COVERED INTEREST PARITY AND THE EFFICIENCY OF THE AUSTRALIAN DOLLAR FORWARD MARKET: A COINTEGRATION ANALYSIS USING DAILY DATA

by

Costas I. Karafitis and Anthony J. Phipps

No. 165 NOVEMBER 1991

ABSTRACT

This paper examines covered interest parity and speculative efficiency using cointegration techniques on a daily data set for Australian dollar/US dollar spot and forward rates and Australian and US interest rates. Cointegration between the forward premium and the interest rate differential in both the 3 month and 6 month markets establishes covered interest parity as a possible long run equilibrium relationship for the sample period. However, both a well defined EC mechanism and the fact that past changes in the interest rate differential help predict the forward premium suggest the markets did not utilise all available information efficiently. Neither the 3 month nor the 6 month forward rate cointegrate with the spot rate implying that these variables may have drifted apart over the sample period. Speculative efficiency may be rejected for these markets.

National Library of Australia Card Number and ISBN 0 66750 710 S.
CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>I. INTRODUCTION</td>
<td>2</td>
</tr>
<tr>
<td>II. THEORETICAL AND METHODOLOGICAL ISSUES</td>
<td>3</td>
</tr>
<tr>
<td>III. EMPIRICAL ANALYSIS</td>
<td>4</td>
</tr>
<tr>
<td>1. The Data</td>
<td>4</td>
</tr>
<tr>
<td>2. Tests for Unit Roots and Cointegration</td>
<td>5</td>
</tr>
<tr>
<td>IV. CONCLUSIONS</td>
<td>8</td>
</tr>
<tr>
<td>Addendum</td>
<td>11</td>
</tr>
</tbody>
</table>
1 Covered Interest Parity and the Efficiency of the Australian Dollar Forward Market: A Cointegration Analysis Using Daily Data

1. Introduction

The interest rate parity theorem (IRPT) provides a theoretical framework linking the domestic and foreign interest rates and the spot and forward exchange markets. It plays a key role in exchange rate modelling. Under the hypothesis of speculative efficiency, the forward rate is an unbiased predictor of the future spot rate and both the covered and uncovered versions of the theorem are linked together.

The empirical literature on the IRPT and speculative efficiency in Australia seems to provide contradictory evidence. Tease’s (1988) analysis has shown that the speculative efficiency hypothesis can be rejected in the 30-day market but not in the 15-day or 90-day market in the post-float period. Madsen (1990) has provided evidence against the hypothesis before February 1985, but in favour of it after the float. Turnovsky and Bell (1983) provide weak support for the IRPT over the period 1974-1983, while the analysis of Chong (1987) supports covered interest parity since the floating of the dollar. More recently, Kearney and MacDonald (1991) reject efficiency of the Australian forward exchange market. They use the technique developed by Fama (1984) for separating the forward premium into a risk premium and forecasting error and demonstrate the existence of a time-varying risk premium as well as autocorrelation in forecast errors.

The purpose of the present study is threefold. First, it tests the covered IRPT for the Australian dollar/US dollar using cointegration techniques developed by Engle and Granger (1987). Then, it examines the information content of the cointegrating relationship. It investigates whether changes in the interest rate differential between Australia and US help predict movements in the forward premium/discount, and vice versa. Finally, the study provides evidence on the speculative efficiency hypothesis by means of cointegration analysis.

1 The authors are extremely grateful to the Commonwealth Bank for the provision of much of the data used in this study and in particular to Hugh Harley and Gary Stimson-Jolting for their friendly help and advice. Needless to say they are in no way responsible for the conclusions expressed in this paper. Jack Tove provided sterling assistance with data preparation and computing and Ashok Parikh and Jeff Sheen offered helpful comments on an earlier draft.
The major innovation of this study is that it is based on daily data. This moderately high frequency data set allows the estimation of error correction (EC) models in which adjustment may take place quite rapidly. There appears to be a general consensus that adjustment in financial markets is very rapid.

The rest of the paper is organised as follows. Section II, outlines theoretical and methodological issues. Section III, presents and discusses the empirical results. Concluding remarks are provided in Section IV.

