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Abstract

This thesis develops a model in which homogeneous producers and

merchants interact repeatedly in a search market. Merchants are

able to reduce the cost of search by offering trading certainty to pro-

ducers with whom they have a preexisting relationship. Equilibria

are characterised in Markov strategies, and it is found that price-

dispersed equilibria exist in asymmetric strategies. Conditions in

which a price-dispersed equilibrium can be welfare improving com-

pared to a single-price equilibrium are found, and two extensions

to the basic model are provided.
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1 Introduction

In a model of a market in which exchange is costless, the canonical

‘Law of One Price’ must hold: identical goods must sell at the same

price. Diamond (1971) famously showed that the law continues to hold

even if buyers can only learn about prices through costly sequential

search, provided that buyers have homogeneous valuations and sellers

have homogeneous costs. Indeed, in such a model, an equilibrium must

be characterised by all sellers charging the monopoly price. Yet, price

dispersion—the sale of the same good for different prices in a market—is

widely observed empirically (Baye, Morgan, and Scholten, 2006). This

thesis seeks to partially explain these violations of the ‘Law of One Price’,

incorporating previous work in the field of price dispersion and using

the modelling techniques found in the intermediated search literature.

The central finding of this thesis is that equilibrium price dispersion can

be supported in a multi-period model with homogeneous agents. The

possibility of repeated sales over time provides merchants with a novel

incentive to charge a lower price, that is, to induce customers to return

in subsequent periods. A price-dispersed equilibrium can exist when the

profit from charging a price low enough to induce repeated patronage is

the same as that from charging a higher price, which deters customers

from returning.

Specifically, this thesis builds on a model presented in Bose and

Sengupta (2007) of intermediated search and exchange in an environment

of repeated interaction. This approach explicitly considers the role of

specialist merchants in reducing search frictions, an aspect of trade that

has often been neglected. However, the focus of Bose and Sengupta is

on the endogenous emergence of merchants; the equilibria they consider

1



all have a uniform market price. The objective here is to take as given a

market in which specialist merchants exist, and find equilibria in which

prices are dispersed.

Following Diamond (1982) and Bose and Sengupta (2007), one type

of agent plays the role of both producer and consumer, and this agent

must seek exchange in the search market. The other type of agent is

a specialist merchant who does not produce, but rather acts solely in

the search market as an intermediary. Each period a producer enters

the search market and finds either another producer, a merchant or no-

one. The advantage to a specialist merchant in this setting of repeated

interaction is that her current clients can find her with certainty in the

next period. This means that the client may be willing to continue

returning to a merchant who charges a commission, in exchange for

avoiding the possibility of not finding a trading partner in the following

period and forgoing a consumption opportunity.

The producer’s decision to return to a merchant or search anew in

the following period forms the crux of this model. Given a client’s price

threshold for returning, the merchant can charge this price to induce

return, or charge a higher price and forgo any future profit from that

client. The central finding is that it is possible for both of these merchant

strategies to coexist in equilibrium, resulting in price dispersion.

The rest of this thesis is organised as follows. Section 2 looks at

the existing literature on price dispersion and intermediation models,

and then frames the present thesis as drawing on the intermediation

literature to investigate price dispersion. Section 3 sets out the model and

Sections 4 and 5 describe optimal behaviour. Equilibria are characterised

in Section 6. Section 7 provides an analysis of comparative statics and
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Section 8 provides two extensions to the basic model. The modelling

assumptions used are discussed in Section 9, before some conclusions are

drawn in Section 10.

2 Literature Review

Classical microeconomic theory rests on the assumption that all possible

gains from trade can be exhausted at zero cost; an assumption which

makes ‘The Law of One Price’ a logical necessity. If all agents are

implicitly aware of all prices in the market and trade is costless, then any

equilibrium must necessarily have only one price for each good. Any other

scenario would see all demand flowing to the lower priced good. This

thesis builds on the literature that explicitly models the search process

that must exist for trades in real markets to occur, which contrasts with

the theoretical ideal of a disembodied Walrasian auctioneer.

The price dispersion literature has developed models that employ a

variety of search frictions. An instructive lens through which to view this

literature is provided by the Diamond paradox (1971). This arose from a

model of costly sequential consumer search among vendors in a market.

The inescapable conclusion is that for any arbitrarily small positive search

cost, all vendors charge the monopoly price in equilibrium. Driving this

result is the observation that for any price charged, a vendor can raise

her price by an amount less than the search cost without losing clients.

This process ratchets the market price up until the monopoly price is

reached, at which point there is no longer an incentive to raise prices.1

The remainder of this section reviews the price dispersion literature
1This result holds for markets modelled as having a continuum of agents, as

employed in this thesis. For discrete models, there can be an incentive to undercut
prices and equilibria may not exist.
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that has developed since Diamond (1971), and outlines the modelling

techniques used in the intermediated search literature. Then it describes

the model used in this thesis as drawing on the intermediation literature

to investigate price dispersion.

2.1 Price Dispersion

The ubiquity of price dispersion in actual markets for homogeneous goods

led Stigler (1961) to carry out the first theoretical study of the phe-

nomenon. In his seminal article, he looked at the problem from the

consumer’s perspective and characterised optimal consumer search be-

haviour under a variety of price distributions. However, he did not model

firm behaviour. This approach led Rothschild (1973) to the criticism that

such models were ‘partial equilibrium’ models that took price dispersion

as given, so did not really explain the phenomenon. Most subsequent

models have incorporated optimal behaviour on both sides of the market.

Two models of search are employed in the literature: sequential search

and nonsequential search. Under sequential search, consumers visit one

outlet at a time and must incur a cost for each additional search. Nonse-

quential search requires consumers to select the number of outlets to be

searched before commencing search. The choice of modelling technique

can influence theoretical outcomes. On the practical side, both types of

search are plausible. A consumer searching for, say, a car is likely to

search several vendors in turn, be it physically or in some other way.

However, examples of parallel search are also available, such as the task

of finding a contractor to renovate a house. Here, the consumer may

need to ask for several quotes that take time to procure. With sufficient

time preference, the consumer will decide how many quotes to request at
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the outset. Some models also consider the dissemination of information

via non-search channels such as advertising, an aspect of search not

considered in this thesis.

Price dispersion modelling has taken two broad approaches. Most

models have incorporated some sort of ex ante heterogeneity into the

consumer or producer populations, which can result in price dispersion.

Some models have used ex ante homogeneous populations and still had

features that generated price dispersion. Multi-period models of price

dispersion are most closely related to the model presented in this thesis,

but they are relatively rare in the price dispersion literature.

2.1.1 Ex Ante Heterogeneous Models

In response to Rothschild’s criticisms of early models of price dispersion,

heterogeneity was introduced into models to generate price dispersion.

Reinganum (1979) showed that in a simple market model with elastic

demand, homogeneous consumers and costly search, equilibrium price

dispersion can be supported if producers have a continuum of marginal

costs. The key assumption that avoids the Diamond paradox is producer

cost heterogeneity.

Under these assumptions, a continuous distribution of prices is ob-

served in equilibrium. The prices for each firm are given by the standard

monopoly profit maximising condition, so a firm’s market price increases

with its marginal cost. With costly sequential search, optimal consumer

behaviour is to continue searching until encountering a price below some

threshold, which is determined by the distribution of prices in the market.

The price distribution is thus truncated at the consumer search threshold.

This result parallels Diamond’s paradox in that costly search allows the
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exercise of monopoly power, but only up to a limit determined in the

market.

Clearly if marginal costs are homogeneous across firms, Diamond’s

paradox returns and price dispersion disappears. Also, the assumption of

elastic demand is crucial. Many consumer search models assume unitary

demand (Baye, Morgan, and Scholten, 2006). This assumption would

collapse the price distribution in this model to the threshold price because

lowering the price does not increase sales, as would occur under elastic

demand. An interesting corollary of this result is that the search process

allows higher cost firms to continue making profits in the market.

MacMinn (1980) found a similar result in a non-sequential search

environment. Again, search results in the firms facing a downward sloping

expected demand curve. This means that optimal pricing will depend

on firms’ marginal costs, so heterogeneous costs yield equilibrium price

dispersion.

Heterogeneity has also been incorporated in the consumer side of the

market. A common approach (for example Varian, 1980) is to partition

the consumers into two types. One type has access to perfect information,

so can always find the lowest price in the market. The other type is

uninformed, so buys from anyone charging a price below their threshold.

In this model, the existence of two market segments creates a trade-

off for producers. A low price can capture informed consumers, while

a high price can extract profits from the uninformed consumers. Note

that neither market segment could support price dispersion in isolation.

If all consumers were informed, firms would compete solely on price, so

Bertrand competition and marginal cost pricing would obtain. Alter-

nately, if no consumers were informed then all firms would charge their
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(uniform) maximum willingness to pay.

If both types of consumer exist, neither of those equilibria can be

supported. Bertrand pricing is not optimal because an increase in prices

will yield positive profits from the uninformed consumer base. Uni-

form monopoly pricing cannot be optimal in equilibrium because a slight

price reduction will capture the entire informed market which more than

compensates for the loss in revenue from the uninformed segment. A

symmetric pricing equilibrium cannot be supported in this model because

there is always an incentive to undercut: to accrue the informed market.

This results in price dispersion. Consumers can be partitioned in several

ways. One alternative is to include a subset of consumers who can search

at zero cost. Consumers that can search for free always inspect the whole

market, while consumers for whom search is costly search less (Salop and

Stiglitz, 1977). Another alternative is to include a central ‘information

clearinghouse’ that contains all (or some) market information, and to

which only some consumers have access (Baye and Morgan, 2001).

Diamond’s paradox can thus be circumvented by imposing heteroge-

neous production costs or some form of heterogeneity among consumers.

