A NOTE ON THE TESTABILITY OF
FAMA'S EFFICIENT CAPITAL MARKET HYPOTHESIS*

by
Ernestine Gross**

No. 88 February 1986

DEPARTMENT OF ECONOMICS

The University of Sydney
Australia 2006
A NOTE ON THE TESTABILITY OF
FAMA'S EFFICIENT CAPITAL MARKET HYPOTHESIS*

by

Ernestine Gross**

No. 88 February 1986

ABSTRACT

Fama's (1970, 1976) theory of efficient capital markets relies on empirical tests of propositions. It is shown that the conclusion of semi-strong-form capital market efficiency, reached from empirical studies, is still unwarranted.

*I have benefited from Michael C. Blad's advice and discussions. However, I am responsible for any errors in this paper.

**Department of Economics, The University of Sydney, NSW 2006, Australia

National Library of Australia Card Number and ISBN:
0 949269 60 3
A NOTE ON THE TESTABILITY OF FAMA'S EFFICIENT CAPITAL MARKET HYPOTHESIS

In his 1970 article, "Efficient Capital Markets: A Review of Theory and Empirical Work", Fama put forward three related hypotheses. First, capital markets are efficient in the strong-form if prices in these markets fully reflect all available relevant information at any time. Secondly, capital markets are semi-strong-form efficient if prices reflect all publicly available information. Thirdly, if prices reflect all information contained in past price series then the capital markets are efficient in the weak-form.

The importance of efficient capital markets is seen to lie in the role of allocating resources:

"The primary role of the capital market is allocation of ownership of the economy's capital stock. In general terms, the ideal is a market in which prices provide accurate signals for resource allocation: that is, a market in which firms can make production-investment decisions, and investors can choose among the securities that represent ownership of firms' activities under the assumption that security prices at any time 'fully reflect' all available information. A market in which prices always 'fully reflect' available information is called 'efficient'" (3, p. 383)

Fama's work has given rise to a large number of empirical studies which are concerned with testing one form or another of Fama's capital market efficiency hypothesis. Summaries of these studies are contained in (2) for United States data and in (1) for the Australian data.

Fama (3, 4) viewed the then existing studies as supporting the semi-strong-form hypothesis of capital market efficiency. This conclusion was endorsed by Copeland and Weston (2). Officer (1) reached the same conclusion following his examination of the corresponding Australian studies.
Enthusiasm expressed by these authors about the semi-strong-form efficiency of capital markets is not shared by this writer. On the contrary, it will be shown in the following that, given the formal definition of capital market efficiency presented by Fama in 1976, the hypothesis is in fact not testable. This does not augur well for the type of methodology of economic research which relies on empirical tests of hypotheses at the expense of theoretical analysis based on well defined concepts and clear statements of assumptions.

DEFINITION OF CAPITAL MARKET EFFICIENCY (FAMA, 1976)

In 1976 Fama presented a 'formal discussion' of an efficient capital market. His aim was to provide a "more detailed specification of the process of price formation, one that gives testable content to the term 'fully reflect'" (4, p. 134). Fama's notation and definition, which is applied here, is as follows:

let \(\theta_{t-1} \) = the set of information available at time \(t-1 \), which is relevant for determining security prices at \(t-1 \).

\(\theta^m_{t-1} \) = the set of information that the market uses to determine security prices at \(t-1 \). Thus \(\theta^m_{t-1} \) is a subset of \(\theta_{t-1} \); \(\theta^m_{t-1} \) contains at most the information in \(\theta_{t-1} \) but it could contain less.

\(p_{jt-1} \) = price of security \(j \) at time \(t-1 \), \(j = 1, 2, ..., n \), where \(n \) is the number of securities in the market.

\[f(p_{1t+r}, ..., p_{nt+r} | \theta_{t-1}) \]

= the 'true' joint probability density function for security prices at time \(t+r \) \((r \geq 0) \) that is 'implied by' the information \(\theta_{t-1} \).
\[
\Phi_m(p_{t+r}, \ldots, p_{nt+r} | \theta_{t-1}^m) = \text{the joint probability density function for security prices at time } t+r \text{ (} r \geq 0 \text{) assessed by the market at time } t-1 \text{ on the basis of the information } \theta_{t-1}^m.
\]

Fama defined the capital market as being efficient if \(\theta_{t-1}^m = \theta_{t-1} \) and \(f_m(p_{t+r}, \ldots, p_{nt+r} | \theta_{t-1}^m) = f(p_{t+r}, \ldots, p_{nt+r} | \theta_{t-1}) \).