II. THEORETICAL AND METHODOLOGICAL ISSUES

In a two-country context with highly substitutable assets, international portfolio equilibrium is specified as

\[(F_{t+1} - S_t) / S_t = \alpha + \beta_t (1 - r_t^*^) + u_t \]

(1)

where \(F_{t+1} \) and \(S_t \) denote, respectively, the forward rate contracted at time \(t \) for payment at time \(t+1 \) and the spot rate; \(r_t \) and \(r_t^* \) denote the domestic and foreign interest rates and \(u_t \) is the error term.\(^2\) The hypothesis of covered IRP implies that \(\alpha = 0 \) and \(\beta = 1 \) and \(u_t \) is white noise.

Under the joint hypothesis of rationality and risk neutrality, the speculative efficiency theorem states that

\[\ln S_t = \gamma + \delta \ln F_{t+1} + \zeta_t \]

(2)

where \(\zeta_t \) is the error term. If \(\gamma = 0 \) and \(\delta = 1 \) and \(\zeta_t \) is white noise, the forward rate is an unbiased predictor of the future spot rate.

If the interest rate differential is a stationary process, and the forward premium/discount is also stationary, covered IRP indicates a long run equilibrium relationship. The existence of long run covered IRP can be tested at the viewpoint of cointegration (Engle and Granger, 1987) by examining the stationarity of the process \(u_t \). Applying the cointegration testing procedure, first the hypothesis that the individual series contain a unit root, that is, that they are integrated of order one (I(1)), needs to be tested, since in this case standard statistical inference is invalid (Feller, 1985). To this end, the Dickey-Fuller (DF) and Augmented DF (ADF) tests (Feller, 1976; Dickey and Fuller, 1981) can be used.

\[^2\] It is well known that equation (1) is only an approximation. The condition for an absence of interest arbitrage, indeed for an absence of speculative and trader arbitrage as well, is

\[r_t = (1 - r_t^*)/F_{t+1} \]

which reduces to

\[(F_{t+1} - S_t)/S_t = r_t - r_t^* \]

All the cointegration analysis, including estimation of the EC models, presented in this paper has been repeated for the more exact relationship with no changes to the major findings reported here. These additional results are available from the authors on request.

The Granger representation theorem presented by Granger and Engle (1987) states that if a set of variables are cointegrated then there always exists an EC mechanism, and vice versa. This implies that there must be Granger causality running in at least one direction between the forward premium and interest rate differential and therefore one variable can be used to forecast the other (Granger, 1986). It follows that vector autoregressive (VAR) models in first differences lead to misspecification if the variables are cointegrated.

III. EMPIRICAL ANALYSIS

III.1. The Data

The data employed in this study were provided by the Commonwealth Bank. Our analysis involves the following empirical counterparts to the variables introduced in Section II:

(i) the 3 month forward premium on the A$ (denoted FP3) was calculated by expressing the forward margin on the A$ in US cents as a percentage of the spot rate;
(ii) the 6 month forward premium on the A$ (FP6) was calculated in an analogous manner;
(iii) the 3 month interest rate differential (IDIF3) was approximated by the difference between the yield on US 90 day bank bills and the yield (quoted to buyers) on Australian 90 day bank-accepted bills;
(iv) the 6 month interest rate differential (IDIF6) was approximated analogously by the difference between US and Australian 180 day bank-accepted bill yields;
(v) lnS, lnF3 and lnF6 are the logarithms of the spot rate and three month and six month forward rates respectively.

The data were available for four years from the beginning of January 1984 to the end of December 1987. However, one might expect there to have been a learning period associated with the newly introduced floating exchange rate regime, particularly since it was coupled with perceived monetary instability leading up to the abandonment of monetary targeting in January 1985.\(^3\) For this reason, we confined

