convergent in the sense
that S will always approach a minimum and the estimated values of a and b
will always approach their final values mostly without fluctuations, but
occasionally with some mild initial fluctuations. Fi®, 6 illustrates
a typical example of the convergence of the Schlossmacher method, while
Figs. 7 and 8 show two cases of some mild fluctuation in the value
of b during the initial stages of the iterations.

Compared to other methods of M.S.A.E. regressions, including the
method of linear programming, the Schlossmacher mcthod is the most
e¢fficient in terms of computer storage and calculation time. The price
however, is a little inaccuracy in the results because the final results
are only approximate. Tables 2 and 3 in Appendix III show that this price
is not very great. Colums (a) and (b) of Table 2 show the Schlossmacher
results that correspond to the number of iteration steps shown in columns
(@) and (b) of Table 3. A comparision of column (a) with colum (b) shows
that even when the number of iterations are cut considerably (from (a)
to (b)), the results (colum (b) of Table 2) are still close to the final
values (Karst results).
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APPENDIX 1 11 =

TABLES

TABLE 1 LIST OF COMPANTES AND T‘HE.‘.IR REVALUATION DATES

Revaluation Company Revaluation Dividend
Case Date/s,,,

1 BElec. Bgquipment 8/1969 s}
2 Punlop Rubber 3/1963 I
3 G.E. Crane 9/1960 D
4 Concrete Industries 4/1960 I
5 Castlemaine Perkins 8/1960 T
6 Brickworks Ltd, 9/1961 S
7 B.ll. P, 971960 &
B Fairymead Hugar 8/1960 I
9 Comeng 11/1960 T
10 Broons 4/1969 I
1L Adelaids» Cement 8/1961 5
12 ® " 1/1969 I
13 Advertiser Mews 10/1963 Y
14 Aust. United TInvestment 7/1967 T
15 Bennett & Fisher 2/1967 8
16 Wynyard fNoldings 3/1963 S
17 Trustees FExecutors 8/1963 I
18 Howard Smith 1/1960 I
19 Nld. Cement & Lime 6/1967 X
20 Provincial Traders 5/1969 s
21 Perth Arcade 9/1967 i
22 Myer 10/1969 I
23 Mt. Isa flines 4/1960 5
24 * " 7/1963 5
25 AicPhexsons 5/1961 5
26 Silvertons 10/1964 S
27 Hardie Heldings 1/1960 I
28 John Martin 10/1969 a
29 Industrial Engineering 10/1967 [b]
30 Mauri Bros. 10/1960 I
31 Malleys 10/1964 b
32 Aust, Paper MManuf. 1/1962 T
33 A.P.A. lloldings 10/1968 D
34 North RD.u.p, 1/1960 D
NOTES : T = dividend increase