METHODODOLOGY OF DERIVING A TESTABLE HYPOTHESIS (FAMA, 1976)

Let \(R \) be the set of two period temporary equilibrium stock exchange economies with \(n \) securities, \(j = 1, \ldots, n, \) for which there exists a price system \(p_{t-1}^* = (p_{1t-1}^*, \ldots, p_{nt-1}^*) \) and a system of expected prices, \(p_t^e = (p_{1t}^e, \ldots, p_{nt}^e) \) such that the market for \(n \) securities clears at \(t-1 \) and the expected value of the deviation of realized prices in period \(t \) from the expected prices is zero, i.e.

\[
\psi E(\varepsilon_{jt}^*) = 0, \text{ where} \tag{1}
\]

\[
\varepsilon_{jt}^* = p_{jt}^* - p_{jt}^e
\]

\(\varepsilon_{jt}^* \) denotes a random variable

The following assumptions will be needed.

A1: \(R \) is non-empty

A2: the price expectations are formed taking "all available relevant information" into account, i.e. using \(\theta_{t-1} \)

A3: \(\theta_{t-2} \leq \theta_{t-1} \)
Assumptions A1 to A3 imply that $E(\tilde{\epsilon}_j^t | \theta_{t-1}) = 0, \forall, r = 1, 2$.

Let \mathcal{B} be the subset of \mathcal{R} which fulfills the condition that the expected prices in period t of the n securities can be expressed as a function of potentially observable variables in period $t-1$. Two further assumptions are needed.

A4: \mathcal{B} is non-empty

A5: $\exists \mathcal{B} \in \mathcal{B}: f_m^B = f^B$, where f_m^B, f^B are defined as above for the economy \mathcal{B}

Example: in empirical studies of tests of the Fama notion of capital market efficiency one of the most frequently employed models of security market equilibrium is the Markowitz Market Model. Let $\mathcal{B} \in \mathcal{B}$ be the Markowitz Market Model. This model is well known and need not be derived here. The market clearing price relationship for the jth security is given by

$$V_j E(\tilde{R}_j^t | \tilde{R}_{mt}) = \alpha_j + \beta_j R_{mt}$$ \hspace{1cm} (2)

where

$$R_{jt} = (p_j^t - p_{jt-1}^t)/p_{jt-1}^t$$

$$R_{mt} = \sum_{j=1}^{n} w_j R_{jt}, \hspace{0.5cm} 0 < w_j < 1, \forall, \sum_{j=1}^{n} w_j = 1$$

α_j, β_j are real parameters
Introducing the Fama notion of efficient price expectations and assuming also that A5 holds, the efficient expected equilibrium return is given by

\[\forall j \ E(\tilde{R}_{jt} | \Theta_{t-1}, R_{mt}) = \alpha_j + \beta_j R_{mt} \]

(3)

with

\[E(\tilde{\varepsilon}_{jt}^* | \Theta_{t-r}, R_{mt}) = 0, \ r = 1, 2 \]

(4)

where

\[\tilde{\varepsilon}_{jt} = R_{jt} - E(\tilde{R}_{jt} | \Theta_{t-1}, R_{mt}) \]

(5)

Let \(\Theta_{t-1}^k \) be an information structure (e.g. corporate announcements made at a particular stock exchange at \(t-1 \) judged to be 'relevant' by researcher \(k \). The null hypothesis that the capital market is efficient with respect to \(\Theta_{t-1}^k \) is

\[H_0^k: \forall j \ E(\tilde{\varepsilon}_{jt+r}^* | \Theta_{t-1}^k, B) = 0, \ r = 0, 1, 2 \]

(6)