However, this is not fully satisfactory for two reasons. First, it is only

applicable to markets that exhibit such heterogeneity so may not always

explain price dispersion. Second, it would intuitively seem that the search

process itself may be sufficient to generate price dispersion. A strand

of the literature has pursued this avenue using models of homogeneous

markets.
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2.1.2 Ex Ante Homogeneous Models

The models discussed above rely on some kind of ex ante heterogeneity on

one side of the market to generate price dispersion. Some other models

can support equilibrium price dispersion with ex ante homogeneity. These

models usually rely on the search process to generate some form of ex

post heterogeneity in the market.

Burdett and Judd (1983) model processes of non-sequential search

and of ‘noisy sequential search’ in which more than one price is observed

in a single search with a positive probability. The example given is where

a consumer buys a newspaper to obtain price information, but there may

be either one or two advertisements in the paper. This search outcome is

crucial to the model’s result because an equilibrium with price dispersion

requires that some consumers observe one price and some observe two

(or more) prices. This essentially segments the (ex post) market. One

segment has only observed one price so will purchase if the price is below

their maximum willingness to pay. The other has observed several prices

so will take the cheapest alternative.

This ex post result parallels the ex ante consumer segmentation in

the models outlined above. Either segment of the market in isolation

could not support price dispersion, but a mixture of the two can do so.

The former segment of consumers in isolation results in the Diamond

paradox, while the latter segment would bid prices down in Bertrand-

style competition. A difference of this model is that the level of consumer

search is endogenously determined. Search behaviour is optimal so in the

non-sequential search version of the model, consumers must be indifferent

between searching one or two options for price dispersion to obtain. The

price distribution must be specified such that the expected reduction
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in price from searching an additional producer is exactly offset by the

extra search cost. This model has multiple equilibria. For example, the

Diamond result of uniform monopoly pricing sustains an equilibrium. A

unique market price means that a single search is optimal so there is no

incentive for a producer to undercut the competition.

Burdett, Shi, and Wright (2001) and Arnold (2000) assume producer

capacity constraints and find that this can cause equilibrium price disper-

sion in models with ex ante homogeneity. In their models, consumers have

full information over the prices and locations of firms but not over the

intentions of other consumers. They cannot, therefore, coordinate their

activities to ensure that no firm is capacity constrained, even if there is

no binding capacity constraint on the market in sum. Consumers visit

producers stochastically, which causes the crucial feature of these models:

ex post heterogeneous levels of demand.

Burdett, Shi, and Wright (2001) impose symmetric price setting among

producers, but allow prices to be renegotiated upon the realisation of

demand. This renegotiation drives the price dispersion outcome. They

also show that asymmetric capacity constraints can heighten price dis-

persion. Arnold (2000) does not impose symmetry on price setting and

finds that price dispersion equilibria exist in pure strategies (for firms)

for certain parameter values. This results from the dual effects of a price

reduction. One effect is to attract more customers, but this then increases

the probability of a stock outage. The second effect attenuates the

first because consumers factor in the probability of stock outages when

assigning probabilities to visiting different producers. The possibility of

running out of stock dampens a firm’s incentive to cut their price because

it means they could have posted a higher price and achieved the same
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number of sales.

2.1.3 Multi-Period Models

The models discussed above all operate only in a single period. In many

real markets, trade occurs repeatedly over time. Incorporating multiple

periods may generate other mechanisms for price dispersion that depend

on the possibility of repeated interaction or other features that arise

only in multi-period models. Such models have been rare in the price

dispersion literature.

Salop and Stiglitz (1982) incorporate a two-period structure into a

model of homogeneous producers and consumers. Consumers live for two

periods and want to consume in both. Search in each period is costly and

consumers can purchase enough in the first period to consume in both

periods, or just for the current period. A new generation is born each

period and producers can not price discriminate between generations.

For first period transactions, a consumer has a maximum price per unit

(say, p∗1) that she is willing to pay for one period’s consumption, and a

maximum price per unit (say, p∗2) that she is willing to pay to buy enough

to last for both periods. Both the distribution of prices in the market

and the cost of storage affect these threshold prices.

In this model, consumers can only search once per period so producers

only ever charge one of the two threshold prices mentioned above. Also

note that if p∗2 ≥ p∗1 then all producers would charge p∗2 because it gives

higher profits. In the case for which p∗1 > p∗2, the level of p∗2 depends on

the fraction of producers that are expected to charge p∗1 in the following

period. For example, if a consumer expects all producers to be charging

p∗1 in the next period, p∗2 will be higher than if the consumer expects
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only a fraction of producers to be charging p∗1. This is because more

producers charging p∗1 means a higher expected price for the consumer

in period two. The positive effect of the number of producers charging

p∗1 on the level of p∗2 means that there is a unique equilibrium fraction

of producers charging p∗1. To see this, consider the situation in which

the profit from charging p∗1 is greater than the profit from charging p∗2.

There is now an incentive to switch to charging p∗1, which will raise p∗2 and

increase the profits from charging it. For a range of parameter values,

the model converges to a unique equilibrium with price dispersion given

by the two different prices.

The model presented in this thesis has some common features with Sa-

lop and Stiglitz (1982). In particular, it shares the multi-period structure

as a mechanism for generating price dispersion. The pricing structure is

also similar in both models—there are two possible optimal prices for

sellers. In the present model, one (lower) price induces buyers to return,

while the other (higher) price does not. Again, the fraction of sellers

charging each price affects the threshold price of searchers. However,

the present model does not employ a two-period structure or a constant

inflow of new consumers. Rather, it generalises to an infinite-period

setting and allows repeated interaction with a constant pool of buyers.

Also the model in this thesis employs repeated interaction, rather than

storage, to investigate price dispersion.

Bagwell and Ramey (1992) investigate the Diamond (1971) paradox

in a dynamic setting. Their model shares the possibility of repeated

interaction with the present thesis, but the focus is on a different aspect

of the Diamond paradox. In Diamond’s model, the unique equilibrium

sustains the monopoly price for any positive search cost but jumps dis-
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continuously to the competitive price if the search cost is zero. Bagwell

and Ramsey show that in the class of consumer-optimal equilibria, the

(common) market price decreases monotonically with search costs be-

tween the monopoly and competitive prices. However, price dispersion is

not considered in their paper.

2.2 Intermediation in Search Markets

The models of price dispersion considered above include only consumers

that search and producers that sell a product. In many search markets,

intermediaries facilitate the search of market participants. This strand

of the literature was initiated by Rubinstein and Wolinsky (1987). They

modelled a search market made up of sellers, buyers and middlemen.

The existence of an equilibrium with active middlemen (that is, where

middlemen buy from sellers and sell to buyers) depends critically on the

assumption that middlemen are relatively efficient at finding matches in

the market. This increased efficiency allows them to charge a positive

margin, in exchange for giving buyers and sellers an easier way of finding

trading opportunities. This thesis does not explicitly draw on their

model, aside from the inclusion of intermediaries in a search model.

The models considered above all examine two-sided markets, that is,

markets with consumers and producers. An alternative method of mod-

elling search markets is to recognise that economic agents both produce

and consume, and, outside of a subsistence economy, must trade their

produce for what is eventually consumed. Diamond (1982) constructs

a simple model of a barter economy where agents produce a good, but

are required to trade it prior to consumption. This modelling technique

is designed to encapsulate the idea that most agents trade the fruits

12



of their labour in order to consume, while avoiding the complexity of

a multi-good model. Diamond’s model does not involve intermediaries,

but it introduced the coordination of trade problem in an environment

of homogeneous agents that both produce and consume.

Some form of trading friction is required for intermediaries to operate

profitably. If trade were costless, as in the case of a Walrasian auctioneer,

intermediaries would be redundant. In Rubinstein and Wolinsky’s (1987)

model trading intermediaries extract a commission in exchange for expe-

diting trade. The barter economy in Diamond’s (1987) model does not

allow a role for intermediaries but the notion of a coordination of trade

problem in a one-sided search market has since become important in the

intermediation literature.

The recent literature on intermediated search has focused on the role

and utility of intermediaries in the exchange process. This aspect of

intermediation is not the focus of this thesis. However, because the

modelling technique is drawn primarily from this strand of literature,

some similar models will be considered below.

Masters (2007) takes a Diamond-type model, and allows agents to

choose to be specialist intermediaries rather than produce goods. Inter-

mediaries do not have any explicit advantage in search, but by forgoing

production they spend more time in the market so have an increased

overall probability of finding trading partners. Agents have a continuum

of production costs, and in equilibrium, agents with production costs

above some threshold level choose to be intermediaries. This occurs

because the opportunity cost of forgoing production is relatively small.

Shevchenko (2004) similarly allows agents to choose between produc-

tion and consumption. Multiple goods are included in the model, such
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that the advantage to an intermediary is the ability to stock a range

of goods to increase the probability of suiting the tastes of a randomly

chosen agent. The focus of the paper is to examine the intermediation de-

cision and their welfare implications. However, prices are determined by

a bargaining process that depends on the relative abundance of different

goods within each store, which in turn depends on the stochastic trading

history of each intermediary. The model thus exhibits a form of price

dispersion that is driven by inventory differences caused by stochastic

trading histories.

The model in this thesis draws much of its structure from Bose and

Sengupta (2007). The setting allows for repeated interaction between

intermediaries and their clients over time. That is, if a producer trades

with an intermediary in one period, she has the option of returning to the

same intermediary in the following period, bypassing the search market

in the process. Intermediaries and producers are treated symmetrically

in the search market. However, the intermediary’s ability to allow pro-

ducers to avoid the costs of search is sufficient to make it profitable for

some measure of agents to specialise as intermediaries under a range of

parameter values.

The focus of Bose and Sengupta (2007) was on the endogeneity of

the decision to become an intermediary. In doing this, only symmetric

pricing strategies are considered. Two distinct classes of equilibria are

characterised. One consists of intermediaries charging a high price and

not inducing their clients to return in the following period, while the

other has intermediaries charging a lower price that does induce client

return.
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2.3 The Present Synthesis

The price dispersion and intermediation literatures have rarely come to-

gether. Spulber (1996) partially marries the two strands by incorporating

intermediaries into a model similar to that presented in MacMinn (1980).