3 = dividend stead
D = dividend decrease

SOURCE

Sharpe & Walker (13,p-12)
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TABLE 2
ESTIMATED VALUES OF a AND b BY VARIOUS METHODS
| b
(1) Schlossmacher 1 (1) Schlossmacher
Case | 0O.L.S. Karst. (1)~ (ii) 0.L.S. Karst (1) (ii)
1 <474 - 092 - .078 .092 .086 <291 .+ 290 .294
2 -~ .706 - 566 - .668 | - .566 2.138 1.400| 1.227 1.400
3 .384 - .082 - .066 -.066 .942 .€615| .611 .61l
4 -2.223 ~2.585 -2.583 | -2.585 1.476 1.571| 1.568 1.570
5 .893 .942 .942 . 942 .891 6917 .691 .691
6 .626 - .04 - 044 | ~ .044 .533 .550) .556 .550
7 - .141 .054 .039 . 054 .685 .499| .502 .499
8 .620 - .5%8 - .3598 .598 .808 .984 1 .985 .985
9 .851 .461 .509 .463 .859 .941| .926 041
10 -~ ,651 .805 .787 .787 . 424 .410( .401 . 401
11 491 - .1€7 - .065 |- .166 -650 .493| .520 . 492
12 .491 - .167 -~ .065 |~ .166 . 650 .493 .520 .92
13 - .131 =1.73% -1.674 |~-1.738 1.081 .B72! .862 .879
14 - .865 - .859 - .871 |- .858 . 274 <344 .283 .343
15 -~ .605 - 455 ~ .456 |-~ .456 . 355 .258 | .258 .258
18 1.463 0.600 . 007 .001 .481 .000| .002 .000
17 .648 0.000 .007 .001 .122 000} .001 .000
18 .467 - 647 - .630 |- .630 772 740 .735 .736
19 - .634 .017 .017(* .017 .452 .286| .286 .286
20 -1.052 .155 ~ .891 .158 1.087 1.081} 1.119 1.080
21 .156 .206 .335 . 261 .157 .0441 .073 .056
22 - .178 -1.118 -1.118 |~-1.118 1.182 1.183 ] 1.183 1.183
23 .120 . - .260 .082 .042 .724 .702| .657 .629
24 .120 - .260 . 082 .042 .724 .702) .657 .629
25 - .279 - .896 - .686 |- .896 .863 .660| .754 661
26 .359 1,002 - .958 | -=1.002 .798 .489}1 .518 .487
27 .198 - .365 - ,339 |- .344 .520 .316} .322 321
28 -1.232 ~1.152 ~1.015 | ~1.149 .905 .652}) .723 .€653
29 .935 0.000 . 007 .001 .230 .000| .001 .000
30 .370 -134 .148 .142 1,015 .789 .822(*) .790
31 .569 1.201 1.209 1.201 .276 - .042( .103 -.042
32 .141 .049 .137 .051 .9922 .978 | .992 .978
33 .910 1.154 1.082 1.128 .412 .361] .359 .358
34 1.520 .488 .531 . 496 1.008 .483( .577 .490
Av. .109 - .205 - .203 |~ .209 .702 .583} .556 581
9
(i) ,(ii), (*) :SEE NOTES IN TABLE 3

(1) All of the 0.L.S. results are re-calculated. They differ slightly from

the results of Sharpe and Walker because some companies have more obser-
vations included in the data of this studv.




TABLE 3

CONVERGENCE OF }1'nm SCHLOSSMACHER METHOD

Case lumber __No. of iterations before Convergence
{i) 7 (i)
L 28 23
2 21 3
3 160 9
4 3 6
5 13 12
6 11 8
7 15 11
a8 21 20
‘) 30 20
10 17 16
11 ‘ 25 7
12 1 25 7
13 ‘ 29 12
14 22 [ 2
15 7 7
16 L5 11
17 10 Ki
18 16 15
19 10 9
20 27 3(*)
21 > 40 4
22 11 13
23 15 5
24 15 5
25 37 a8
26 37 27
27 28 26
28 > 490 5
29 17 14
30 | 16 7
31 26 7 (%)
32 23 2
13 > 40 K
34 21 9
| Average 22 10
e s : . S SR :
{i) Condition for convorgence heing : o, - a, | < ja’ﬁ
i#l "1 -
|8;49= ;1 < 107
(ii) Condition for convergenae heing : |a, - a.] < 1072
i+l LY -
1B, - B, <107
i+l i -

(*) Resulting in greatly different values of a and b (see Table 2}



TABLE 4
AVERAGE OF ALL 3% REVALUATION CASES
Month Orxdinary Least Sguares M.S8.A.E. Method
Relative to Method
Announcement
Date Average Cunulative Average Cumulative
Residual av. Residual Residual Av. Residual
-12 2.139 2.139 2.753 2.753
-11 - .603 1.536 - 052 2,701
-10 - ,901 . 635 - .259 2.441
-9 .529 l.164 1.115 3.556
~ 8 . 992 2.156 1.561 5.117
-7 .327 2.4833 .693 5.809
- 6 3.475 5.958 4.023 9.832
=5 .943 6.900 1.323 11.156
- 4 . 728 7.622 1.218 12.374
- 3 .367 7.996 . 904 13.279
- 2 1.155 9.151 1.666 14.945
-1 2.047 11.198 2.563 17.508
0 8.642 19.840 9.144 26.652
i 1.127 20.968 1.191 27.843
2 -1.067 14.900 - 779 27 .064
3 2.877 22.778 3.296 30.361
4 -1.088 21.€90 - 765 25,596
5 ~3.094 18.595 -2.815 26.781
6 ~1.163 17.433 - ,792 25.989
7 1.965 19.398 2.448 28.437
8 .359 19.757 - 743 29.179
9 - .599 19.158 - ,071 29.109
10 - ,504 18.654 - ,386 28.723
11 <974 12.628 1.134 29.857
12 .519 20.147 .973 30.831