The null hypothesis is tested by estimating the expected return vector \(E(\tilde{R}_{jt}) \) according to some model \(B \), say the Markowitz Market Model. Assuming stationary return distributions \((\tilde{R}_{jt}, \tilde{R}_{mt}) \), the estimation equations become for 'event time' \(t-1 \), relative to \(\Theta_{t-1}^k \):

\[\forall j \ \bar{R}_s = a_j + b_j \bar{R}_{ms} + \tilde{\varepsilon}_{js}, \ s = -z, \ldots, t-1, z \in \mathbb{Z}, z \geq 2. \]

(7)
The test hypothesis is then

\[H_0^2: \quad \forall j E(\tilde{\epsilon}_{jt+r} | \theta^m_{t-1}, R_{ms}) = 0 \text{ for } r = 0, 1, 2 \quad (8) \]

where

\[\tilde{\epsilon}_{jt+r} = R_{jt+r} - (a_j + b_j \tilde{R}_{mt+r}) \quad (9) \]

This method will be referred to as the FFJR method.

Proposition: to test if \(\theta^m_{t-1} = \theta_{t-1} \) cannot be done by the FFJR method.

Proof: equations (3) to (5) can be rewritten as

\[\forall j E(R^m_{jt} | \theta^m_{t-1}, R_{mt}) = \alpha_j^m + \beta_j^m R_{mt} \quad (10) \]

\[E(\tilde{\epsilon}^m_t | \theta^m_{t-r}, R_{mt}) = 0, \quad r = 1, 2 \quad (11) \]

\[\tilde{\epsilon}^m_t = R^m_{jt} - E(R^m_{jt} | \theta^m_{t-1}, R_{mt}) \quad (12) \]

Equations (7) to (9) are estimating equations of (10) to (12) and not of (3) to (5) since market data is used in the estimation. Hence we can have \(\forall j E(\tilde{\epsilon}_{jt+r} | \theta^m) = 0 \) without having \(\theta^m_{t-1} = \theta_{t-1} \). Hence no test of \(\theta^m_{t-1} = \theta_{t-1} \).
CONCLUDING COMMENTS

The research methodology proposed by Fama has several odd features. Firstly, the information set \(\theta_{t-1} \) which is 'relevant' for optimal resource allocation, in terms of Pareto optimality or some other criteria, may be such that it belongs to an economy which does not belong to the set \(B \). Fama excludes this possibility. It appears that Fama suggests that only economies which belong to the set \(B \) and which fulfil the condition expressed in \(H_{0}^{1} \) are economies which, in some unspecified manner, imply optimal resource allocation. Secondly, the distinction between semi-strong-form and weak-form capital market efficiency appears to be contrived since information on historical price series, the subject of weak-form tests, seems to be publicly available in the same manner as announcements on share splits, corporate mergers and takeovers which are taken to be the subject of semi-strong-form capital market efficiency tests. Thirdly, and most importantly, the conclusion reached about the semi-strong-form capital market efficiency is still unwarranted. Supposing one observes that \(H_{0}^{2} \) is violated. This may be for two reasons. Either the assumed economy \(B \) is not the true one, or \(B \) is correct and the 'market' is inefficient in the sense that \(\theta_{t-1}^{m} \neq \theta_{t-1} \). It is the problem known as joint hypothesis testing. From the above proposition it follows that by observing that \(H_{0}^{2} \) is not violated, one cannot draw the conclusion that \(\theta_{t-1}^{m} = \theta_{t-1}^{t} \).

In empirical studies aimed at testing the Fama semi-strong form capital market efficiency hypothesis the deviation of the error term \(e_{t-r} \) from zero in the period \(r = 0 \) is usually interpreted as price revaluation due to new information. The capital market is then judged to be efficient
if \(e_{jt+r} \neq 0 \) for \(r = 0 \) and \(e_{jt+r} = 0 \) for \(r > 0 \). While this application of the FFJR method is useful for questions such as: how did the Chicago or London Stock Exchange react, in terms of magnitude and speed of price changes, to corporate announcements of a particular kind at a particular time period, it is not a test of the Fama semi-strong-form capital market efficiency hypothesis. The reason for this is straightforward. Applying the same argument as in the above proposition, the error term \(e_{jt+r} \) is obtained from an estimation equation such as (7) which is an empirical estimation equation of the hypothetical equation (10) and not of equation (3) since all one can observe are the recorded price series which are the results of the decisions made by traders in the capital market, i.e. those which 'reflect' \(\theta_{t-k}^m \), \(k \geq 0 \). \(\theta_{t-k}^m \) may be equal to \(\theta_{t-k} \), namely when the capital market is efficient. A test of the Fama efficient capital market hypothesis has to provide information on whether or not \(\theta_{t-k}^m = \theta_{t-k} \).