The focus of the paper is on how firms acting as intermediaries can create

a bid-ask spread in contrast to a Walrasian equilibrium. However, it is

also found that non-degenerate price distributions can exist in equilib-

rium with heterogeneous agents. The price dispersion in this model is

driven by the heterogeneous agents as in MacMinn (1980), so it should

be considered as more of a contribution to the intermediation literature

rather than the price dispersion literature.

This thesis draws upon several aspects of the literature outlined above.

The population of agents who produce, search and exchange mirrors

Diamond’s (1982) model. The exogenous population of merchants is

imposed as in Rubinstein and Wolinsky (1987). Endogenous intermedi-

ation is not considered because it adds an extra layer of complexity to

the model without improving the exposition of price dispersed equilib-

ria. The search and intermediation process is modelled as in Bose and

Sengupta (2007)—the introduction of asymmetric strategies allows the

investigation of price dispersion. In bringing these disparate areas of the

literature together this thesis explores a novel avenue to examine price

dispersion in a theoretical model.
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3 The Model

3.1 Overview

This thesis employs a stylised model of production, search, intermediation

and exchange in a setting of repeated interaction to investigate price

dispersion. The model draws heavily on Bose and Sengupta (2007), and

owes its origins to Diamond (1982). The modelled economy operates

over an infinite horizon with discrete time periods. There are two types

of agents, both of whom are risk-neutral and infinitely-lived. The first

type has the role of producer. Each period, producers make one unit

of a homogeneous consumption good, the production cost of which is

normalised to zero. The second type of agent is the merchant, who exists

only in the search market. They cannot produce but can exchange goods

with producers. Each class of agent is homogeneous within itself, and

both types of agents can consume the single good in the model.

While there is only one type of good in the economy, an embargo is

placed on the consumption of one’s own production, following Diamond

(1982). In any specialised economy, exchange is necessary in order for

production and consumption to take place. Introducing multiple goods to

make the model realistically represent this fact would lead to significant

complexity. This may obscure the role of the search process, which is the

focus of this thesis. Diamond’s prohibition thus introduces the necessity

of exchange into the model, while avoiding the complexity brought about

by a range of goods. This results in a producer needing to enter the

search market each period in order to exchange her produced good prior

to consumption. An alternative approach to this problem is to introduce

a role for money (for example Hellwig, 2002). This approach is not

employed here in order to maintain the focus on search and exchange,
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rather than monetary phenomena.

A producer can search only once per period, resulting in one of three

outcomes. First, she can meet another producer. If this occurs, the

symmetric bargaining situation results in the goods being exchanged

one-for-one so each producer consumes one unit. Second, she can find a

merchant. This interaction is not symmetric in bargaining because the

merchant can consume the good she holds but the producer cannot, which

tips the bargaining power towards the merchant. When a producer finds

a merchant, the merchant has a temporary local monopoly over the pro-

ducer because the producer cannot consume her good and cannot search

again in the market. The resultant bargaining situation is modelled with

the merchant as a price-setter, which means that a merchant can extract

the entire surplus from trade. The third possible outcome from search is

not finding either type of agent. If this happens, exchange cannot occur

and the producer’s good is not consumed. Inventory cannot be carried

in this model. This can be thought of either as goods expiring at the end

of each period, or alternately as production being impossible if a unit of

the good is already held.

The search process is stochastic, with a probability assigned to each

of the three possible outcomes. The cost of search in this model is

embodied by the probability of an unfavourable search outcome and the

resulting missed consumption opportunity. However, this search cost can

be circumvented by a producer that has a preexisting relationship with

a merchant. Each period following trade with a merchant, a producer

may choose to return with certainty to the same merchant she traded

with in the previous period, provided she remembers the merchant’s

location. However, there is a certain probability that a producer will
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forget this information before the beginning of the next period. A pro-

ducer that begins a period with knowledge of a merchant’s location is

called an informed producer. Note that a producer who begins a period

as informed does not forget her merchant during that period, even if

she searches afresh. This means that the probability of an informed

producer remaining informed in the folowing period is independent of

her current-period action. Producers who are not informed in a given

period must enter the search market. This feature of merchant trading

certainty creates the potential for a continued and mutually beneficial

trading relationship between merchant and producer. The inclusion of a

probability of forgetting a merchant’s location is designed to encompass

a variety of frictions that can impede a long-term trading relationship,

such as an agent leaving the market area.

The ability to guarantee trade in the following period is imagined to

be exclusively held by merchants. This ability could flow from merchants

being able to dictate their location in the market with certainty. Also, if

search is considered to have both spatial and temporal dimensions, this

ability could come from the permanent residency of merchants within the

search market, compared to producers transiently entering the market to

trade when not engaged in production.

Agents in the economy act to maximise, at each date, the present

value of their expected discounted payoff in terms of the consumption

good. For producers, the choice variable amounts to the decision of

whether or not to return to their merchant if they are informed at the

start of a period. A merchant must choose the price to post in the market

each period. The question of interest here is whether multiple prices can

be supported in equilibrium in this model economy.

18



3.2 Producers and Merchants

The populations of agents are modelled as continua. The measure of

merchants is normalised to 1, and the measure of producers is denoted

as σ. Continuous populations mean that the probability of meeting any

given agent in the search market is zero.

The model is treated as a dynamic stochastic game. For producers,

each period unfolds as follows. Initially, the producer observes her in-

formation state, that is, whether she knows of a merchant. If she does,

she also remembers the price that she observed the merchant charge. If

informed, her decision is whether to return to the merchant she knows

(choice R), or search afresh (choice S). Informed producers then either

return to their merchant or search in the market along with all unin-

formed producers. Exchange and consumption then occur in accordance

with the outcomes of search. Each producer who ends a period with

knowledge of a merchant forgets that information with a probability γ

before the beginning of the next period. This ensures that there are

always producers in the search market. The set of actions available to

a producer thus depends on her information state in the period. For

an informed producer, Ai = {R,S}, and for an uninformed producer,

Au = {S}.

From the perspective of the merchant, each period proceeds as follows.

The merchant begins the period with knowledge of the prices she has set,

and the size of her clientele, in each previous period. She then posts a

price and trades with all producers who meet her in that period. All

customers, regardless of their history, must be charged the same price in

each period. A merchant in period t thus chooses a price pt from the

action set Aµ = [0, 1].
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Both types of agents have imperfect knowledge over the history of

play. A producer knows the history of prices she has paid upon meeting

merchants in the past and the outcomes of previous searches. A merchant

knows her own personal sequence of prices and clientele sizes. An agent’s

strategy is defined by a function that prescribes an action in her action set

that depends only on her own personal history and current information

state.

The per-period payoff of an agent depends on the amount of the good

that she consumes at the end of each period. A producer consumes one

unit if she trades with another producer and zero units if she does not

trade at all. The consumption that comes from a merchant trade depends

on the price charged. For a trade that occurs at a price pt, the producer

consumes 1− pt units of the good, while the merchant consumes pt. The

total payoff to a merchant in a period is thus ptkt, where kt is the clientele

size in period t. The expected discounted continuation payoff is found by

summing an agent’s expected per-period payoffs along the infinite time

horizon.

3.3 The Search Process

Search mechanics in the model are governed by the two matching func-

tions λp(st) and λm(st), where st is the size of the population of producers

who search in period t. This population consists of all uninformed pro-

ducers added to informed producers that choose to search in that period.

It can also be considered as the total population of producers σ less the

informed producers that choose to return to their merchant.

The probability of search resulting in a producer meeting is given

by λp(st) and the probability of meeting a merchant is λm(st). It is
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assumed that λp(st) is increasing in st. The appropriate assumptions

to make on λm(st) are less obvious, as it is the probability of a given

producer meeting a merchant. A reasonable baseline assumption would

be that it is non-increasing in st. The following assumptions are also

maintained on the matching functions.2

(i) λp(st) + λm(s) < 1 for all st ∈ [0, σ]

(ii) λp(0) = 0

(iii) λp(st) > 0 and λm(st) > 0 for st > 0

3.4 Solution Concept

There are two classifications of strategies that will prove useful when

finding equilibria in the model: Markov strategies and symmetric strate-

gies. An agent’s strategy is Markov if the action prescribed in period

t depends solely on observations made in the previous period and the

agent’s information state in the current period. A further condition

of a Markov strategy is time-invariance, in the sense that the function

prescribing actions based on the previous period’s observations must not

change over time. For an informed producer adopting a Markov strategy,

the return decision in period t can depend only on the price observed in

period t− 1. A Markov strategy for a merchant requires that her period

t price depends only on the price she set in period t − 1 and the size of

her clientele in that period.

A strategy profile is symmetric if all agents within a class adopt the

same strategy. Symmetry amongst producers requires that all producers

set the same return decision rule, based on their observed price. Amongst
2The matching probabilities are functions of st, but for notational convenience will

sometimes be denoted just as λp and λm.
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merchants, a symmetric strategy profile requires all merchants to adopt

the same pricing function, which sets their price dependent on their own

pt−1 and kt−1.

Symmetry of merchant strategies is particularly important when con-

sidering price dispersion. The clientele size of each merchant is stochastic,

so it is possible for a symmetric strategy profile to lead to a variety

of equilibrium market prices if pt depends on the size of kt−1. Pricing

would then depend on the particular arrivals of producers at merchants,

which is determined by the stochastic search of producers. However, the

proceeding analysis shows that asymmetry in merchant strategies is a

necessary criterion for equilibrium price dispersion in this model.

A further consideration is whether producers can condition their strat-

egy on the identity of the merchant they meet. In the basic model, it is

assumed that merchants are anonymous so producers cannot condition

their strategies in this way. This means that producers must employ

the same decision rule for any merchant they meet. This assumption is

relaxed in a model extension in Section 8.2, where equilibria involving

producers conditioning on merchant identity are examined.