(*) ©See notes (1) in Table 2

22



AVERAGE FOR THE CASES OF DIVIDEND INCREASES
{2 Revaluaticns)
Month Ordinary Least Squares M.S.AN. HMethod
Relative to Mlethod (*)
gz:zuncement Average Cunulative Average Cunulative
' Residual Av. Residual Residual Av. Residual
-12 2.012 2.012 2.547 2.547
-11 1.902 3.915 2.332 4,881
~10 - .197 3.718 .259 5.140
- 9 .687 4,404 1.252 6.402
-8 - .582 3.822 - .194 6.208
-7 1.637 5.459 1.875 8.082
- 6 3.112 8.572 3.633 11.715
-5 1.954 10.526 2.175 13.890
-4 224 10.750 .459 14.350
-3 - ,140 10.609 .238 14,589
- 2 1.619 12.228 2.006 16.595
-1 3.063 15.291 3.389 19.934
0 8.482 23.773 8.788 28.772
1 - .361 23.412 - .205 28.568
2 -1.438 21.975 ~1.072 27.496
3 3.831 25.806 A4.042 31.538
4 - .955 24.850 - .B53 30.685
5 ~1.967 22.882 -1.939 28,746
6 -2.498 20.384 ~2.192 26.554
7 1.859 22.243 2.366 28.920
8 1.915 24,158 2.079 30.998
9 2.057 26.215 2.444 33.443
10 .033 26.248 .271 33.714
11 - .387 25.0261 - .179 33.535
«292 26.154 .616 34.181

(*) See note (1) in Table 2.

23



TABLE 6

AVERAGE FOR THE CASES OF DIVIDEND STEADY OR DECREASES

{16 Revaluations)

Honth Ordinary Least Squares 1.2.A.7. HMethod
Relative to Method (%)
ﬁzzguncement Aveirage Cumulative Average Cumulative
Residual Av. Residual Residual Av. Residual
=12 2.257 2.257 3.138 3.138
=11 =5.361 =3.104 -4 .56 ~1.431
=10 -1.760 -3, 864 - 881 ~2.312
- 9 1.255 -3.609 1,962 - .350
- 8 2.210 -1.398 3.307 2.687
-7 ~ .89% -2.297 = .360 2.327
- 6 2.482 .185 3.296 5.623
- 5 .825 1.009 1.576 7.199
- 4 1.106 2.115 2.013 9,212
- 3 2.166 4.281 3.043 12.255
- 2 1.077 5.358 1.842 14.097
-1 1.226 6.584 1.969 16.066
(8 7.9210 14,494 8.773 24.839
1 2.121 16.615 2,064 26.902
2 0.094 16.709 .229 27.132
3 3.073 19.782 3.914 31.046
4 -1.163 18.619 - .551 30.485
5 -5,848 12.772 -5.229 25.265
6 - .682 12,089 - .061 25.204
7 - .209 11.881 .39% 25.603
8 ~-1.389 10.492 - .681 24,922
2 -2.749 7.744 ~2.072 22.850
-3.683 4,060 -~3,916 18.934
11 1.839 5.899 1.887 20.821
12 .656 6.556 1.367 22.188

(*) See note (1) in Table 2
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FOOTNOTES

[13, p.1]
[13’ pp']-'Z]
[1, pp.502-504]

"performance’ here is defined in temms of the Mean Absolute Deviation
(M.A.D.) of the estimated value from the truc value. That is, if B is
the true value, b, is the estimated value of B in sample i (i=1,2,...n),
then the M.A.D. of this cxperiment is

M.A.D., = ] -~———r
i=1 n

Also in terms of M.A.D.
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