\[^3\] From the beginning of January 1984 to the end of January 1985, covered interest parity clearly failed to hold. In a regression of FP3 on IDIF3, the coefficient on IDIF3 for the earlier sample period was 0.38 (t=18.82) compared with 0.94 (t=143.33) for the period as a whole, and a Chow test for structural stability produced an F value of 162 compared with a critical value of F\(_{2,72} = 3\) enabling clear rejection of the null hypothesis of equality of parameters in the two sub-periods. Similar problems existed for the 6 month forward market. Indeed, from 20th August to 20th September 1984, the only time during the whole sample period that the interest rate differential favoured the US, the A$ remained at a substantial forward discount.
our analysis to the period from the beginning of February 1985 to the end of December 1987. Because the daily data excluded observations for each weekend, we were faced with the choice or either treating the weekend break as identical to an over night break to produce a continuous data set or treating the weekend break as different and hence as missing observations. Because of the longer time to reflect on information and because there is some screen trailing over the weekend, we chose the latter course. The cost of doing so is that incorporating longer lags into an estimated relationship reduces the number of available observations.

III.2 Tests for Unit Roots and Cointegration

With respect to the multivariate time series properties of the data, the results reported in Table 1 indicate that nonstationarity cannot be rejected for the levels of all the series at the 5% significance level.

<table>
<thead>
<tr>
<th>Statistic</th>
<th>FP3</th>
<th>IDIF3</th>
<th>FP6</th>
<th>IDIF6</th>
<th>lnS</th>
<th>InF3</th>
<th>lnF6</th>
</tr>
</thead>
<tbody>
<tr>
<td>Levels</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ADF</td>
<td>-0.93</td>
<td>1.65</td>
<td>1.14</td>
<td>1.14</td>
<td>0.49</td>
<td>0.43</td>
<td>0.37</td>
</tr>
<tr>
<td>j</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>LM(2)</td>
<td>1.63</td>
<td>6.04*</td>
<td>1.72</td>
<td>5.70</td>
<td>1.11</td>
<td>1.06</td>
<td>0.32</td>
</tr>
<tr>
<td>First Differences</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ADF</td>
<td>-16.75</td>
<td>-20.79</td>
<td>-14.31</td>
<td>-19.64</td>
<td>-17.99</td>
<td>-10.86</td>
<td>-17.06</td>
</tr>
<tr>
<td>j</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>LM(2)</td>
<td>1.20</td>
<td>5.24</td>
<td>0.17</td>
<td>4.5</td>
<td>4.92**</td>
<td>5.06**</td>
<td>5.28**</td>
</tr>
</tbody>
</table>

Notes: (i) j indicates the number of lagged values of the dependent variable used to ensure that the residuals were "white noise". j was chosen using LM tests for serial correlation.

(ii) Because weekends produced "missing observations", the tests were limited to a test for up to second order serial correlation. LM(2) values are provided which may be compared with a critical value of $\chi^2(2) = 5.99$

(iii) * This is marginally greater than the critical value of 5.99 but the addition of further values of the dependent variable left insufficient observations to conduct an LM test, although the ADF statistic remained below (in absolute terms) the critical value. ** as for * except that the LM test is for first-order serial correlation only and the critical value of $\chi^2(1)$ is 3.84.

In contrast, when the data are differenced, nonstationarity can be rejected in all cases. The fundamental implication of these findings with respect to the unit series modeling of covered interest parity is that first-difference transformation of the variables is required to induce stationarity. Otherwise, by ignoring the problem, one can obtain spurious outcomes (Granger and Newbold, 1974; Phillips, 1986).

The Augmented Dickey-Fuller (ADF) tests, based on the residuals (RES1 and RES2) of the cointegrating equations 1a and 1b, reported in Table 2 lead us to reject the hypothesis that the forward premium and the interest rate differentials are non-cointegrated at the 5% level of significance. One implication is that shocks which affect the discrepancy between the domestic and foreign interest rates are reflected in the forward premium and thus movements between these variables will be closely associated, obeying an equilibrium constraint.

| TABLE 2: TESTS FOR COINTEGRATION BETWEEN FP AND IDIF |
|-------------------------------|--------------|----------------|
| (1a) FP3 = 0.004 + 0.95*IDIF3 + RES1 | R² = 0.97 |
| Unit Root Tests on RES1: ADF = -5.41; j = 1; LM(2) = 0.58 |
| (1b) FP6 = 0.007 + 0.94*IDIF6 + RES2 | R² = 0.97 |
| Unit Root Tests on RES2: ADF = -7.37; j = 0; LM(2) = 8.40* |

Notes: (i) j indicates the number of lagged values of the dependent variable used to ensure that the residuals were "white noise". j was chosen using LM tests for serial correlation.