The expected continuation payoff of informed producers and mer-

chants in each period depends on the strategies of both types of agents.

For a strategy profile to constitute an equilibrium, the strategies employed

by each agent must be optimal given the strategies of other agents, for

any possible realised personal history. In particular:

• the return decision of each informed producer must maximise her

expected continuation payoff in every period; and

• the price pt set by each merchant must maximise her expected

continuation payoff at each period t.
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The primary focus of this thesis is equilibria in which multiple prices

coexist in the market. However, equilibria with a unique price are also

characterised, for completeness. Equilibria are found in Markov strategies

with symmetric producer strategy, while asymmetric producer strategies

are considered in a model extension in Section 8.1. Note that while

equilibria are sought in Markov strategies only, at any equilibrium the

strategies of agents must be optimal within the class of all strategies, not

just Markov strategies. Non-Markov strategy profiles may yield further

equilibria, but are not considered in this thesis.

Bose and Sengupta (2007) characterise optimal pricing and return

decisions under symmetric Markov strategies only. This enables charac-

terisation of single-price equilibria, detailed in Section 6.1. This the-

sis extends their model to examine price dispersion by incorporating

asymmetric merchant strategies in Section 6.2, considering comparative

statics for price-dispersed equilibria in Section 7 and introducing producer

strategy heterogeneity in Section 8.

4 Merchant Pricing

This section outlines optimal merchant pricing, given the strategies of

informed producers. A Markov strategy for an informed producer must

consist of a decision rule that dictates whether the producer searches

or returns in period t + 1 given the observation of pt. This can be

represented as a function f : [0, 1] → {R,S}. Under a Markov strategy

this function must not change over time, and producer symmetry implies

that all producers adopt the same strategy. Given that producers cannot

condition their return decision on a merchant’s identity, all merchants in

the market face the same producer strategy.
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A producer’s strategy can be represented by constructing two time-

invariant disjoint sets, PR and PS , such that PR ∪ PS = [0, 1]. PR

represents the set of prices that induce an informed producer to return

to the merchant she traded with in the previous period. The set of

merchant prices that do not induce return if observed in the previous

period is denoted as PS .

In any period, the only prices that can possibly be optimal for a

merchant to charge are either the highest price that will induce producers

to return or the maximum possible price. This is because any other price

could be raised by a small amount to increase a merchant’s current period

payoff without affecting the producer’s return decision and future period

payoffs. A producer’s strategy from the perspective of a merchant can

thus be viewed as setting a cut-off value p̂ such that the producer will

return to p̂, but not any price greater than p̂, that is, p̂ is the highest

price in PR.

A merchant chooses her optimal action by comparing the expected

payoff that comes from charging 1 and from charging p̂. Charging 1

gives a higher current-period payoff but causes the merchant to forgo

future payoffs from repeat clients. A merchant’s Markov strategy must

determine the price set in period t by the price set, and the size of her

clientele served, in period t−1. This can be expressed as a time-invariant

function f : [0, 1] × [0, σ] → [0, 1]. That is, pt is expressed as a function

of pt−1 and kt−1.
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4.1 Optimal Pricing

The expected continuation payoff of a merchant in period t depends on

the size of her clientele in that period kt, which in turn depends upon

kt−1. The stochastic nature of search and client memory means that the

size of a merchant’s clientele can change over time, even in equilibrium.3

Supposing that a merchant charges a price pt−1 = p̂, then her expected

clientele size at time t is given by:

E
(
kt|kt−1, pt−1, st) = γkt−1 + λm(st)st (1)

The clientele size in period t is denoted kt, the measure of producers

searching is st and E is the expectation operator. The merchant retains

the fraction γ of her clients from the previous period that remember

her location and accrues a fraction of searching producers in the cur-

rent period. Producers finding a merchant are expected to be evenly

distributed among merchants, so this appears in the equation as the

merchant matching probability λm(st) multiplied by the population of

searching producers.

A merchant chooses to charge p̂ or 1 depending on which yields the

higher payoff. The optimal strategy for merchants depends on the cut-

off point p̂ that producers set when searching. Intuitively, if p̂ is set

sufficiently high, merchants will find it worthwhile to set their price to

p̂ to induce return rather than setting a price of 1. Define a strategy of

setting pt = 1 as bandit pricing, and a strategy that sets pt = p̂ as return

pricing. Equation (1) allows the calculation of a merchant’s expected

payoff from return pricing, which can be compared to the payoff from
3Judd (1985) shows that a law of large numbers does not necessarily hold in a

matching environment where agents are modelled as continua.
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bandit pricing. The following lemma describing optimal pricing is also in

Bose and Sengupta (2007); its proof is supplied for completeness.

Lemma 4.1 (Optimal Pricing). A merchant’s optimal pricing rule is to

set price in every period t as follows:

pt =


p̂ if producers set p̂ > 1− γδ

p̂ or 1 if producers set p̂ = 1− γδ

1 if producers set p̂ < 1− γδ.

(2)

Proof. In any given period the only possibly optimal prices a merchant

can charge are p̂ and 1. Any other price can be increased without altering

the client’s return decision so cannot maximise a merchant’s continuation

payoff. Therefore any optimal pricing strategy must only include the

prices p̂ and 1.

Consider a merchant that sets pt = p̂ in every period. The best one-

shot deviation from this strategy would be to set pτ = 1 in some period

τ . This would result in the merchant increasing her per client payoff by

(1 − p̂) in period τ , but losing the expected earnings from those clients

that remain informed in future periods. The change in expected payoff

from such a deviation can be expressed as follows, denoted the discount

factor as δ.

∆p̂ = kτ (1− p̂)−
∞∑

j=τ+1

p̂kτ (γδ)j−τ

= kτ (1− p̂)− p̂kτγδ

1− γδ

= kτ

(
1− p̂

1− γδ

)
(3)

Similarly, the optimal deviation for a merchant that sets 1 in every period
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is to set pτ = p̂. This decreases her period τ payoff by (1−p̂) but increases

her next period payoff because it induces her clients to return. The change

in expected payoff from such a deviation can be expressed as follows.

∆1 = −kτ (1− p̂) + ktγδ

= kτ [p̂− (1− γδ)] (4)

Examination of ∆p̂ shows p̂ < 1−γδ must hold for a one-period deviation

from setting p̂ in every period to be profitable. Similarly, for a one-shot

deviation from setting 1 in every period to be profitable, p̂ > 1 − γδ

must hold. If p̂ = 1 − γδ, then a deviation from either strategy does

not change the merchant’s payoff. Using the one-shot deviation principle

(Abreu, 1988), this shows that a price-path of p̂ is optimal if p̂ > 1− γδ

and setting pt = 1 in every period is optimal if the inequality is reversed.

If p̂ = 1− γδ, then any combination of the two prices is optimal.4

5 The Producer Return Decision

An equilibrium requires that informed producers choose their strategy

over the return decision optimally. This section considers this decision

when all merchants charge a uniform price. A producer optimally returns

to her merchant if she expects the merchant to set a price low enough to

make paying it with certainty less costly than searching in the market.

A producer who is informed in period t and chooses to search in that

period will be informed again in period t + 1 with probability γ. The

probability of the producer being informed in period t+ 1 is also γ if she

returns to her merchant in period t. The expected continuation payoff in
4The explicit proof for multi-period deviations can be found in Bose and Sengupta

(2007).
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period t+ 1 is thus identical for an informed producer who searches and

one who returns in period t, regardless of the actual search outcome. This

is the case because the producer will choose optimally in period t+1, and

all merchants charge the same price so meeting a new merchant yields

information with the same value as the knowledge of the old merchant.

Denoting the expected continuation payoff from returning in period t as

V r
t , the payoff from search in period t as V s

t , and the payoff in period

t+ 1 as Vt+1, these payoffs can be expressed as follows.

V r
t = 1− E(pt) + δVt+1 (5)

V s
t = λm(1− E(pt) + δVt+1) + λp(1 + δVt+1) + (1− λm − λp)δVt+1 (6)

If the producer returns to her merchant she expects a payoff of 1−E(pt)

in the current period, followed by the discounted next-period payoff. A

searching producer gets a current-period payoff of 1−E(pt) if she meets

a merchant, which occurs with probability λm(s). Her current-period

payoff is 1 if she meets another producer, which occurs with probability

λp(s). A null search occurs with the complementary probability (1 −

λm−λp). In the following period after any search outcome the producer’s

discounted payoff is δVt+1.

Lemma 5.1. An informed producer returning to her merchant is optimal

if 1− E(pt) ≥ Ω(st), where

Ω(st) =
λp(st)

1− λm(st)
(7)

Proof. For producers returning to be optimal, it must yield at least as

high a payoff as search. This optimality condition can be expressed as
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follows, using equations (5) and (6).

V r
t ≥ V s

t (8)

1− E(pt) ≥
λp(st)

1− λm(st)
(9)

The left hand side of (9) shows the benefit of returning to a merchant

charging p, which must be at least as great as the right hand side, which

shows the benefit of search. For producers to be indifferent between

search and returning to their merchant, the condition in equation (9)

must hold with equality. Denoting this indifference price as p∗(st), it is

given by p∗(st) = 1− Ω(st).

6 Model Equilibria

6.1 Single-Price Equilibria

Observation 6.1. In an equilibrium where all informed producers return

to their merchants, the search market converges to a steady state size. At

that size the measure of informed producers forgetting their merchants is

the same as the measure of searching producers finding and remembering

a merchant. Denote this steady state size as s. If st < s, then the search

market increases in size because more informed producers forget their

merchant than do searching merchants become informed. If st > s, the

reverse process occurs.

The description of optimal merchant and producer behaviour in Sec-

tions 4 and 5 is sufficient to fully characterise single-price equilibria in

Markov strategies. Proposition 6.1 gives the three prices that can possibly
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be supported in a single-price equilibrium, while Proposition 6.2 finds the

necessary and sufficient conditions for the existence of equilibria involving

each price. These three classes of single-price equilibria can be defined

as follows.