Supposing one observes \(e_{jt+r} = a, a \in \mathbb{R} \) for \(r = 0 \) and \(e_{j+r} = 0 \) for \(r > 0 \). One cannot conclude whether the market is efficient because the price revaluation response conditional on \(\theta_{t-k} \) may have resulted in \(a' \in \mathbb{R} \), whereby \(a \neq a' \).
References

<table>
<thead>
<tr>
<th>#</th>
<th>Author(s)</th>
<th>Title</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>I.G. Sharpe, R.G. Walker</td>
<td>Asset Revaluation and Stock Market Prices, June 1975</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>N.V. Lam</td>
<td>Incidence and Stabilization Impact of Tin Export Taxation in West Malaysia, June 1975</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>V.B. Hall & M.L. King</td>
<td>Inflationary Expectations in New Zealand: A Preliminary Study, August 1975</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>A.J. Phipps</td>
<td>Strike Activity and Inflation in Australia, September 1975</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>N.V. Lam</td>
<td>Incidence of the Rice Export Premium in Thailand, December 1975</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>I.G. Sharpe</td>
<td>Secondary Reserve Requirements, the Monetary Base and the Money Supply in Australia, January 1976</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>W.P. Hogan</td>
<td>Economic Strategies for Recovery, November 1976</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>T.P. Truong</td>
<td>Asset Revaluations and Share Prices: A Study using the M.S.A.E. Regression Technique, February 1977</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>I.G. Sharpe & P.A. Volker</td>
<td>The Impact of Institutional Changes on the Australian Short-Run Money Demand Function, February 1977</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>A.J. Phipps</td>
<td>The Impact of Wage Indexation on Wage Inflation and Strike Activity in Australia, June 1977</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>V.B. Hall</td>
<td>Pricing Behaviour in Australia: A Data Evaluation Study, June 1977</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>I.G. Sharpe</td>
<td>Australian Money Supply Analysis: Direct Controls and the Relationship Between the Monetary Base, Secondary Reserves and the Money Supply, June 1977</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>L. Haddad</td>
<td>Economic Systems: Towards a New Classification, June 1977</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>G. Lewis</td>
<td>A Strategy for Winning at Roulette, July 1977</td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>R.L. Brown</td>
<td>A Test of the Black and Scholes Model of Option Valuation in Australia, November 1977</td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>I.G. Sharpe & P.A. Volker</td>
<td>The Selection of Monetary Policy Instruments: Evidence from Reduced Form Estimates of the Demand and Supply of Money in Australia, December 1977</td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>V.B. Hall</td>
<td>Excess Demand and Expectations Influences on Price Changes in Australian Manufacturing Industry, February 1978</td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>I.G. Sharpe & P.A. Volker</td>
<td>The Tradeoff Between Improved Monetary Control and Market Interest Rate Variability in Australia: An Application of Optimal Control Techniques, February 1978</td>
<td></td>
</tr>
<tr>
<td>26</td>
<td>Evan Jones with the assistance of Mary MacDonald</td>
<td>An Examination of Earnings Differentials in Australian Manufacturing Industry, June 1978</td>
<td></td>
</tr>
<tr>
<td>27</td>
<td>W.P. Hogan</td>
<td>Questions on Structural Adjustment Policies, September 1978</td>
<td></td>
</tr>
<tr>
<td>28</td>
<td>P. Saunders</td>
<td>Price and Cost Expectations in Australian Manufacturing Firms, February 1979</td>
<td></td>
</tr>
<tr>
<td>29</td>
<td>W.P. Hogan, I.G. Sharpe & P.A. Volker</td>
<td>Regulation, Risk and the Pricing of Australian Bank Shares 1957-76, April 1979</td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>W.P. Hogan</td>
<td>Quicksands of Policy-Making, March 1979</td>
<td></td>
</tr>
</tbody>
</table>
*31 C. Emerson