(ii) * This exceeds the critical value of $\chi^2(2) = 5.99$. With the inclusion of two additional lagged values of the dependent variable, the ADF remained above the critical (in absolute terms) value but the serial correlation in the residuals persisted. Adding further lags meant an LM test could not be conducted.

(iii) Critical values for the ADF test are taken from Engle and Yoo (1987).

An alternative way of modeling and testing equilibrium constraints postulated by economic theory is in the context of an EC model (Banerjee, et al., 1986). Having established the existence of cointegration, it is possible to use the Engle and Granger (1987) two step procedure. Thus, given that FP3 and IDIF3 are both l(1) and are cointegrated there exits an EC specification of the form...
\[\Delta FP_{31} = \alpha_1 \text{RES}_{11} + \sum_{i=1}^{n} \beta_{i1} \Delta FP_{3-i} + \sum_{j=1}^{p} \gamma_{j1} \Delta IDIF_{3-i} + \epsilon_{31} \]
(3)

\[\Delta IDIF_{31} = \alpha_2 \text{RES}_{11} + \sum_{i=1}^{n} \beta_{2i} \Delta IDIF_{3-i} + \sum_{j=1}^{p} \gamma_{2j} \Delta FP_{3-i} + \epsilon_{21} \]
(4)

and similarly for \(\Delta FP_{6} \) and \(\Delta IDIF_{6} \). The error terms \(\epsilon_{31} \) and \(\epsilon_{21} \) are assumed to be white noise processes.

The results are reported in Table 3. The EC mechanism is only significant in the forward premium equations indicating the existence of forces in the forward market that operate to restore long-run equilibrium after a short-run disturbance. The EC terms have the correct signs and indicate that deviations from the forward premium from its equilibrium value were corrected at a daily rate of 21% for the 3-month contract, and 17% for the 6-month contract. These estimated rates of adjustment are rather slower than we anticipated. The insignificance of the EC mechanism in Equations (4a) and (4b) indicates that changes in the interest rate differential do not contain any information about the parameters of the cointegrating regression (1), and hence the IDIF variable can be considered as the driving trend in the relationship (Johansen and Juselius, 1990).

Table 3: Tests of Hypotheses on Estimates of the EC Models

<table>
<thead>
<tr>
<th>Dependent Variable</th>
<th>(H_0: \alpha_k = 0)</th>
<th>(H_0: \sum b_{ik} = 0)</th>
<th>(H_0: \sum c_{ij} = 0)</th>
<th>R²</th>
<th>LM(1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\Delta FP_3)</td>
<td>-0.207 (22.24)*</td>
<td>1.23</td>
<td>22.19*</td>
<td>0.14</td>
<td>1.16</td>
</tr>
<tr>
<td>(\Delta IDIF_3)</td>
<td>0.058 (0.51)</td>
<td>11.16*</td>
<td>18.45*</td>
<td>0.34</td>
<td>3.64</td>
</tr>
<tr>
<td>(\Delta FP_6)</td>
<td>-0.168 (20.02)*</td>
<td>4.53</td>
<td>34.94*</td>
<td>0.09</td>
<td>3.48</td>
</tr>
<tr>
<td>(\Delta IDIF_6)</td>
<td>0.099 (1.06)</td>
<td>16.10*</td>
<td>19.27*</td>
<td>0.58</td>
<td>2.70</td>
</tr>
</tbody>
</table>

Notes: (i) The number of lags used was limited to three because weekends constituted "missing observations". Consequently, the equations were estimated using the Friday observations for the dependent variable.

(ii) The LM test was for first-order serial correlation of the residuals and the LM statistic may be compared with a critical value of \(\chi^2(1) = 3.84 \).

(iii) LR indicates the likelihood ratio test for the joint insignificance of the excluded variables. Given that three lagged values are always excluded the critical value of \(\chi^2 = 7.81 \).