Definition 6.1.

• A bandit equilibrium consists of all producers setting pt = 1 in all

periods and producers never returning.

• A monopoly equilibrium consists of all producers setting pt = p∗(s)

in all periods and producers always returning when informed.

• A competitive equilibrium consists of all producers setting pt =

1−γδ in all periods and producers always returning when informed.

In a bandit equilibrium, merchants appropriate the entirety of their

client’s good and do not plan on repeated interaction. The terms ‘monopoly’

and ‘competitive’ equilibrium are used to reflect the division of surplus

between the producer and the merchant in each type of equilibrium. In

a monopoly equilibrium the merchant receives the entire surplus from

trade, while an informed producer who returns to a merchant receives

the same expected payoff as an uninformed searching producer. In a

competitive equilibrium the producer receives the entire surplus from

trade. A merchant is indifferent between charging 1 − γδ and 1, but

a returning producer can have a payoff that strictly exceeds that of a

searching producer.

Proposition 6.1. No price other than 1 − γδ, p∗(s) and 1 can be sup-

ported in any single-price equilibrium.

Proof. Lemma 4.1 shows that in equilibrium, merchants charge either p̂

or 1. In an equilibrium where producers do not return, all merchants
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charge 1. In an equilibrium where producers do return, the market price

must be p̂. For this price to be optimal for merchants, producers must set

p̂ ≥ 1−γδ. For returning to this price to be optimal for producers, Lemma

5.1 shows that 1 − p̂ ≥ Ω(s) must hold. Noting that p∗(s) = 1 − Ω(s),

any return equilibrium must have 1− γδ ≤ p̂ ≤ p∗(s).

Consider an equilibrium in which 1 − γδ < p̂ < p∗(s). This implies

that 1− p̂ > Ω(s), so a producer strictly prefers to return to a merchant

charging pt+1 = p̂. Given that p̂ > 1 − γδ, a merchant will optimally

charge pt+1 = p̂. Therefore, after observing any pt a producer expects

to see pt+1 = p̂. This means that a client will optimally return to any

price, so her merchant will optimally set a price of 1 in period t. A

producer returning to 1 cannot be part of an equilibrium because the

search market yields a strictly greater payoff, so such a p̂ cannot hold in

equilibrium.

Proposition 6.2.

(i) A bandit equilibrium always exists.

(ii) Both a monopoly and competitive equilibrium exist if and only if:

Ω(s) ≤ γδ (10)

Proof. Merchants charging 1 is optimal when p̂ ≤ 1− γδ by Lemma 4.1.

Given that all merchants are charging pt = 1 in all periods, any producer

strategy that does not induce return at that price is optimal. This proves

part (i).

Merchants charge p∗(s) in a monopoly equilibrium. Returning is thus

optimal for producers because p = p∗(s) implies 1− p = Ω(s). Charging
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this price is optimal for merchants if and only if p∗(s) = p̂ ≥ 1 − γδ,

which gives the condition in (10).

In a competitive equilibrium merchants charge 1 − γδ. Return is

optimal for producers if and only if Ω(s) ≤ γδ, by Lemma 5.1. Merchants

charging 1− γδ in every period is optimal under the following merchant

strategy if p̂ = 1− γδ.

pt =


1− γδ if pt−1 ≤ 1− γδ

1 if pt−1 > 1− γδ
(11)

Merchants cannot profitably deviate from this strategy because charging

1 yields the same payoff as charging 1−γδ and charging pt 6= 1−γδ yields

a lower payoff. This proves the existence of the competitive equilibrium,

and completes part (ii).5

In a bandit equilibrium, long term producer-merchant relationships

do not develop, so search costs are not reduced in the market. In the

monopoly and competitive equilibria, these long-run relationships do

develop, so total search costs in the market are reduced. Proposition 6.2

shows that if Ω(s) > γδ, then only the bandit equilibrium exists. This

occurs because if all merchants charge a price to induce return, the cost

of search is not sufficiently large to make the return price high enough for

charging it to be profitable for merchants. However, if some merchants

were to charge the bandit price, the cost of search would increase because

meeting a bandit-pricing merchant is effectively the same as a null search

result. Suppose that a measure of bandit-pricing merchants increases
5Note that this type of strategy cannot form part of an equilibrium at any other

price. If p̂ > 1− γδ then charging a price of 1 cannot be optimal so a merchant would
optimally charge pt+1 = p̂ even after charging pt > p̂. Producers would thus always
return so merchants would optimally charge 1, which cannot occur in an equilibrium
where informed producers return.
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the cost of search enough to make mutually profitable long-term trading

relationships possible between producers and the remaining merchants.

The resultant price-dispersed equilibrium could reduce aggregate search

costs, compared with the bandit equilibrium. This provides a motivation

for investigating priced-dispersed equilibria, which is done below.

6.2 Price-Dispersed Equilibrium

In a price-dispersed equilibrium in which some merchants charge a return

price and others set the bandit price, the payoff from both pricing strate-

gies must be the same, because merchants are free to switch strategies.

Lemma 4.1 shows that this can only occur if producers set p̂ = 1− γδ. A

price-dispersed equilibrium must then contain the two prices 1− γδ and

1. Denote the measure of merchants charging a price 1−γδ as α ∈ (0, 1),

such that the rest of the merchant population charges 1.

Optimal producer behaviour in this scenario can be modelled by

introducing α into the analysis in Section 5. First, note that a producer

with knowledge of a merchant expected to charge 1 in period t can

effectively be considered as not being informed because the producer

will always optimally search. As in the single-price case, an informed

producer in period t will expect the same payoff in period t+1, regardless

of whether she searches or returns to her merchant in period t. This yields

the following expected continuation payoff for return and search.

V r
t = γδ + δVt+1 (12)

V s
t = αλm(γδ + δVt+1) + λp(1 + δVt+1) + (1− αλm − λp)δVt+1 (13)

These payoffs are the same as in the single-price case, but with E(pt) =

1 − γδ and with a reduced probability αλm(s) of meeting a merchant
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charging that price. Returning to a merchant who charges 1− γδ is thus

optimal for a producer if the following condition is satisfied.

V r
t ≥ V s

t (14)

γδ ≥ λp(st)
1− αλm(st)

(15)

Redefine Ω(st, α) as the right hand side of condition (15). The value of

the benefit from search, Ω(st, α), is increasing in α.6 This shows how

merchants switching from return pricing to bandit pricing increases the

cost of search and so can induce producers to return to a price of 1− γδ.

Proposition 6.3. A price-dispersed equilibrium in which producers re-

turn to the α ∈ (0, 1) measure of merchants charging 1 − γδ and do not

return to the remainder of the merchant population, who charge 1, exists

if and only if

Ω(st, α) ≤ γδ (16)

Proof. Producers optimally return to a merchant charging 1− γδ if and

only if the condition in (15) holds, as set out above. If producers set

p̂ = 1 − γδ, merchants are indifferent between charging 1 − γδ and 1.

This p̂ can thus support an equilibrium with a measure of merchants

charging 1 and the remainder adopting the strategy detailed in equation

(11), analogously to the competitive equilibrium.

Observation 6.2. A special case of the price dispersed equilibrium

where producers are indifferent between search and merchant return

exists if there exists an α̂ ∈ (0, 1) that satisfies Ω(s, α̂) = γδ. This
6Changing α also has indirect effects on Ω(st, α) via the matching probabilities.

This is considered in Section 7.
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yields the following value for α̂.

α̂ =
γδ − λp

λmγδ
(17)

6.3 The Steady State Search Market

In an equilibrium where the measure of return-pricing merchants is con-

stant, the steady state size of the search market can be found. This

steady state size s can be expressed as a function of α as follows.

s(α) = (σ − s)(1− γ) + s(1− αλm(s)γ) (18)

s(α) =
σ(1− γ)

1− γ[1− αλm(s)]
(19)

At the start of each period a fraction (1−γ) of producers who returned in

the previous period forget the location of their merchant. The measure

of such producers is given by (σ − s). There are s producers searching

in each period. A fraction λm(s) of them meet a merchant, so αλm(s)

meet a merchant that induces return. A fraction γ of those producers

remember their merchant and so leave the search market. This yields

equation (18), which simplifies to (19). This means that in equilibrium,

the size of the search market st can be denoted by s(α). This means that

Ω(st, α) is a function of α alone in equilibrium.

There are two special cases that are pertinent to the equilibria found

in Section 6.1. In an equilibrium where no merchants charge the return

price, the search market is given by the producer population σ. This

can be seen from equation (19) with α = 0. In an equilibrium where all

merchants charge the return price, all producers return when informed.

This search market size, denoted s, can be found from equation (19) with
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α = 1 as follows.

s =
σ(1− γ)

1− γ[1− λm(s)]
(20)

7 Equilibrium Existence and Comparative Stat-

ics

The existence of the equilibria characterised in Propositions 6.2 and

6.3 depends on the value taken by Ω(st, α), which can be denoted as

Ω(α) in equlibrium. In particular, a bandit equilibrium always exists

and monopoly, competitive and price-dispersed equilibria have the same

existence criterion: Ω(α) ≤ γδ. Equation (15) shows that the value of

Ω(α) depends on α, λm(s) and λp(s). The matching probabilities are

determined by s(α).

To determine the range of α that can be supported in equilibrium,

the effect of changes in α on the value of Ω(α) must be considered.

This is because changing α can affect whether the necessary equilibrium

condition of Ω(α) ≤ γδ continues to hold. In particular, the direction of

the effect of changing α on is important for marginal cases.

The direct effect on Ω(α) of an increase in α is negative because

reducing the number of bandit-pricing merchants in the market increases

the expected value of producer search, with all other factors held con-

stant. This can also be seen by inspection of equation (15). There is

also an indirect effect that works through the size of the search market

and the matching probabilities. The total effect is investigated further

in Appendix A.1, where it is found that for matching functions with no

thick-market externalities the indirect effect opposes the direct effect in
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general.7 However, using the linear matching functions the total effect

of α on Ω(α) is negative for all α ∈ (0, 1) for a broad range of parameter

values.