Taxing Natural Resources Projects, May 1979

32 R.W. Bailey,
 W.D. Hall &
 P.C.B. Phillips

A Small Model of Output, Employment, Capital Formation and Inflation,
Applied to the New Zealand Economy, May 1979

33 W.P. Hogan

Eurofinancing: Currencies, Loans and Bonds, December 1979

34 S. Adel

The Growth of Foreign Investment and Economic Nationalism in Post

*35 W.P. Hogan

The 40 Per Cent Investment Allowance, January 1980

*36 W.P. Hogan

Controlling Eurofinance Markets, December 1979

37 R.T. Ross

Disaggregate Labour Supply Functions for Married Women: Preliminary Estimates
For New Zealand, April 1980

38 U.R. Kohli

Beginning and End-of-Period Specifications of Asset Market Equilibrium in
Balance-of-Payments Theory, April 1980

39 G. Mills

Government Incentive Contracts with Private Companies: Some Lessons from
the Channel Tunnel, April 1980

40 C.G.F. Simkin

Closer Economic Relations Between Australia and New Zealand, June 1980

41 U.R. Kohli

Relative Price Effects and the Demand for Imports, July 1980

42 W.J. Merrilees

Alternative Models of Apprentice Recruitment: With Special Reference to the
British Engineering Industry, August 1980

*43 P. Saunders

Price Determination in Australian Manufacturing Firms: A Cross-Section Study,
August 1980

*44 W.P. Hogan

Immigration Policies and Issues, October 1980

45 W.J. Merrilees

Labour Market Segmentation in Canada: A Translog Approach, October 1980

46 W.J. Merrilees

Pricing Strategies in the Newspaper Industry, November 1980

47 J.L. Whitteman

The Micro-Foundations of Layoffs and Labour-Boarding, November 1980

48 U.R. Kohli

On the Duality between Fixed and Flexible Exchange Rates, November 1980

49 U.R. Kohli

Nonjoint Technologies, December 1980

50 P. Saunders

Price Determination, Expectations Formation and Some Tests of the Rationality
of Australian Price Expectations, March 1981

51 J.L. Whitteman

Rational Choice, Learning-by-Doing and the Personal Distribution of Income,
April 1981

52 J.L. Whitteman

Firm-Specific Human Capital, Experience and the Differential Incidence of
Unemployment, April 1981

53 J. Yates

An Analysis of Asset Holdings in Australia by Income Class, May 1981

54 J. Yates

An Analysis of the Distributional Impact of Imputed Rent Taxation, June 1981

55 G. Mills

Investment in Airport Capacity - A Critical Review of the MAHS Study,
January 1982

56 V.B. Hall &
 P. Saunders

Pricing Models in Australian Manufacturing: The Evidence from Survey Data,
January 1982

57 P. Saunders

How Rational are Australian Price Expectations? January 1982

58 F. Gill

The Costs of Adjustment and the Invisible Hand with Special Reference to the
Labour Market, February 1982

59 G. Mills &
 W. Coleman

Peak Load Pricing and the Channel Tunnel: A Re-Examination, March 1982

60 J. Yates

Access to Housing Finance and the Campbell Report: The Implications of
Implementing the Recommendations of Chapter 37, July 1982

61 S.S. Joson

The GATT Agreement on Government Procurements: Canada and Australia, July 1982

*62 R.T. Ross

General Report of the 1980 Survey of Work Patterns of Married Women in the
Sydney Metropolitan Region, July 1982

63 W.J. Merrilees

Pension Benefits and the Decline in Elderly Male Labour Force Participation,
September 1982

*64 W.P. Hogan

Industry, Employment and Inflation, October 1982
A.J. Phipps
Australian Unemployment: Some Evidence from Industry Labour Demand Functions, November 1982

E.M.A. Gross & W.P. Hogan
Short Term Management of the Australian Exchange Rate, 1977-82, December 1982

V.B. Hall
Industrial Sector Interfuel Substitution Following the First Major Oil Shock, January 1983

J. Yates
Access to Housing Finance and Alternative Forms of Housing Loans in the 1980's, July 1983

V.B. Hall

F. Gill
Inequality and Arbitration of Wages in Australia: An Historical Perspective, December 1983

W.J. Merrilees
Do Wage Subsidies Stimulate Training? An Evaluation of the Craft Rebate Scheme, November 1983