(iv) * indicates significance at 5% level.

This finding can be taken as evidence that the \(\Delta IDIF \) variable is weakly exogenous for the parameters \(\alpha \) and \(\beta \) (Engle, Hendry and Richard, 1983). On the other hand, changes in the interest rate differential provide information that helps predict future movements in the forward premium. These findings are inconsistent with the hypothesis of market efficiency because of the prevalence of the EC specification and because information on \(IDIF \) is not incorporated immediately in the forward premium. In the present context, both channels of causality are present, that is, the lagged \(IDIF \) is significant, as is the coefficient on the EC term. The sign of the former shows the pitfalls of ignoring the long-run properties of the data and using first difference specifications to detect noncausality patterns (Granger, 1988). The Likelihood ratio statistics do not reject the null hypothesis of an absence of serial correlation at the 5% significance level in each case.

Having established the existence of covered interest rate parity for the Australian dollar/US dollar, we proceed to investigate the speculative efficiency hypothesis using cointegration analysis. The results reported in Table 4 lead us to reject the hypothesis, at the 5% significance level, of non-cointegration between the 3-month and 6-month forward rates and the spot rate, implying that these variables will drift apart from each other over time. The forward rates are therefore poor predictors of the future spot rate and speculative efficiency may be rejected for both those markets. This result is consistent with those obtained earlier as well as with the presence of a unit root in the forward premium variable.

Table 4: Tests for Cointegration Between \(\text{IN} \)S and Lagged \(\text{IM} \)

<table>
<thead>
<tr>
<th>Test</th>
<th>Equation</th>
<th>(R^2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1)</td>
<td>(\text{IN} = -0.11 \times \text{IN} + 0.69 \times \text{IN} + \text{RES})</td>
<td>0.660</td>
</tr>
<tr>
<td>Unit Root Tests on (\text{RES}): ADF: (z = -1.34); (\text{LM}(1) = 0.48)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(2)</td>
<td>(\text{IN} = -0.32 \times \text{IN} + 0.16 \times \text{IN} + \text{RES})</td>
<td>0.07</td>
</tr>
<tr>
<td>Unit Root Tests on (\text{RES}): ADF: (z = -2.1); (\text{LM}(1) = 9.68)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Notes: As per Table 2.

IV. CONCLUSIONS

This paper has examined covered interest rate parity and the efficient markets hypothesis using cointegration techniques on a daily data set for Australian dollar/US dollar spot and forward rates and Australian and US interest rates. Cointegration between the forward premium and the interest rate differential in both the 3-month and 6-month markets establishes covered interest parity as a possible long-run equilibrium relationship for the sample period. However, both a well defined EC mechanism and the fact that past changes in the interest rate differential help predict...
the forward premium suggest the markets did not utilise all available information efficiently in the short run.

The fact that neither the 3 month nor the 6 month forward rate cointegrated with the spot rate implies that these variables may have drifted apart over the sample period. The forward rates were, therefore, poor predictors of the future spot rate and speculative efficiency may be rejected for these markets. These results are consistent with the findings of Kearney and MacDonald(1991).