7.1 Specific Matching Functions and Closed-Form Equi-

libria

To reduce the ambiguity associated with the generic matching functions

used above, a particular functional form is specified for use in the re-

mainder of Section 7. The following linear matching functions with no

thick-market externalities are employed, with the value of s given by

equation (19).

λm(s) =
λ

1 + s
(21)

λp(s) =
λs

1 + s
(22)

Equation (23) gives the existence criterion for a price-dispersed equilib-

rium with a given α using these matching functions (as in Proposition

6.3). The existence of the monopoly and competitive equilibria requires

a special case of this condition to hold, namely with α = 0 and s = s.

γδ ≥ λs(α)
1 + s(α)− αλ

= Ω(α) (23)

These matching functions also allow the specification of the aggregate

cost of search in the market. In equilibrium, if a producer search results

in meeting either another producer or a merchant, goods are traded and
7Matching functions with no thick-market externalities have constant returns

to scale, which means that the total probability of finding a match is the same
independent of the market size. Here this means, defining a constant λ ∈ [0, 1], that
λp(s) + λm(s) = λ for all s. Using this type of matching technology follows Bose and
Sengupta (2007).

37



consumed. The division of consumption depends on the terms of trade,

but the good is consumed regardless. From the perspective of aggregate

welfare then, the search cost is only incurred if producer search results

in finding no-one. The probability of this is given by a constant (1− λ)

using the matching functions specified above.

The aggregate search cost in equilibrium can thus be represented as

a function of α, that is C(α) = s(α)(1 − λ). The steady state size of

the search market is decreasing in α, so the aggregate cost function is

also decreasing in α. This means that the aggregate welfare maximising

equilibrium is given by the equilibrium with the maximum supportable

α.

7.2 Equilibrium Existence

This section investigates the range of α that can be supported in equilib-

rium. Clear results can be found for two particular cases. First, where

Ω(α) is a monotonically increasing function of α, and second where it is

monotonically decreasing.

Proposition 7.1. If Ω(α) is a monotonically increasing function of α,

then the range of α that can be supported in equilibrium is given by:

Range of α =


0 if α̂ ≤ 0

[0, α̂] if α̂ ∈ (0, 1)

[0, 1] if α̂ ≥ 1

(24)

where α̂ solves for α̂ =
1 + s(α̂)

λ
− s(α̂)

γδ
(25)

Proof. The expression for α̂ in equation (25) comes from setting Ω(α̂) =

γδ and substituting the liner matching functions. If Ω(α) is monotonically
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increasing then Ω(α) < γδ holds for any α < α̂. Similarly Ω(α) > γδ

holds for any α > α̂. Noting that Ω(α) ≤ γδ is the existence criterion

is for an equilibrium where an α fraction of merchants charge the return

price completes the proof.

Corollary 7.1. By the same argument, if Ω(α) is monotonically decreas-

ing in α, then

The range of supportable α =


[0, 1] if α̂ ≤ 0

[α̂, 1] if α̂ ∈ (0, 1)

1 if α̂ ≥ 1

(26)

The welfare maximising equilibrium requires the maximum α that can

be supported. If Ω(α) is decreasing in α then the maximum supportable

α must be either 0 or 1. In particular, if Ω(1) ≤ γδ then an equilibrium

where all merchants charge the return price exists and is optimal. If

Ω(1) > γδ then only the bandit equilibrium exists.

However, if Ω(α) is increasing in α and an equilibrium with α = 1 does

not exist, a price dispersed equilibrium exists if there exists an α such

that Ω(α) ≤ γδ. The welfare maximising price-dispersed equilibrium in

this case requires the maximum supportable α, which is given by α̂ in

equation (25). The comparative statics for this case are analysed below.

7.3 Comparative Statics

This section looks at comparative statics for the welfare-maximising equi-

librium under the assumption that Ω(α) is increasing in α. In particular,

the case is considered in which there exists an α̂ ∈ (0, 1) such that

Ω(α̂) = γδ both before and after the exogenous parameter change. This
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ensures that the welfare-maximising equilibrium is price-dispersed.

The exogenous parameters that can change are the discount rate δ,

the probability of producers remembering their merchants γ, the measure

of producers σ as well as the total matching probability λ. Shifting these

exogenous parameters can change the equilibrium level of α̂ and s, as

well as affect the total welfare in the market as measured by aggregate

search costs. The return price 1− γδ also changes with γ and δ.

Consider an exogenous increase in δ to δ′. Given that before the

change Ω(α̂) = γδ, after the change Ω(α̂) < γδ′ must hold because

the value of Ω(α̂) is unaffected by δ. This means that there must now

exist an α > α′ that is supported in equilibrium w because Ω(α) is

increasing in α. This increase in α̂ reduces s(α̂) and so increases total

welfare. The increased patience means that the return price does not

need to be as high for merchants to optimally charge it. This lower price

makes returning optimal for a producer in an equilibrium with a reduced

search cost compared to the initial equilibrium, so producer welfare also

increases.

An increase in γ to γ′ has the same effect as increasing δ, via the

change in the equilibrium return price. There is also a second effect. In-

creasing γ decreases s because fewer producers reenter the search market

as a result of forgetting their merchant. A decreasing s reduces λp(s) and

increases λm(s). The net effect of this is to increase the cost of search

and reduce Ω(α̂), as can be seen from the following partial derivative

computed from equation (23).

∂Ω(α̂)
∂s

=
λ− α̂λ2

(1 + s− α̂λ)2
> 0 (27)

The combined effect of this results in Ω(α̂) < γ′δ so an increased α can
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be supported in equilibrium. This further reduces the size of the search

market and so increases total welfare. This parameter change works

through the same price channel as changing δ, but also increases the

size of the cost saving from long term merchant-producer relationships

because they persist with a higher probability.

An increase in σ to σ′ causes an increase in s, as shown in equation

(19). This causes an increase in Ω(α̂), as per equation (27). This causes

Ω(α̂) > γδ, so α must decrease to reestablish equilibrium. The decrease

in α dampens the increase in s, but the overall increase in s causes an

increase in aggregate search costs. However, a fairer analysis of welfare

would also need to factor in the increase in the population.

Suppose the total matching probability increases from λ to λ′. This

increases both λm(s) and λp(s). The increase in λm(s) reduces the size of

the search market (see equation 19), which reduces Ω(α̂), as above. The

change in λ also has a direct effect, as the following partial derivative

shows.
∂Ω(α̂)
∂λ

=
s+ s2

(1 + s− α̂λ)2
> 0 (28)

These two effects oppose each other so the direction of the total effect

depends on which one dominates. If the direct effect dominates then λ′

causes Ω(α̂) > γδ so α must decrease in equilibrium, which opposes the

change in s. However, if the indirect effect dominates then Ω(α̂) decreases

so an increased α can be supported in equilibrium. This further decreases

s and so increases overall welfare.

There is a qualitative difference between changes to δ or γ and to

changes in σ or λ. Changing γδ changes the range of values of Ω(α) that

can be supported in equilibrium, and in particular, alters the value of

Ω(α) that solves Ω(α) = γδ. On the other hand, a change in σ or λ does
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not change this value of Ω(α). Rather, it only changes the α̂ required

for the condition to hold. Because Ω(α) is a measure of the benefit

from search, this means that any change in the cost of search caused

by an exogenous change in σ or λ is endogenously counterbalanced by

endogenous changes in α̂ if a price-dispersed equilibrium is maintained.

This means that these changes do not change the welfare of producers in

the model. However, changes in γ or δ do change the cost of search and

so affect producer welfare.

8 Extensions To The Basic Model

This section develops two extensions to the basic model set out above,

both involving a broader set of possible producer strategies. First, mixed

producer strategies are considered. The possible increase in heterogeneity

of actions widens the set of prices that can be supported in equilibrium.

The second extension considers a different form of producer strategy

heterogeneity where strategies can be conditioned on the identity of

the particular merchant encountered. Again this increases the degree of

price dispersion that can be supported in equilibrium because multiple

equilibria can essentially be supported simultaneously in different market

segments.

8.1 Mixed Producer Strategy

In an equilibrium where producers are indifferent between search and

return after observing a particular price, it is possible that producers

sometimes search, and at other times return, in the period following

meeting a merchant who charges that price. This can be modelled in

at least two ways. First, producers could use a symmetric but mixed
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strategy, such that all producers return to the indifference price with

a given probability. Second, producers could use pure but asymmetric

strategies, such that a fraction always return at the indifference price p∗

and the remainder never do. Asymmetric mixed strategies could also be

used.

Modelling producer strategy in these different ways affects the price

that makes merchants indifferent between charging the return price and

charging 1, which is a necessary condition for price dispersion in this

model. Taking producer strategies as symmetric and mixed requires a

relatively minor modification to the optimal pricing description in Lemma

4.1. Denoting the probability of return to a price p̂ as ω, the expected

discounted payoff flowing from a merchant’s current period clientele when

charging p̂ changes to become:

∞∑
j=τ+1

p̂kτ (ωγδ)j−τ

From the merchant’s perspective, the probability that a producer will

not return that is dictated by strategy is no different to the exogenous

producer memory parameter γ. The producer strategy that makes mer-

chants indifferent between return pricing and bandit pricing is thus given

by producers returning to p̂ = 1− ωγδ with a probability γ.

Modelling producer strategy as asymmetric and pure presents a dif-

ficulty because of the stochastic nature of search. The indifference price

for each merchant would depend on the realised fraction of current period

clients that adopt each type of producer strategy. Moreover, merchants

would not know with certainty which of their clients were using each type

of strategy, so merchant beliefs would update each period. The indiffer-

ence price is found under the simplifying assumption of deterministic
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search in Appendix A.2, but the symmetric mixed strategy approach is

used here.