M.C. Blad
Economic Policy and Catastrophe Theory, November 1983

C.G.F. Smink
Does Money Matter in Singapore? April 1984

J. Yates
Home Purchase Assistance for Low Income Earners, March 1984

C.G.F. Smink
Long-Term Aspects of New Zealand's External Deficits, April 1984

C.G.F. Smink
Methodological Scepticism, July 1984

V.B. Hall
Industrial Sector Fuel Price Elasticities of Demand Following the First and Second Major Oil Shocks, August 1984

S.S. Joson
Substitutability of 'Buy Local' Policy for Tariff Protection in Small Economies, January 1985

R.T. Ross
Analysis of the 1980 Sydney Survey of Work Patterns of Married Women: Further Results, January 1985

J. Yates
Discrimination in Lending, May 1985

R.T. Ross
Measuring Underutilisation of Labour: Beyond Unemployment Statistics, May 1985

P.D. Groenewegen
Alfred Marshall as Professor of Political Economy at Cambridge 1885-1908, June 1985

C.G.F. Smink
Popper's Methodology and Economic Theory, July 1985

E.M.A. Gross, W.F. Hogan & I.G. Sharpe
Market Information and Potential Insolvency of Australian Financial Institutions, July 1985

F. Gill
Over-Award Payments: Result of a Survey conducted in 1982

S.K. Kim
Short Run Policy Analysis of Employment, Food Price and Rural-Urban Migration for a Labour-Abundant Developing Economy

E. Kiernan & D.B. Madan
Stochastic Stability in a Rational Expectations Model of a Small Open Economy, March, 1986

E. Gross
A Note on the Testability of Fama's Efficient Capital Market Hypothesis

Papers marked with an asterisk are out of stock. Copies of the others are available upon request from:

Department of Economics,
The University of Sydney,
N.S.W. 2006, Australia.
Working Papers in Economics Published or Accepted for Publication Elsewhere

4 V.B. Hall & M.L. King New Zealand Economic Papers, Vol. 10, 1976
7 I.G. Sharpe Australian Journal of Management, April 1976
8 W.P. Hogan Economic Papers, No. 55, The Economic Society of Australia and New Zealand
10 I.G. Sharpe & P.A. Volker Kredit und Kapital, Vol. 12, No. 1, 1979
11 W.P. Hogan Some Calculations in Stability and Inflation, A.R. Bergström et al. (eds), John Wiley and Sons, 1978
15 I.G. Sharpe & P.A. Volker The Australian Monetary System in the 1970s, M. Porter (ed.), Supplement to The Economic Board 1978
16 V.B. Hall Economic Record, Vol. 56, No. 152, March 1980
17 I.G. Sharpe & P.A. Volker Australian Journal of Management, October 1979
18 W.P. Hogan Malayan Economic Review, Vol. 24, No. 1, April 1979
19 P. Saunders Australian Economic Papers, Vol. 19, No. 34, June 1980
22 W.P. Hogan Australian Economic Papers, Vol. 13, No. 33, December 1979
32 J. Yates AFSI, Commissioned Studies and Selected Papers, AGPS, IV 1982
33 J. Yates Economic Record, Vol. 58, No. 161, June 1982
34 G. Mills Seventh Australian Transport Research Forum-Papers, Hobart, 1982
36 P. Saunders Economic Record, Vol. 59, No. 166, September 1983
F. Gill
Economic Appliquee, Vol XXXVII - 1984 - No’s 3-4, pp. 523-541

G. Mills & W. Coleman

J. Yates
Economic Papers, Special Edition, April 1983

S.S. Joson

R.T. Ross
Australian Quarterly, Vol. 56(3), Spring 1984

A.J. Philpps

V.B. Hall
Economics Letters, 12, (1983)

V.B. Hall
Energy Economics, Vol. 8, No. 2, April 1986

W.J. Merrilees
Australian Economic Papers, Vol. 23, No. 43, December 1984

J. Yates
Australian Quarterly, Vol. 56(2), Winter 1984

V.B. Hall

R.T. Ross
Australian Bulletin of Labour, Vol. 11(4), September 1985