REFERENCES
Working Papers
in Economics

113 V.B. Hall, An Australian Fuel Substitution Tax Model: ORANI-LTP; October 1988
114 V.B. Hall, T.P. Truong & V.A. Nguyen Responses to World Oil and Coal Shocks: In an Australian Short-/Long-Fuel Substitution Tax Model; October 1988
115 P. Gill Social Justice and the Low-Waged Worker; October 1988
116 G. Kingston Theoretical Foundations of Constant-Proportion Portfolio Insurance: October 1988
117 V.B. Hall & D.R. Mills Is Medium Temperature Solar Thermal Process Steam Viable for Australia?: August 1988
118 W.P. Hogan Insider Information and Market Adjustment: November 1988
119 L. Ermini Reinterpreting a Recent Temporarily Aggregated Consumption-Cap Model: December 1988
121 M.C. Blad & N. Goulton Rubinstein’s Solution of the Bargaining Problem: Some Generalizations and Extensions: December 1988
122 W.P. Hogan & T.G. Sharpe Prudential Regulation of Bank Ownership and Control: January 1989
123 G. Mills The Reform of Australian Aviation: June 1989
124 L. Ermini Transitory Consumption and Measurement Errors in the Permanent Income Hypothesis: June 1989
125 E. Kierman Is Austerity Necessary?: July 1989
126 F. Gill Labour Market Flexibility - To What End?: August 1989
128 J. Sheen On Optimal Dumping: September 1989
129 S. Varoufakis Multiple Reputations in Repeated Games; October 1989
130 J. Sheen International Monetary and Fiscal Policy Cooperation in the Presence of Wage Inflexibilities: October 1989
131 E. Jones Was the Post-War Boom Keynesian?: October 1989
132 S. Lashko & J. Sheen A Risk Averse Price-Setting Monopolist in a Model of International Trade: October 1989
133 P. Gill A Target-Wage Model: Some Consequences of Incomplete Information: December 1989
134 W.P. Hogan New Banks in Australia: December 1989
135 Y. Varoufakis Modelling Rational Conflict: The Limits of Game Theory: February 1990
136 L. Ermini Shock Persistence in Australian Output and Consumption: March 1990
137 S. Ziss Strategic Investment, Competition and the Independence Result: March 1990
138 D.J. Wright International Technology Transfer with an Information Asymmetry and Endogenous Research and Development: April 1990
139 D.J. Wright International Technology Transfer and Per Unit Royalties: April 1990
140 P. Ganguli & S. Nath Optimal Mix of Urban Public Services: The Case of Three Indian Cities: May 1990
142 J. Sheen Real Wages and the Business Cycle in Australia: June 1990
144 C.J. Karfasikis & D.M. Moschos Interest Rate Linkages within the European Monetary System: A Time Series Analysis: August 1990
146 W.P. Hogan International Capital Adequacy Standards: October 1990
147 J. Yates Shared Ownership: The Socialisation or Privatisation of Housing: October 1990
148 G. Butler Contracts in the Political Economy of a Nation: November 1990
149 B. Rao Some Further Evidence on the Policy Ineffectiveness Proposition: November 1990
150 D.J. Wright Kidnapping Action and Learning-By-Doing in Models of Monopoly Regulation and Infant Industry Protection: November 1990
151 C.J. Karfasikis The Internationalisierung of Australian Business: Technology Transfer and Australian Manufacturing in the 1980s: November 1990
152 D.J. Wright & S. Nicholas A Disequilibrium Approach to the New Classical Model: December 1990
153 J.B. Towe The Determinants of American Equity Investment in Australia: December 1990
154 E. Jones Economists, the State and the Capitalist Dynamics: January 1991
155 J.D. Irvine & W.A. Sims Gorman’s Polar Form and the S-Branch Utility Tree: February 1991
158 P.D. Groenewegen Decentralising Tax Revenues: Recent Initiatives in Australian Federalism: April 1991
159 M. D. Ball Monetary Policy and the Velocity of Money in Greece: A Cointegration Approach: July 1991
160 C.J. Karfasikis Disaggregation, Disequilibrium and the New Classical Model: July 1991
161 B. Rao Postmodern Challenges to Game Theory: August 1991
163 C.J. Karfasikis Permanent vs. Temporary Infant Industry Assistance: September 1991
164 D.J. Wright Covered Interest Parity and the Efficiency of the Australian Dollar Forward Market: A Cointegration Analysis Using Daily Data: November 1991

Copies are available upon request from:
Department of Economics, The University of Sydney,
Working Papers in Economics Published Elsewhere