Proposition 8.1. A price-dispersed equilibrium exists with:

(i) A fraction α of merchants charging 1− ωγδ;

(ii) Remaining merchants charging 1; and

(iii) Producers returning to a price of 1− ωγδ with probability ω.

if and only if

Ω(s, α) = ωγδ (29)

Proof. This equilibrium can be supported by the following strategy pro-

file. Producers return with probability ω if pt = 1−ωγδ and never return

to a different price. Merchants set their price as follows.

pt =


1− ωγδ if pt−1 = 1− ωγδ

1 otherwise
(30)

Given that merchants setting pt 6= 1−ωγδ will charge 1 in the next period,

it is optimal for producers not to return to any such price. Given the

producer strategies in use, merchants are indifferent between charging the

two prices included in their strategy. This means it is (weakly) optimal to

charge a price of 1. If a fraction ω of producers returned to a higher price,

charging that price would be strictly preferred to charging 1 so could not

maintain an equilibrium. Producers must be indifferent between search

and return in order to employ a mixed strategy. The indifference price

is unchanged from the basic model so the condition in equation (29) is

found by setting Ω(s, α) = 1− p̂.

Mixed producer strategy also makes possible an equilibrium that
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supports three distinct prices. Suppose α̂ and ω̂ constitute an equilibrium

as described in Proposition 8.1. Consider a small measure of merchants

that currently charge 1 switching to charge 1−γδ (keeping α = α̂). Note

that 1− γδ < 1− ω̂γδ, so all producers return to the β measure of mer-

chants charging 1− γδ. This change decreases the producer-indifference

price p∗ because the search market yields an increased expected payoff.

Equilibrium can be achieved if ω changes such that p∗ = 1 − ωγδ.

The producer-indifference price now depends on the merchant strategy

parameters α and β. The value of p∗, shown below, is determined in

Appendix A.3.

p∗ =
(1− γδ)[1− λp − αλm + βλmδ(1− γ)]

(1− γδ)(1− αλm) + βλm
(31)

If β = 0, then equation (31) reduces to condition (29), which describes

the case in which no merchants charge 1 − γδ. An equilibrium with the

three prices 1 − γδ, 1 − ωγδ and 1 can thus be supported if α, β and ω

are chosen such that p∗ = 1 − ωγδ. Proposition 8.2 shows that this is

the maximum number of prices that can be supported simultaneously in

equilibrium.

Proposition 8.2. No more than three prices can coexist in any equilib-

rium.

Proof. The indifference price p∗ is the same for all producers because it

is determined by the prices of merchants in the market. This means that

there can be only one price at which producers optimally employ a mixed

return decision, call this price p̂ω. A price such that 1 − γδ < pt < p̂ω

cannot induce all producers to return at equilibrium. If it did it would be

strictly optimal for merchants to charge so producers would expect it to
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be charged and so always return to any price. All producers returning to

1−γδ can be supported at equilibrium because merchants are indifferent

between charging 1−γδ and 1, so this can be supported as in Proposition

6.2. Merchants never set a price less than 1 − γδ and producers never

return to a price greater than p∗ so the price 1 is the only price other

than p̂ω and 1− γδ that can be supported in equilibrium.

8.2 Identifiable Merchants

This section considers a version of the basic model in which producers

can vary their actions depending on the particular merchant they meet in

the market. This could be applicable to an environment where merchants

are identified by name or location. To model this let x ∈ [0, 1] uniquely

identify each merchant. Producer strategy is now a function of pt−1 and

xt−1, with f : [0, 1]× [0, 1]→ {R,S}. A producer’s strategy can thus be

represented as setting a return rule for each merchant i, that is, setting

a p̂i for each i ∈ [0, 1]. Optimal behaviour for any given merchant is

unchanged from the preceding analysis, except that now for a merchant

i, optimal pricing is determined by p̂i. Producers not conditioning on

merchant identity is equivalent to them setting p̂i = p̂ for all merchants.

Optimal behaviour for producers is also similar to the preceding

characterisation. Now, p̂i must be set optimally given the pricing strategy

of each merchant i. This means that for any subset of merchants, any

of the equilibria set out in Propositions 6.2 and 6.3 can be supported as

long as their necessary and sufficient conditions are met.

For example, divide the population of merchants into three categories:

[0, θ], (θ, φ) and [φ, 1]. Suppose producers (symmetrically) set p̂i ≤

1 − γδ for i ∈ [0, θ], p̂i = p∗ for i ∈ (θ, φ) and p̂i = 1 − γδ for i ∈
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[φ, 1]. As long as returning to p∗ is optimal, a bandit, monopoly and

competitive equilibrium can be supported in the three distinct merchant

segments respectively. Each merchant segment can effectively support

an equilibrium independently of the other market segments because the

personal arbitrage condition between merchants using different strategies

does not apply between market segments. The level of the producer

indifference price p∗ will depend on the fraction of merchants engaging

in each of the different pricing strategies, as outlined in Section 8.1.

This kind of scenario may not be applicable to many real market

situations. The assumption that producers can somehow identify their

merchants is somewhat incongruous with the random search paradigm

employed. It is possible that merchants may have characteristics that

are observable only upon meeting the merchant. However, a proper

incorporation of this into the present model would require some kind of ex

ante merchant heterogeneity or the possibility of merchants endogenously

controlling an observable characteristic, such as the appearance of their

store.

9 Modelling Assumptions

The model presented in this thesis has several features that drive the

result of equilibrium price dispersion. The key conceptual feature is the

repeated interactions between merchants and producers, which enable

the formation of ongoing relationships that reduce search costs. This

section discusses whether other features and assumptions included in the

model are also critical in generating this result.

The existence of a parallel search market has important consequences

for behaviour in the model. If this market did not exist then producers re-

47



turning to their merchants would be weakly optimal even if all merchants

were to charge the bandit price of 1.8 However, if prices are dispersed, the

producer return decision is influenced by the distribution of prices in the

market. This distribution creates a threshold price less than unity, above

which return is less profitable than search. Parallel search markets are

an important feature of intermediation models, but represent a departure

from the price dispersion literature. The externality that comes from the

decisions of agents influencing the size of this parallel search market, and

thus the matching probabilities, drives much of the complexity of this

model.

A positive probability of producers forgetting their merchant is in-

cluded in the present model. This is required for the continued existence

of the producer search market. If producers always remember their

merchant, then any measure of merchants charging a return price would

eventually accrue all producers as clients and collapse the market.9 Per-

fect producer memory would also undermine the continued profitability

of bandit pricing in a price-dispersed equilibrium. Again, the search

market would empty of producers so merchant payoffs could only come

from existing clients. The only way for bandit pricing to be optimal in

this scenario would be for the payoff in earlier periods with a non-empty

search market to be sufficiently large to make up for the zero payoff in

later periods.

The market modelled in this thesis is one-sided. That is, a set of pro-

ducers exchanges goods amongst themselves, as opposed to a two-sided

market where consumers exchange with producers. The model could
8This case can be considered in this model by setting λp(s) to zero. This means

that Ω(st) = 1, so returning is always optimal.
9This can be seen from the equation for the steady state search market in Section

6.3 with γ set to 1.

48



be adapted to a two-sided market in a fairly straight-forward manner.

Consumers and producers would engage in search in a market containing

merchants in the same manner as in the present model. Merchants with

the ability to guarantee trade with preexisting clients would be able to

command a commission in exchange for this service. The similarity of

this scenario to the situation modelled here suggests that price dispersion

would likely be an outcome of such a two-sided model.

The bargaining process here is modelled with merchants as price-

setters. This may appear a restrictive assumption, but in essence it

means that the cost of search is the risk of missing out on consumption

as a result of an unfavourable search outcome. In this sense, this model

does not differ greatly from models of costly sequential search. Modelling

the bargaining process in a different way might present further insight

into the problem, particularly into the importance of the specifics of

the search and bargaining process for the equilibrium results. Possible

alternative approaches would be to change the explicit bargaining process

or including features into the search process that alter bargaining power.

The latter route could involve including a probability of a producer

observing the prices of two different merchants in one search, or a chance

of being able to search a second time after declining trade. Another mod-

ification to the search process could include some channel of information

dissemination amongst producers.

Agents in the present model are exogenously assigned to their occu-

pations of producer or merchant, in keeping with the focus of this thesis.

The exogeneity assumption could also be justified by the argument that

some of the factors leading merchants to choose their occupation may,

in fact, be outside of the model. For example, merchants may trade in
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several different markets simultaneously, meaning a comparison of payoffs

within a single-market model may not tell the full story. However, the

present model could be adapted to check whether the price dispersion

result is robust to endogenous occupational choice. This would require

equal payoffs from choosing the occupation of producer and from becom-

ing a start-up merchant. Agents switching between occupations would

be captured by changing σ, the ratio of producers to merchants.

10 Conclusion

The primary result of this thesis is that equilibrium price dispersion can

be supported in a model where agents are homogeneous within each type.

This departure from the existing price dispersion literature is driven

primarily by the setting of repeated interaction, in which the long-term

relationships between merchants and their clients reduce the costs of

search. The present model describes a particular setting, which may not

be broadly applicable to real-world markets. However, it highlights the

potential importance of multi-period models in investigating price disper-

sion. A further result of this thesis is that a price-dispersed equilibrium

can sometimes improve welfare compared to a single-price equilibrium.

As is often the case with repeated games, the model presented in this

thesis exhibits multiple equilibria. The model can support a monopoly

equilibrium, as described in Proposition 6.2, which echoes the Diamond

paradox. However, the repeated interaction makes possible a broader set

of equilibria, some of which are price-dispersed. This has been found

in some previous single-period models of price dispersion, for example

Burdett and Judd (1983). Multiple equilibria may indeed be a factor in

the wide range of pricing outcomes that are observed in real markets.
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Customers’ expectations about the pricing policies that sellers will em-

ploy, and sellers’ expectations about consumer search habits, could easily

affect the equilibrium that is in fact achieved.

The modelling assumptions discussed in Section 9 could be relaxed

or changed to further investigate their importance to the result of equi-

librium price dispersion. Also, repeated interaction is only one aspect of

what may cause price dispersion in real markets. Other factors thought

to be important in price dispersion, such as ex ante agent heterogene-

ity, could be incorporated into a model similar to the one presented

here. In the present model, allowing a greater degree of heterogeneity

in agent strategy increased the range of prices that could be supported

in equilibrium. It would be interesting to see the effect of ex ante agent

heterogeneity on equilibrium price dispersion, particularly with respect

to the result that at most three prices can be supported concurrently in

equilibrium.

11 Appendix

A.1 The Total Effect of α on Ω(α)

The total effect of changes in α on the value of Ω(α) consists of a direct

effect and an indirect effect. An increase to α means a reduced number of

bandit-pricing merchants in the market. This reduces the probability of

a bad search outcome so would be expected to raise the expected payoff

from search and increase Ω(α), which is confirmed below.

The indirect effect works through the matching probabilities, which

are altered by the change in the size of the search market in response

to changes in α. More return-pricing merchants increases the number of
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producers that return to a merchant, and so reduces the size of the search

market, given above in equation (19). This is intuitively clear, but proves

analytically complicated to show. A reduction in the size of the search

market reduces λp and would be expected not to reduce λm.10 Increasing

either matching function lowers the probability of a null search result, so

increases Ω(α) analogously to a reduction in the number of bandits. The

combined effect can be expressed as the following total derivative.

dΩ(α)
dα

=
∂Ω(α)
∂α

+
∂Ω(α)
∂λm(s)

dλm(s)
ds(α)

ds(α)
dα

+
∂Ω(α)
∂λp(s)

dλp(s)
ds(α)

ds(α)
dα

(A-1)

The partial derivatives for Ω(α) can be computed from equation (15),

and are shown below.

∂Ω(α)
∂α

=
λpλm

(1− αλm)2
< 0 (A-2)

∂Ω(α)
∂λp(s)

=
1

1− αλm
< 0 (A-3)

∂Ω(α)
∂λm(s)

=
αλp

(1− αλm)2
< 0 (A-4)

This confirms the direct effect of a change in α outlined above, and shows

that Ω(α) is also decreasing in both matching functions as expected.

Supposing that λm(s) is decreasing in s, that λp(s) is increasing in s and

that s(α) is decreasing in α as outlined above, the signs of the components

of the total derivative can be expressed as follows.
10By assumption, see Section 3.3.
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dΩ(α)
dα

=

+︷ ︸︸ ︷
∂Ω(α)
∂α

+

+︷ ︸︸ ︷
∂Ω(α)
∂λm(s)

−︷ ︸︸ ︷
dλm(s)
ds(α)

−︷ ︸︸ ︷
ds(α)
dα

+

+︷ ︸︸ ︷
∂Ω(α)
∂λp(s)

+︷ ︸︸ ︷
dλp(s)
ds(α)

−︷ ︸︸ ︷
ds(α)
dα

=

+︷ ︸︸ ︷
∂Ω(α)
∂α

+

+︷ ︸︸ ︷
∂Ω(α)
∂λm(s)

dλm(s)
ds(α)

ds(α)
dα

+

−︷ ︸︸ ︷
∂Ω(α)
∂λp(s)

dλp(s)
ds(α)

ds(α)
dα

(A-5)

Or equivalently,

dΩ(α)
dα

=

+︷ ︸︸ ︷
∂Ω(α)
∂α

+

−︷ ︸︸ ︷
ds(α)
dα


−︷ ︸︸ ︷

∂Ω(α)
∂λm(s)

dλm(s)
ds(α)

+

+︷ ︸︸ ︷
∂Ω(α)
∂λp(s)

dλp(s)
ds(α)

 (A-6)

The sign of the total derivative thus depends on the size of each positive

and negative term. This will of course depend on the exact form of the

matching functions λm(s) and λp(s). However, restricting attention to

matching functions that do not exhibit thick-market externalities (that

is where λm(s) + λp(s) is constant) allows for greater determination.11

For such matching functions, the derivatives of the two functions with

respect to α must be equal in magnitude but opposite in sign. Also, the

following observation follows from equations (A-3) and (A-4):

∂Ω(α)
∂λm(s)

− ∂Ω(α)
∂λp(s)

=
−αλp

(1− αλm)2
− −1

1− αλm

=
α(λp + λm)− 1

(1− αλm)2
< 0 (A-7)

Using (A-7) in (A-6) allows the expression of the total derivative as:

dΩ(α)
dα

=

+︷ ︸︸ ︷
∂Ω(α)
∂α

+

−︷ ︸︸ ︷
dλm(s)
ds(α)

ds(α)
dα

[
∂Ω(α)
∂λm(s)

− ∂Ω(α)
∂λp(s)

]
(A-8)

11In fact, the conclusion here will hold whenever
∣∣∣ dλp(s)
ds(α)

∣∣∣ ≥ ∣∣∣ dλm(s)
ds(α)

∣∣∣.
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The overall direction of the effect of changes in α depend on whether

the direct or indirect effect dominates. The direct effect on Ω(α) is

positive due to the fewer bandits in the market caused by more merchants

adopting the return price, as discussed above. The net indirect effect

under matching functions with no thick-market externalities is positive

because the smaller number of producers in the search market decreases

λp(s) by the same amount as the increase to λm(s). The per-period

payoff from meeting a producer is higher than from meeting a merchant

so the net indirect effect of an increase in α reduces the value of search

captured by Ω(α).

Using the specific linear matching functions set out in Section 7.1, the

total derivative for Ω(α) with respect to α can be computed as follows.

dΩ(α)
dα

=
λ[s′(α)(1− αλ)− s(α)(1− λ)]

(1 + s(α)− αλ)2
(A-9)

where s′(α) =
∂s(α)
∂α

, and s(α) is given by equation (19).

The overall direction of the derivative is in general undetermined, even

using the linear matching functions. However, computation of the total

derivative shows that Ω(α) is monotonically increasing in α for a broad

range of parameter values. For example, it holds for all combinations of

parameters where the following conditions hold: γ ∈ (0, .8]; σ ∈ [2, 10];

and λ ∈ (0, 1). It also holds for larger γ if σ is also increased, such as

γ = .95 and σ = 20, with λ ∈ (0, 1).
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A.2 Optimal Merchant Pricing Under Asymmetric Pure

Producer Strategies and Deterministic Search

Suppose that a fraction ω of informed producers always return to p̂, and

the remainder never do. This means that in the period after meeting a

merchant for the first time, a fraction ωγ of producers return. In every

subsequent period a fraction γ of those remaining clients return. This

changes the merchant indifference price, making it higher because more

producers return over time. To simplify calculations, suppose that con-

sumer search is now deterministic. This indifference price can be found

by examining optimal merchant deviation, as in the proof of Lemma 4.1.

The optimal deviation from a constant price path p̂ is shown here.

∆p̂ = kτ (1− p̂)−
∞∑

j=τ+1

ωp̂kτ (γδ)j−τ

= kτ (1− p̂)− ωp̂kτγδ

1− γδ

= kτ

(
1− p̂[1− γδ(1− ω)]

1− γδ

)
(A-10)

A combination of ω and p̂ that makes ∆p̂ equal to zero makes merchants

indifferent between charging p̂ and 1. Such combinations are given by

the following equation, with (ω, p̂) ∈ (0, 1)× (0, 1).

p̂ =
1− γδ

1− γδ(1− ω)
(A-11)

A.3 The Producer Indifference Price with Three Market

Prices

Suppose there are α merchants who charge p > 1− γδ and β who charge

1 − γδ, with remaining merchants charging 1. Consider the decision of
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a producer who is informed in period t about a merchant who charges

p. If the producer searches in period t and does not find a merchant

charging 1− γδ, then her expected payoff in period t+ 1 is the same as

if she returned to her merchant. Denote this payoff as V p
t+1. However, if

the producer finds a merchant charging 1− γδ, then her expected payoff

will be different because knowledge of this merchant is valuable. Denote

this payoff as V 1−γδ
t+1 . The expected payoff for such an informed producer

who returns to her merchant is set out in equation (A-12), and the payoff

from search is shown in (A-13).

V r
t =1− p+ δV p

t+1 (A-12)

V s
t =λp

(
1 + δV p

t+1

)
+ αλm

(
1− p+ δV p

t+1

)
+ βλm

(
γδ + δV 1−γδ

t+1

)
+ [1− λp − (α+ β)λm] δV p

t+1

=λp + αλm(1− p) + βλm
(
γδ + δV 1−γδ

t+1 − δV p
t+1

)
+ δV p

t+1 (A-13)

Assume that a producer who is informed about more than one merchant

will either remember all of the merchants or none of them in subsequent

periods. Suppose, provisionally, that a producer is originally informed

about a merchant charging p∗, such that returning to this merchant gives

the same expected payoff as search. This means that the benefit to this

producer if she finds a merchant who charges 1−γδ will be γδ−(1−p) per

period that the producer remains informed. This implies the following

relationship.

V 1−γδ
t+1 − V p∗

t+1 =
∞∑

j=t+1

(γδ + p∗ − 1)(j−t−1)

=
γδ + p∗ − 1

1− γδ
(A-14)
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Substituting (A-14) into (A-13) yields:

V s
t = λp + αλm(1− p∗) + βλm

[
γδ + δ

(
γδ + p∗ − 1

1− γδ

)]
+ δV p∗

t+1 (A-15)

The producer indifference price can be found by setting V r
t = V s

t , and

solving for p∗. Using equations (A-12) and (A-15) in this indifference

condition gives the following determination of p∗.

1− p∗ = λp + αλm(1− p∗) + βλm(γδ) + βλm
[
γδ + δ

(
γδ + p∗ − 1

1− γδ

)]
p∗ =

(1− γδ) [1− λp − αλm + βλmδ(1− γ)]
(1− γδ)(1− αλm) + βλm

(A-16)
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