2 I.G. Sharpe & R.C. Walker Journal of Accounting Research, 13(2), Autumn 1975
3 N.V. Lam Journal of the Developing Economies, 17(1), March 1979
4 V.B. Hall & M.E. King New Zealand Economic Papers, 10, 1976
5 A.J. Philips Economic Record, 53(143), September 1977
6 N.V. Lam Journal of Development Studies, 14(1), October 1977
7 I.G. Sharpe Australian Journal of Management, April 1978
9 I.G. Sharpe & P.A. Volker Economic Letters, 2, 1979
10 I.G. Sharpe & P.A. Volker Kredit und Kapital, 12(1), 1979
12 P. Gill Australian Economic Papers, 19(35), December 1980
13 I.G. Sharpe Journal of Banking and Finance, 1(1), April 1978
16 V.B. Hall Economic Record, 58(152), March 1980
17 I.G. Sharpe & P.A. Volker Australian Journal of Management, October 1979
18 W.P. Hogan Malayan Economic Review, 24(1), April 1979
19 P. Saunders Australian Economic Papers, 19(34), June 1980
21 W.P. Hogan Australian Economic Papers, 18(33), December 1979
24 U.R. Kohli Economic Record, 21(59), December 1982
25 G. Mills Journal of the Operational Research Society (33), 1982
27 W.J. Merrioles Applied Economics, 15, February 1983
28 P. Saunders Australian Economic Papers, 20(37), December 1981
30 W.J. Merrioles Journal of Industrial Economics, 11, March 1983
32 P. Saunders Economic Record, 57(159), December 1981
33 J. Yates APST, Commissioned Studies and Selected Papers, AGPS, IV 1982
34 J. Yates Economic Record, 59(151), June 1982
35 G. Mills Seventh Australian Transport Research Forum Papers, Hobart, 1982
36 V.B. Hall & P. Saunders Economic Record, 15(1), March 1984
37 P. Saunders Economic Record, 59(166), September 1983
38 F. Gill Economic Applicability, J.73-41, 1984
41 S.S. Joson Australian Economic Papers, 24(44), June 1985
42 P. Saunders Australian Quarterly, 56(3), Spring 1984
43 W.J. Merrioles Economic Record, 59(166), September 1983
44 A.J. Philips Australian Economic Papers, 22(41), December 1983
45 V.B. Hall Economic Letters, 12, 1983
46 B.W. Hall Energy Economics, 8(2), April 1986
47 F. Gill Australian Quarterly, 59(12), Winter 1987
48 W.J. Merrioles Australian Economic Papers, 23(41), December 1984
49 C.G.P. Sinakin Singapore Economic Review, 29(1), April 1984
50 J. Yates Australian Quarterly, 56(2), Winter 1984
51 V.B. Hall Economic Letters, 20, 1986
52 S.S. Joson Journal of Policy Modeling, 8(2), Summer 1986
53 R.T. Ross Economic Record, 62(178), September 1986
57 W.P. Hogan Australian Economic Papers, 27(50), June 1988
59 W.P. Hogan Company and Securities Law Journal, 6(1), February 1988
60 D. Mar, 26, 439-433, 1983
61 B.W. Ross The Economic and Social Review, 20(3), April 1989
63 B.W. Ross Australian Bulletin of Labor, 15(1), December 1988
64 L. Haddad, 11(1), December 1988
65 J. Piggott Public Sector Economics - A Reader, P. Hare (ed.), Basil Blackwell, 1988
67 J. Piggott Prometeo, 6(2), December 1988
68 R. S. Josen Di Ritratto Valutardo e Di Economia Internazionale, 12(2), June 1988
113 V.B. Hall, Energy Economics, 12(4) October 1990
T.P. Truong & V.A. Nguyen
114 V.B. Hall, Australian Economic Review, 37(3) 3'89
T.P. Truong & V.A. Nguyen
117 V.R. Hall & Pacific and Asian Journal of Energy, 2(2),
D.R. Mills December 1988
119 P. Groenewegen Flattening the Tax Rate Scale: Alternative
Scenarios & Methodologies, (eds.) J.S. Head
120 W.P. Hogan & and R. Krever, 1, 3-31, 1990
I.G. Sharpe Economic Analysis and Policy, 19(1),
March 1989
121 G. Mills Journal of Transport Economics and Policy,
28, May 1989
122 F. Gill The Australian Quarterly, 61(4), 1989
123 S.N. Lahiri & The Economic Journal, 100(400), 1990
J. Sheen
125 C.J.K. Karfakis Journal of Money, Credit, and Banking, 22(1), 1990
& D. Moschos
126 W.P. Hogan Economic Papers, 10(1), March 1991